
ADAPTIVE BUSINESS OBJECTS
A New Component Model for Business Integration

Prabir Nandi, Santhosh Kumaran
IBM T J Watson Research Center, 1101 Kitchawan Road, Yorktwon Heights, NY, USA

Keywords: Business Process Integration, Business Performance Management, Model-driven Architecture, Model-
driven Development, Composite Application, Services Oriented Architecture, Web Services

Abstract: We present a new component model for creating next generation e-Business applications. These
applications have two overriding requirements: (1) Ability to change the application behaviour quickly and
easily in line with the fast-changing business conditions and (2) Seamless integration of people, process,
information, and systems. Our new component model is built around the concept of Adaptive Business
Objects, and fulfils both the above requirements. This paper describes this component model and
demonstrates its use in real business solutions.

1 INTRODUCTION

In today’s global economy, enterprises are changing
continually, entering into new markets, encountering
new competitors, introducing new products and
restructuring themselves through mergers,
acquisitions, alliances and divestitures. In order to
stay competitive in such environments, enterprises
not only need to organize and operate their business
processes in an efficient manner, but also require a
solution that can easily adapt to the changes. This
calls for new software platforms and technologies
that support adaptive business solutions. In contrast,
the emphasis of traditional business process
management systems is on defining and managing
the rigorous behaviour of highly repeatable business
processes, overlooking the necessity for
management of changes.

Another important trend in the enterprise IT
solutions area is the growing emphasis on
integration. The business value of IT grows
substantially when the IT solutions seamlessly
integrate people, processes, information, and
applications. Information technology has made
substantial progress on enterprise workflow systems,
information integration, people collaboration, and
application integration, but mostly in isolation.
There is a need for new programming paradigms
that bring people, processes, information, and
applications together to create integrated solutions.

In this paper, we discuss a new component
model and an associated programming model that

begins to address these requirements. The
component model is based on a concept called
Adaptive Business Object (ABO). At its core, an
ABO is a component with the behaviour defined
using a Mealy Machine (Mealy, 1955) - a finite
automata with output. In this paradigm, a computer
program is a collection of communicating ABO
instances.

The outline of the paper is as follows. In section
2, we present Adaptive Business Objects (ABOs) in
detail. Section 3 discusses the programming model
for creating programs using the ABO component
model. Section 4 employs a simple customer
scenario to illustrate the ABO programming model.
In Section 5, we provide a clear description of the
research contributions of this work and position it in
the context of what exists today. Section 6 provides
a brief overview of our experience in applying this
technology to real life business problems. We
provide a summary of related work in Section 7 and
conclude by reiterating the value propositions of this
technology in Section 8.

2 ADAPTIVE BUSINESS OBJECTS

An ABO is an abstraction of a business entity with
explicitly managed state. The state information is
manifested in a currentState attribute that provides a
condensed view of the overall state of the entity at a
specific point in its life cycle. However, the key
value proposition of ABOs is the additional

179
Nandi P. and Kumaran S. (2005).
ADAPTIVE BUSINESS OBJECTS - A New Component Model for Business Integration.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 179-188
DOI: 10.5220/0002553301790188
Copyright c© SciTePress

functional contracts (depicted in Figure 1) that
combine seamlessly with this basic characteristic (of
explicitly managed state) to provide a holistic
component abstraction that is semantically and
syntactically complete in modelling all relevant
aspects of the business entity. Below we discuss
these functional contracts in detail.

2.1 Lifecycle & Behaviour

The lifecycle of the business entity modeled by an
ABO is defined using a finite state machine (FSM).
The states of the FSM represent the set of possible
states the entity may assume throughout its lifecycle.
An ABO receives external events via its public
interface (or Views) and reacts to it via state
transitions. Potential side effects are modeled by
associating Data and Remote actions with state
transitions. Thus the behaviour of an ABO is not
hard coded into the methods that implement the
interface as in traditional business objects. Instead, it
is externalized via a model with finite state machine
as its underpinnings.

