
A UML-Based Methodology for Secure Systems:
The Design Stage

Eduardo B. Fernandez, Tami Sorgente, and María M. Larrondo-Petrie

Department of Computer Science and Engineering, Florida Atlantic University,
777 Glades Road SE-300, Boca Raton, Florida 33431-0991 USA

Abstract. We have previously proposed a UML-based secure systems devel-
opment methodology that uses patterns and architectural layers. We studied re-
quirements and analysis aspects and combined analysis patterns with security
patterns to build secure conceptual models. Here we extend this methodology
to the design stage. Design artifacts provide a way to enforce security con-
straints. We consider the use of views, components, and distribution.

1 Introduction

In a previous paper we proposed a new type of analysis pattern, called a Semantic
Analysis Pattern (SAP) [1]. A Semantic Analysis Pattern is a pattern that describes a
small set of coherent use cases that together describe a basic generic application. The
use cases are selected in such a way that the application can fit a variety of situations.
Using SAPs we developed a methodology to build the conceptual model systemati-
cally. To use the methodology it is necessary to first have a good collection of pat-
terns. We have developed several analysis patterns, e.g., [2], [3], [4], [5], [6], and a
good number of others exist in the literature, e.g., [7], [8]. These patterns are abstrac-
tions of real applications. We have made some experiments to show that they result in
good quality conceptual models that are convenient to use when developing complex
applications. An important quality aspect is security.

Security is a serious problem, especially for complex applications. This complexity
could provide many opportunities for attacks. It is then important to build these appli-
cations in a systematic way. We have proposed a development approach that applies
security throughout the whole lifecycle and uses security patterns [9]. As part of this
work we have produced a variety of security patterns, e.g., [10], [11]. We showed
that we can combine SAPs and security patterns in a natural way to create authorized
SAPs, which can be converted into secure designs [12]. We start by using SAPs to
build conceptual models and the necessary security constraints are then defined. We
consider here how to carry over the security model of the analysis stage into the de-
sign stage. Design artifacts such as views, components, and distribution can be used
to enforce the security constraints defined in the conceptual model.

B. Fernandez E., Sorgente T. and M. Larrondo-Petrie M. (2005).
A UML-Based Methodology for Secure Systems: The Design Stage.
In Proceedings of the 3rd International Workshop on Security in Information Systems, pages 207-216
DOI: 10.5220/0002558102070216
Copyright c© SciTePress

Section 2 introduces SAPs and security patterns. Section 3 shows how security
patterns are added to conceptual models. In Section 4 we show how these analysis
models are converted into design models. We end with some conclusions.

2 SAPs and security patterns

The development of object-oriented software starts from requirements normally ex-
pressed as use cases. The requirements are then converted during the analysis stage
into a conceptual or domain model. Analysis is a fundamental stage because the
conceptual model can be shown to satisfy the requirements and becomes the skeleton
on which the complete system is built. No good design or correct implementation is
possible without good analysis, the best programmers cannot make up for conceptual
errors. In addition, the correction of analysis errors becomes very expensive when
these errors are caught in the code.

An instance of a SAP is produced in the usual way: use cases, class and dynamic
diagrams, etc. (See [13]). We select the use cases in such a way that they include
aspects that may be common to many applications. We can then generalize the origi-
nal pattern by abstracting its components and later we may derive new patterns from
the abstract pattern by specializing it. We can also use analogy to directly apply the
original pattern to a different situation. As indicated earlier, we have developed se-
cure patterns of this type, one of which, the Patient Treatment Record, we use here to
illustrate our ideas.

The Patient Treatment Record Pattern describes the treatment or stay instance of a
patient in a hospital [5]. The hospital may be a member of a medical group. Each
patient has a primary physician, an employee of the hospital. Upon admission the
patient record is created or information is updated from previous visit(s). Inpatients
are assigned a location, nurse team and consulting doctors. This pattern realizes use
cases Admit Patient, Discharge Patient, Assign Assets to an Inpatient, and Assign
Nurse to a Location. Assets of the medical group are assigned to a patient through
associations. Figure 1 shows associations between classes Doctor, Nurse, and Loca-
tion and class Patient, which describe the corresponding assignments. In particular,
all patients are assigned a primary doctor while inpatients may also be assigned con-
sulting doctors. Locations include the room assigned to an inpatient or other places
for specific treatments. The assets of the medical group are organized in a hierarchical
arrangement that describes their physical or administrative structure. Specifically,
MedicalGroup includes some Hospitals, and in turn each hospital includes some
Buildings. Each treatment Location is part of a building. The class Employee classi-
fies the types of personnel that are assigned to patients.