2.2 Data Graph

Unlike traditional business objects, data is not
contained inside an ABO. Instead, ABO uses a data
graph to dynamically aggregate information on
demand from heterogeneous data sources.
Aggregation and presentation of data in this manner
is just another manifestation of the ABO behavior
and thus influenced by the state of the ABO. The
graph structure implicitly enforces the data
relationships and their cardinalities. This abstraction
provides the modeler with the ability to specify a

data model irrespective of the physical store i.e.
structured, semi-structured or unstructured data. In
other words data and metadata are not distinguished
as such.

2.3 State Adaptive Access

People and software applications may interact with
the ABO at various points in its life cycle. As part
of such interactions, parts of the data graph may be
accessed or manipulated or business events may be
sent to the ABO by invocations of ABO’s public
interface. However, the ability of the outside world
to raise events or access the ABO data will need to
adapt based on the current state of the ABO. For
example, a Purchase Order ABO may allow the
Requistioner the ability to manipulate the Order data
while the PO is in the Draft state. But once the PO
has been Accepted for processing, the Requisitioner
may have read-only access to the Order data. The
representation of the entity lifecycle by state
machine provides the ability to specify state adaptive
access control to business roles. The modeler can
specify read, write, search access on data and
authorize access for events for each business role in
each state.

2.4 Data Actions

The Data Actions are used to model CRUD
operations on parts of or the whole data graph.
However, they can only be added to the ABO as a
side effect on state transitions. This effectively
enforces the constraints regarding data integrity,
transaction scope, access control and business
semantics.

People
 Lifecycle

 &
Behaviour

 Data
 Graph

State
Adaptive
Access

 Data
Actions

Views

Remote
Actions

Query

Data

Events

Factory

ABO
[identity]

[current state]

Enterprise
Information
Systems

Applications

Applications

Processes

Figure 1: The ABO Component Model

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

180

2.5 Remote Actions

ABOs affect the outside world via the Remote
Actions. The model uses the well-known Command
design pattern (E. Gamma et.al, 1995) to define the
Remote Actions. The model can generate the
appropriate Web Services Definition Language
(WSDL) (Christensen, E. et.al, 2001) definitions for
the command interfaces and bound the receivers to
any network accessible service during deployment.
In the business process context, such services could
include other ABOs, workflow processes and
enterprise information systems.

2.6 Views

Views present the external interface or API of the
ABO. There are 3 main components that constitute
the View.

Query. This enables the user to search for ABO
instances satisfying certain criterion. Searchable
fields include the currentState and the entire data
graph. For example, one can search for all Purchase
Orders that are in the Approved state, with a
processing priority of ‘High’ and purchase amount
‘greater than $1000’. The query returns a list of
ABO instances.

Data. This is the interface to obtain partial or the
whole data graph of a particular ABO instance.

Events. These specify the events accepted by the
ABO and the corresponding event parameters.

For human users, the screens to drive user
navigation can be automatically generated based on
the state adaptive access. Thus there will be a ‘view’
for each ABO state for each interacting business
role.

3 ABO PROGRAMMING MODEL

The ABO programming model is based on Object
Management Group’s (OMG) Model Driven
Architecture/Development (MDA/MDD) (Mukerji,
J. et.al, 2001) approaches. MDA/MDD is emerging
as an important methodology to create software
applications. The basic premise is to express the key
abstractions (the models) of the application domain
in UML and then transform these models to create
executable code for a specific platform (e.g. J2EE).
We employ the MDA principles as the basis of the
ABO programming model.

Figure 2 shows the ABO programming model in
a nutshell. We have created a UML class diagram of
the ABO component model. A detailed description
of the UML model is out of scope of this paper but

we will capture the key facets in the next section.
Rational Rose XDE Modeler (Rational XDE, 2004)
was used as the tool to create the ABO UML model.
The Eclipse Modeling Framework (EMF, 2004), is a
modeling framework and code generation facility for
building tools and other applications leveraging
Object Management Group’s MOF (Meta-Object
Facility) technologies.

From a model specification described in XMI

(XML Metadata Interchange), EMF provides tools
and runtime support to produce a set of Java classes
for the model, a set of adapter classes that enable
viewing and command-based editing of the model,
and a basic editor.

Models can be specified using annotated Java,
XML documents, or modeling tools like Rational
Rose, then imported into EMF. The EMF plug-in for
Eclipse was used to import the ABO UML model,
generate the corresponding Java classes and also
create the basic editor. The basic editor was then
augmented to make it more user-friendly. This tool
was then used to create the application specific
ABOs. The EMF tool saves the ABO model in XMI
format. We created a collection of code generation
utilities that takes the ABO XMI files and generates
appropriate platform (J2EE) specific artifacts
deployable and executable on IBM WebSphere
platform. We will cover the details of the J2EE code
generation and mapping in our next section.

4 ABOS IN ACTION

In this section we illustrate the use of ABOs in
creating a business integration solution by applying

ABO EMF
Model Editor

(Ecli

ABO EMFModel Editor
(Eclipse)

ABO UML Model
(Rational Rose)

EMF Model
(Eclipse Modeling

Framework)

J2EE Platform
(IBM Websphere)

Import

Code Generation

Platform
Independent

Platform
Specific

Figure 2: The ABO Programming Model

ADAPTIVE BUSINESS OBJECTS - A New Component Model for Business Integration

181

the ABO programming model to solve a real
customer problem.

4.1 Scenario

The business scenario involves a large Retail store
fulfilling job openings in one of its stores. The
process starts with the Store Manager selecting a job
opening to be filled. Subsequently an advertisement
is released, applications are gathered, applicants are
short-listed, interviewed and screened. Finally one
or more applicants are selected for the job.

The process requires information to be integrated
from heterogeneous sources. For example, applicant
resumes are submitted online, faxed, or mailed.
Faxed or mailed resumes are converted to an
electronic format. The resumes are then kept with
the Retail store’s content/document management
system. The background screening required for

selected applicants is done via a Web Service made
available by a federal agency. The rest of the
information is available in structured formats and
stored in relational databases.

4.2 ABO Design

Traditional analysis and design of business
processes focus exclusively on activities performed
during the business process execution, the ordering
of these activities, and the data that flows through
these activities. We postulate that the artifacts are
just as important as the activities. The artifacts
correspond to entities that are created, modified, or
destroyed as a result of the business process
execution. This artifact view of the business process
is different from the data flow model just as the
activity flow model is different from the basic action
semantics of a computer program. Both specify

Figure 3: The Job Opening ABO State machine

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

182

meaningful constraints on a generic model such that
they can be applied to solve problems in a specific
application domain.

The artifact-centric analysis of the business
process leads to a view of the business process as a
sequence of activities used to create, manipulate, and
close a Job Opening. In other words, this business
process is really about managing the lifecycle of a
Job Opening. Thus we use an Adaptive Business
Object to model the Job Opening. This ABO brings
people, information, and applications in the context
of this business process. The business roles involved
in this process are the Store Manager, the HR
Representative and the Applicant.

4.2.1 Lifecycle and Behaviour

The Job Opening entity lifecycle is shown in Figure
3. The UML state chart is used as the design tool.
State transitions are labeled as
<Event>[Condition]/[Action]. For example, the
transition from the AdReleased state to the
ApplicationsReceived state is labeled as
Apply[>=maxApps]/addApplicant,closeAd where
Apply is the event, >=maxApps is the condition and
addApplicant, closeAd are the actions. The ABO
behavior demonstrated by this state transition
definition is as follows. When an application arrives,
the ABO state will be changed from AdReleased
state to ApplicationsReceived state and the applicant
will be added to the list of applicants if the number
of applications received so far (including the current
one) equals the maximum number specified. The
evaluation of >=maxApps condition, may be
delegated to a rules engine at runtime. The rules
engine may use the current business policies in place
to calculate the value of maxApps, the maximum
number of applications that will be received for the
job. The second action, closeAd, will initiate the
appropriate set of steps to withdraw the
advertisement, as the maximum number of
applications for the job has been reached.