One of the most basic security patterns is the Role-Based Access Control (RBAC)
pattern [10]. In this model users join roles according to their tasks or jobs, and rights
are assigned to the roles. In this way a need-to-know policy can be applied, where
roles get only the rights they need to perform their tasks. Use cases can be used as
references to define the needed rights for each role [14]. Figure 2 shows the class
diagram for this pattern. Classes Role, ProtectionObject, and Right define the au-
thorizations for roles. A right defines an access type indicating in what manner the

208

role can access the object. An operation checkRights can be used to find the rights of
a particular role or which roles can access a given object.

Fig. 1. Class diagram for Patient Treatment Record pattern

Fig. 2. The Role-Based Access Control pattern

3 The analysis stage

The use cases define all the ways to use the system and we need to give the involved
actors rights to perform their interactions [14]. Figure 3 shows a sequence diagram

* *
isAuthorizedFor

* *

MemberOf User

 id
 name

ProtectionObject

 id
 name

Right

 accessType

 checkRights

Role

 id
 name

1*

*

*

1…*

worksAt
*

*

*

assignedTo
*

*

assignedTo

* 1

assignedTo

assignedTo

consulting

primary
Nurse

specialty

*

Patient

TreatmentInstance MedicalGroup

date

name

name
address
patientNumber

financialNumber mainLocation
initialComplaint

MedicalHistory

instance

Outpatient

Employee

name
employeeNumber
address

Doctor

specialty

Inpatient

Location

number
size assignedTo

Building

*
Hospital

name
address

1

name
location

209

that implements the use case Admit Patient when we have a new patient. The admin-
istrative clerk needs rights to define a guardian and to create a patient record, patient
information, a medical history, and a treatment instance (these are implied by the
right admitPatient). She also has the right to assign assets to them. Because actors
correspond to roles in a RBAC model, the rights from Figure 3 are defined in terms of
roles. In Figure 4 we have added authorization rules to perform these functions to the
Patient Treatment pattern. This is performed by adding instances of the RBAC pat-
tern.

Fig. 3. Sequence diagram to admit a new patient

4 The design stage

We can now carry over the security architecture of the analysis stage to the design
stage. The authorization constraints defined by the authorized SAPs must be reflected
into specific authorizations in the design artifacts, e.g. in user interfaces, components,
and others. The design stage corresponds to the definition of software layers that
implement the conceptual modeling. We need to constrain their access according to
the restrictions defined in the conceptual model.

For example, user interfaces can be implemented by a Model View Controller
(MVC) pattern [15]. Each View corresponds to an interface for a use case and we can
enforce role rights at these interfaces. Figure 5 implements the use case Admit Pa-
tient and shows the AdministrativeClerk role as the only role with the ability to admit
patients and perform the required actions. A model like this can be made more spe-
cific by specializing it for a particular language. For example, it could be tailored for
Java and J2EE components by using classes Observable (instead of Model), Ob-
server, and Controller from the Java libraries.

<<create>>

 :Patient

 :MedicalHistory

:Treatment
Instance

admitPatient(info) <<create>>

 :PatientInfo

<<actor>>
 anAdministrativeClerk:

<<actor>>
aGuardian:

<<create>>

<<create>>

<<create>>

 :Guardian

210

Fig. 4. Patient treatment pattern with RBAC authorizations

1

**

* TreatmentInstance

 date
 financialNumber
 initialComplaint

 create ()
 update ()
 close ()

MedicalHistory

 insurance
 dateRange

 open()
 create ()
 update ()
 close ()

Patient

 name
 address
 patientNumber

 create ()
 update ()

Right

 hospitalAudit

Right

 admitPatient
 assignAssets
 closeTreatmentInstance

Right

 treatPatient
 readTreatmentInstance
 updateTreatmentInstance

Right

 dischargePatient

 treatPatient
 readTreatmentInstance
 updateTreatmentInstance

<<role>>
Doctor

 specialty

<<role>>
Nurse

specialty

<<role>>
HospitalAuditor

<<role>>
AdministrativeClerk

MedicalGroup

 name
 mainLocation

Hospital

 name
 address

*

Building

 name
 location

Location

 number
 size

*

Employee

 name
 idNumber
 address

211

Observer

Fig. 5. Adding security enforcement through interfaces

It is also necessary to define rights in J2EE or .NET components. This security is
specified in their deployment descriptor that is written in XML [16]. Security in J2EE
is based on roles and matches well the model we are using. For example, if the Patient
class is implemented as a component, its descriptor may specify that TreatmentIn-

AdmitPatientController

 + handleEvent()

AdmitPatientView

 - newPatient
 - initialComplaint
 - patientNumber
 - patientInformation
 - chart
 - medicalHistory
 - inpatient
 - outpatient

 + admitPatient(info)

Model

Patient

 - name
 - address
 - patientNumber

 + create(info)
 + update(info)