4.2.2 Data and Remote Actions

The Data actions and Remote actions are indicated
in the state machine diagram as transition actions
e.g. Create Ad, Add Applicant etc. Data Actions will
be specified with the portion of the data graph that it
manipulates.

4.2.3 Data Graph

The information brokered by the Job Opening ABO
is federated among data repositories distributed
across the network. The Job Opening data graph,

shown in Figure 4, models the topology of this
information. The Job Opening ABO uses this
information to aggregate the views of the ABO on
demand. Specifically, the data graph shows that the
information needed to manage the Job Opening
process is provided by five relational stores (Job
Opening, Advertisement, Applicant, Contact,
Interview), one document store (Resume), and one
Web service (Background).

The nodes in the data graph are annotated with
the type of data store. The data graph does not
contain actual data, instead describes how data can
be aggregated from enterprise information systems,
services, and applications. For example, the
applicant resumes are stored in a document store and
the Resume node of the data graph merely holds the
relevant metadata with a field (resume doc) holding
the URI to the actual document. Thus the Job

Opening ABO data graph captures in a single logical
model the information that requires to be integrated
in the context of the process.

4.2.4 State Adaptive Access

Access for manipulating the Job Opening data graph
and/or sending events to it need to be restricted
between the three business roles at different states of
the Job Opening ABO. For example, Store Manager
and HR Rep are authorized to view the Job Opening
ABO while it is in AdCreated state. But only the HR
Rep can send the ApproveAd event.

4.3 Platform Specific Mapping

In this section we discuss the platform-specific
mapping of the ABO model to the J2EE platform.

Job
Opening

Advertisement

Applicant

Relati Docu

Resume

Contact

Interviewer

Background

Relati

Relati
Web

Relati

Relati

Figure 4: Job Opening ABO Data graph

ADAPTIVE BUSINESS OBJECTS - A New Component Model for Business Integration

183

This is accomplished by generating J2EE specific
code from the ABO XMI file.

Figure 5 shows the Job Opening solution running
on a J2EE platform e.g. IBM’s WebSphere
Application Server (IBM Websphere, 2004).

Each node (data group) of the Job Opening ABO
data graph maps to an Entity EJB. Appropriate
container managed relationships are generated to
indicate the relationships and their cardinalities. The
fields in the data graph become the entity EJB
attributes with some marked as key fields. The
sourceType field of each data group is mapped to the
different JCA resource adapters through which
connection and access of the heterogeneous data
stores are managed.

Client access to the “data graph” is via the Job

Opening Data Session EJB. We use an
implementation of the Service Data Object (SDO)
specifications (Beatty, J. et.al, 2003) for this
purpose. The ABO data graph is mapped to a SDO
disconnected data graph structure and read, filled,
and queried via the EJB Data mediator configured
with the Job Opening Data Session EJB. Although
the SDO architecture supports heterogeneous data
sources directly, we have preferred to implement
data graph nodes as entity EJBs backed by JCA
resource adapters (RA) primarily to take advantage
of the caching and transaction support provided by

the J2EE container. It also discards the necessity of
using diverse data mediators.

The Job Opening State Machine EJB is a
specialized implementation for state machine
support using container managed entity EJBs. The
operations/events from the ABO definition is
mapped as remote methods whereas data and remote
actions are mapped to private methods of the entity
EJB. A specialized state machine controller maps
remote method invocations to private methods based
on the current state of the EJB and the state machine
definition. Guards are also mapped to private
methods.

Lastly, the state adaptive access specifications
are used to create the portlets that bring together the
three view components – query, data and events
specific to the interacting business role player.

5 ANALYSIS

In this section, we discuss how the ABO component
model supports the requirements of adaptivity and
integration we laid out in the beginning of the paper
for the next generation enterprise solutions.

ABO model provides adaptivity at three levels:
1. There are two design points that contribute to the

adaptive behavior of an ABO at the lowest level.

Job Opening UI
(Portlets)

Job Opening
Data Session EJB

(EJB Data Mediator)

Job Opening
State machine

Entity EJB

State
Machine

Applicant
s
Entity

Contact
Entity
EJB

Interview
Entity
EJB

Bkground
Entity
EJB

Advertise-
ment
Entity

Job
Opening
Entity EJB

Resume
Entity EJB

JDBC RA JDBC RA JDBC RA JDBC RA JDBC RA Web Svc
RA

Content
Mgr RA

RDBMS Document
Manager

Federal
Web Svc

Data
Graph

Data
Graph Read Fill

 Data
Actions

Figure 5: Job Opening Solution on the J2EE Platform

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

184

First, the use of command design pattern for
remote and data action invocations as part of
state transitions leads to dynamic service binding
and provides flexibility in the way an ABO
effects the environment in response to the
processing of an event. An example of this is the
“Release Ad” action of the Job Opening ABO.
The actual releasing of an advertisement could
change based on the business policies and
business environment. The command design
pattern enables the dynamic binding of an
appropriate release mechanism with the Release
Ad action at runtime. Second design point is the
use of a rule engine for condition evaluation. The
result from the condition evaluation is used to
determine which transition to take when an event
is received. By externalizing this to a rule
engine, it becomes possible to make this decision
based on business logic brought in play
dynamically at runtime.

2. The definition of the ABO behavior using a
formal computational model coupled with our
use of Model Driven Architecture as the basis of
the ABO programming model facilitate
adaptivity at the second level. The ability to
externalize the behavior via a formal model and
the ability to create runtime artifacts that
implement the behavior via automated code
generation lead to adaptive components. The
externalized models may be manipulated
programmatically or by human involvement. For
example, the Job Opening process may be
streamlined by triggering the screening process
as soon as an application is received. This
change can be easily implemented by changing
the state machine definition of the Job Opening
ABO using an n appropriate tool and
regenerating the runtime artifacts.

3. We envision the next generation enterprise
integration solutions to be made up of collections
of communicating ABO instances. The
emergent behavior of such a system is
determined by the behaviors of the participating
ABOs. System behavior may be changed by
adding a new ABO to the system and modifying
the behaviors of the existing ABOs. For
example, the Job Opening system with just one
type of ABO could be easily augmented to
include "offshoring" by creating an “Offshoring
Opportunity” ABO. The net result will be to
check for opportunities to offshore whenever a
job opening is created.

ABO model achieves seamless integration of people,
processes, information, and applications by having a
simple computational model that subsumes all these
facets of a business integration solution. Below we

describe how these facets are effortlessly captured in
the ABO computational model.
1. The views are the mechanisms by which people

are integrated with the system. The views
provide context-sensitive, role-based access to
the information brokered by the ABO.
Additionally, views also provide a mechanism to
send business events to the ABO.

2. The key to business process integration is the
explicit definition and management of the state
of the ABO. Essentially, a business process
results from the tracing of the states of the ABO
as it processes business events. People are easily
integrated with the business processes since the
views serve as the conduit of the business events
originating from people.

3. The data actions fired as part of state transitions
and the data graph these actions use to
dynamically aggregate information from
federated data repositories are the facets of ABO
that facilitate information integration. People,
processes, and information meld together as a
business event originates due to user interaction
with an ABO View, this event triggers a state
transition, this transition invokes a data action
with an appropriate data graph as an argument,
and his action returns with aggregated data that
is delivered via the modifications to the View.
ABO provides a simple component model such
that instances of ABO exhibits this integrated
behaviour at runtime. Application integration
with processes, people, and information is
achieved by invoking Remote actions as part of
state transitions.
In traditional workflow systems, data integrity

poses a big challenge as the complexity of the
workflow starts to grow. The ABO approach could
augment this process and provide encapsulated
artifacts to manage and mitigate this risk.
Encapsulated, state adaptive artifacts, like ‘an order’,
‘a customer service request’, ‘the job opening’ etc.,
ensure data integrity by allowing access to the
contained data if and only if the current state allows
it.