Outpatient

MedicalHistory

 - insurance
 - dateRange

 + open()
 + create()
 + update()
 + close()

<<role>>
AdministrativeClerk

Right

 treatPatient
 readTreatmentInstance
 updateTreatmentInstance

1

Inpatient

1

TreatmentInstance

 - date
 - financialNumber
 - initialComplaint

 + create()

*

 + update()
 + close()

212

stance can only be modified by doctors. This rule is at a lower level than interface
rules and it could be considered more fundamental, and it could not be overridden,
i.e. no rule in the AdmitPatient View can give somebody who is not a doctor the right
to modify patient treatment instances. This approach adds a second line of defense
against administrator errors (the Defense in Depth principle). Similarly, components
can access persistent data in relational databases using JDBC. These relations could
include further authorizations to provide another line of defense. When we do this, it
is necessary to make sure that the rights defined in the views, components, and data-
base items do not conflict with each other. To determine possible overlappings we
need to map security constraints across architectural levels [17] [18].

Distribution is usually performed through two basic approaches:
• Distribution of objects using an Object Request Broker, e.g., CORBA, DCOM,

.NET Remoting. We can add security rules to the broker pattern to control ac-
cess to remote objects.

• Distribution of component and interfaces, e.g. web services. We can control
access to web services using an XML firewall [11].

Since distribution provides another place to perform access control it needs again
to be coordinated with the other authorizations. There are some interesting mapping
problems to study here.

5 Discussion

The steps discussed above are part of our methodology. In past work we have shown
how to derive rights for roles from use cases [14]. We have also shown the need to
relate attacks to use cases [9]. Another aspect of our work discussed how to create
secure conceptual models by combining SAPs and security patterns [12]. We showed
an example of that approach in Section 3, and Figure 6 shows a secure financial
model that applies analogy to the medical example. A related idea makes use of as-
pects [19] [20]. We have also shown how UML can be used to represent any of the
existing access control models as well as sets of security constraints that may not
follow any model [21]. SecureUML [22] uses RBAC as a metamodel for specifying
and enforcing security. They make use of Model-Driven-Architecture (MDA) [23] to
generate secure code. However, they do not consider the effect of any design con-
structs, they enforce constraints directly in the code. We consider explicitly the details
of the lower levels. The hierarchy of models that we use is still appropriate for the use
of MDA to generate automatically some aspects of the lower levels models. Other
approaches based on UML do not provide a complete lifecycle software development
but focus only on specific steps. Mouratidis and Giorgini have developed an approach
to secure software development that is also applied through all stages [24]. Their
approach uses a special methodology, Tropos, based on agents, and focuses more on
security requirements.

213

FinancialInstitution

- name
- address

Fig. 6. Financial pattern with RBAC

6 Conclusions

A good analysis model for a portion of a complex system can be abstracted and be-
come an analysis pattern that can be used in other applications. Their use can save
time and improve the quality of a system. An important advantage of SAPs is that
they can be combined easily with security patterns, resulting in authorized applica-
tions. The security defined in the conceptual model can be enforced in the design
model using security patterns at the lower architectural levels, including user inter-
faces, components, distribution, and database adapters. We are currently developing
patterns for secure Brokers and for web services. As far as we know this is the first
time a secure methodology is applied at the design stage carrying a secure model
from the analysis stage and considering the effect of the lower architectural levels.

Acknowledgements

This work was supported by a grant from DISA, administered by Pragmatics, Inc.

- idNumber

+ captureInfo()
+ exchangeInfo()

FinancialRecord

+ read()
+ invest()

*

*
FinancialAccount

- accountNumber

<<role>>
Broker

<<role>>
Investor

Investor

- name
- address
- idNumber

maintains

1..*

1..*

Right

read

 Right

read
authorizeUse

1..* 1

1inChargeOf
Custodian

invest

214

References

1. Fernandez, E. B., and Yuan, X.: Semantic analysis patterns. In: Proceedings of 19th Inter-
national Conference on Conceptual Modeling, (2000) 183-195. Also available from:
http://www.cse.fau.edu/~ed/SAPpaper2.pdf

2. Fernandez, E. B., and Yuan, X.: An analysis pattern for reservation and use of entities. In:
Proceedings of the Pattern Languages of Programs Conference, PLoP99 (1999).

 http://st-www.cs.uiuc.edu/~plop/plop99
3. Fernandez,E. B., Yuan, X., and Brey, S.: Analysis Patterns for the Order and Shipment of

a Product. In: Proceeding of the Pattern Languages of Programs Conference, PLoP00,
(2000). http://hillside.net/plop/2000/

4. Fernandez, E. B., and Yuan, X.: An Analysis Pattern for Repair of an Entity. In: Proceed-
ings of the Pattern Languages of Programs Conference, PLoP01 (2001).