Designing business process applications around
a set of key business artifacts provides a nice
factoring of concerns and enables a way to ‘break’
and broker workflows. The ABO encapsulates what
needs to be done (via the events it can accept in that
state), while the workflows specify how to achieve it
(launched via transition actions). A process thus
designed can scale to an arbitrary limit in terms of
its complexity. Analogies can be drawn between
object orientated programming and procedural
programming. Workflow based languages (like
BPEL4WS (Andrews, T. et.al, 2003)) provide a
“procedural” semantics to business process

ADAPTIVE BUSINESS OBJECTS - A New Component Model for Business Integration

185

modeling, whereas the artifact-centric modeling in
ABO’s augments ‘procedural’ descriptions with the
power of object-oriented paradigms. Additionally,
time tested object-oriented design patterns can more
naturally be applied to design complex, adaptive
business processes and systems.

6 REAL LIFE VALIDATION

In Section 4, we described a relatively simple
business application to illustrate the ABO concepts
and programming model. However, we have
successfully applied the ABO design principles,
tools, patterns and techniques to real world customer
problems. Below is a partial list with brief
descriptions about the business problem and the
ABO design choices.

The first customer provides IT outsourcing
services to Small and Medium Businesses. The end
to end business processes cover SOW, Quote, Order,
Installation, Invoicing, Parts management and
Supplier management. The process was designed
with 8 communicating ABOs,

Customer, is used to manage customer related
data and their business status – live, inactive etc.

Engagement, is a primary artifact that provides a
container for the master contract – the components
required for each site, the tasks and work breakdown
structures assigned to the individual service
providers and parts needed for each task. This ABO
also interfaces with a content management system
that stores the electronic copy of the master contract.

Parts Catalog, manages the parts data.
Schedule, is the other primary artifact that

handles the execution of the order from its inception
till installation is completed at every site. Its
lifecycle models problem resolution, coordinating
amongst the different tasks, supporting customer and
vendor interactions and ensuring the timeliness of
the order execution. Some of the lifecycle states are,
Pending, Plan, InInstallStart, Live, Exception,
InResolution, CustomerAccepted, Complete etc.

Services Catalog, manages the service provider
(vendor) data and the services they provide.

Site Profile manages information about the
installation sites.

Statement of Work (SOW), the live document
transacted between with the customer to negotiation
and settle on the cost, schedules and milestones.

Task, a primary artifact that manages the
execution of a single task. It communicates with the
Schedule ABO at different points in its lifecycle to
resolve problems and at the end signaling its
completion. Some of the lifecycle states are Live,

Rejected, Accepted, Reschedule, Exception,
Completed etc.

The second customer is a premier Auto Services
& Retail shop. The business process involves
managing their Service Work Order process from
appointment handling and scheduling, handling car
drop-offs, pricing, technician assignment and real
time line item level execution visibility. There
system is implemented around two main ABOs,

Service Transaction, manages the overall service
work order lifecycle and coordinates with individual
line item execution. Some of the lifecycle states are,
AppointmentScheduled, AppointmentConfirmed,
DroppedOff, Estimated, Purged, Hold,
ReadyForWork, Working, Complete,
ReadyForPickup, Delivered etc.

Line Item, manages the execution of a line item
from technician assignments, parts procurement,
customer authorization and relays status information
back to the Service Transaction as appropriate.
Some of the lifecycle states are,
HoldForAuhthorization, Unassigned, HoldForParts,
Assigned, Void, Working, Completed etc.