 http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions
5. Sorgente, T., and Fernandez, E. B.: Analysis patterns for patient treatment. In: Proceedings

of the Pattern Languages of Programs Conference, PLoP04 (2004).
 http://jerry.cs.uiuc.edu/~plop/plop2004/accepted_submissions
6. Yuan, X., and Fernandez, E. B.: An analysis pattern for course management. In: Proceed-

ings of the Pattern Languages of Programs Conference, PLoP03 (2003).
 http://hillside.net/europlop
7. Fowler, M.: Analysis patterns – Reusable object models, Addison-Wesley (1997).
8. Hamza, H. S. and Fayad, M. E.: The Negotiation Analysis Pattern. In: Proceedings of the

Pattern Languages of Programs Conference, PLoP04 (2004). http://hillside.net/plop/2004/
9. Fernandez, E. B.: A methodology for secure software design. In: Proceedings of the 2004

Intl. Symposium on Web Services and Applications, ISWS'04, Las Vegas, Nevada, 21-24
June 2004 (2004).

10. Fernandez, E. B., and Pan, R.: A Pattern Language for security models. In: Proceedings of
the Pattern Languages of Programs Conference, PLoP01 (2001).

 http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions
11. Delessy-Gassant, N., Fernandez, E.B., Rajput, S., and Larrondo-Petrie, M. M: "Patterns for

application firewalls. In: Proceedings of the Pattern Languages of Programs Conference
(PLoP2004). http://hillside.net/plop/2004/

12. Fernandez, E. B.: Layers and non-functional patterns. In: Proceedings of ChiliPLoP03,
Phoenix, Arizona, 10-15March 2003 (2003). http://hillside.net/chiliplop/2003/

13. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development, 3rd edition, Prentice-Hall (2005).

14. Fernandez, E. B., and Hawkins, J. C.: Determining Role Rights from Use Cases. In: Pro-
ceedings of the 2nd ACM Workshop on Role-Based Access Control, ACM (1997) 121-125.
http://www.cse.fau.edu/~ed/RBAC.pdf

15. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.: Pattern-Oriented
Software Architecture: A System of Patterns, Vol. 1, Wiley (1996).

16. Koved, L., Nadalin, A., Nagarathan, N., Pistoia, M., and Schrader, T.: Security challenges
for Enterprise Java in an e-business environment. In: IBM Systems Journal, Vol. 40, No. 1,
(2001), 130-152.

17. Fernandez, E. B.: Coordination of security levels for Internet architectures. In: Proceedings
of the 10th International Workshop on Database and Expert Systems Applications (1999)
837-841. http://www.cse.fau.edu/~ed/Coordinationsecurity4.pdf

18. Wood, C. Summers, R. C. and Fernandez, E. B.: Authorization in multilevel database
models. In: Information Systems, Vol. 4 (1979) 155-161.

215

http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions
http://hillside.net/plop/2004/
http://hillside.net/chiliplop/2003/
http://www.cse.fau.edu/~ed/RBAC.pdf
http://www.cse.fau.edu/~ed/Coordinationsecurity4.pdf

19. Georg, G., France, R., and Ray, I.: Creating Security Mechanism Aspect Models from
Abstract Security Aspect Models. In: Workshop on Critical Systems Development with
UML, UML2003, October 2003 (2003)

 http://www.cs.colostate.edu/~georg/aspectsPub/CSDUML03.pdf
20. Ray, I., France, R. B., Li, N., and Georg, G.: An Aspect-Based Approach to Modeling

Access Control Concerns. In: Journal of Information and Software Technology, Vol, 46,
No. 9, July 2004, (2004) 575-587,

 http://www.cs.colostate.edu/~georg/aspectsPub/IST04.pdf
21. Fernandez, E. B., Larrondo-Petrie, M. M., Sorgente, T., Rajput, S., and VanHilst, M.:

UML-based access control models. Submitted for publication.
22. Lodderstedt, T., Basin, D. A., and Doser, J.: SecureUML: A UML-based modeling lan-

guage for model-driven security. In: Proceedings of the 5th International Conference on
UML, UML 2002, Lecture Notes in Computer Science, Vol. 2460, Springer-Verlag, Berlin
Heidelberg New York (2002) 426-441.

23. Object Management Group. http://www.omg.org/uml
24. Mouratidis, H., and Giorgini, P.: Analyzing security in information systems. In: Proceed-

ings of the 2nd International Workshop on Security and Information Systems, WOSIS
2004, Porto, Portugal (2004).

216

http://www.cs.colostate.edu/~georg/aspectsPub/CSDUML03.pdf
http://www.cs.colostate.edu/~georg/aspectsPub/IST04.pdf