The third customer is one of the top Telecom
services providers. The business process provides
end to end Order Provisioning from Sales Support,
Ordering, Field Ops and Post Install. The Ordering
process has been implemented so far and consists of
4 ABOs,

Order, is the primary artifact and coordinates
amongst a number of workflows that do approvals,
site surveys and reviews. It moves into a
Provisioning state by creating and launching the
children ABOs and coordinates the concurrent
processing of individual parts of the Order. The
Order moves out of the Provisioning state when the
last of the order items have been provisioned. An
interesting use case is how the Order ABO reacts
appropriately to handle cancellation requests at
various stages of the provisioning process.

DSL, provisions the DSL service.
Long Distance, provisions the Long Distance

part of the provisioning. It has a dependency on
Local being provisioned first.

Local, provisions the Local service

7 RELATED WORK

This work builds on our earlier work on Adaptive
Documents (ADocs) (Nandi, P. et.al 2003). In
ADocs we proposed a programming model for
"business artifacts" that display state-dependent
behavior and its usefulness in implementing
complex business processes. The primary focus of
that work was to show the collaborative aspect of the

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

186

ADoc in its ability to facilitate collaboration
amongst a set of agents (human or software) to
execute activities as units of collaboration. We
demonstrated this with a real world business
example where activities were generated by
workflows. In ABOs we propose a formal
component model that maintains the collaborative
and state-dependent behavioral aspects of ADocs,
but extends it for information integration. We also
assert that ABOs provide a semantically complete
Model-View-Controller (MVC) programming model
in a single holistic component model.

There is significant amount of work in using
state charts as the basis of modeling the
accessibility, lifecycle and behavior of objects
including the well-known State pattern (E. Gamma
et.al, 1995). Some notable examples are its use for
interface sequencing (Whaley, J. et.al, 2002), service
composition (Jeng, J. et.al., 2000), communication
protocols (Hanson, J. et.al, 2002), as controllers in
MVC implementations, reactive and real-time
systems (Harel, D et.al, 1998). The ABO component
model draws from and builds on all such prior work.
Interface sequencing is the ability of an ABO
component to enforce constraints on the sequence in
which it accept events via its application interfaces.
Service composition is the ability of an ABO
component to choreograph various backend services
via actions on state transitions. ABOs may
participate in dynamic, stateful, multi-party
conversations by using remote actions for sending
messages, views for receiving messages, with the
messaging functionality delegated to the action
implementers. ABO composition supports protocol
nesting.

(Mukherjee, J. et.al, 2001) used state charts to
model video data. The video objects in the video
stream were partitioned into meaningful segments
by state charts according to the object properties and
their transitions. The database indexes were based
on the states assigned to a group of objects rather
than the objects themselves. If we use the ABO
model to solve this problem, the heterogeneous
content is aggregated based on relevant metadata
and retrieval and access is dynamically assigned
based on the state of ABO and the role of the
requester.

State machines are in common use to specify the
“system contracts” in most component models viz.
COM, CORBA, EJB etc. (Smith, R., 2001). These
system contracts describe persistence and
transactions policies required of the component
containers. The ABO component model can be
mapped to an implementation framework and we
have demonstrated one such mapping to J2EE. One
way to think about the use of state machines in the
ABO model is to prescribe the “application

contracts”. Note that when we map the ABO model
to the J2EE model, these application contracts are
implemented on the system contracts of the EJB
container.

8 CONCLUSION

We argue that new software technologies and
methodologies are needed to meet the demands of
the next generation enterprise solutions. The primary
characteristics of these solutions are adaptability and
seamless integration of people, processes,
information, and applications. In this paper, we
presented a new component model called Adaptive
Business Object (ABO) and a programming model
for ABOs based on Model Driven Architecture to
create adaptive business solutions that integrate
people, processes, information, and applications.

ACKNOWLEDGEMENT

The authors wish to acknowledge the constructive
feedback and critique provided by Nathan Caswell,
Terry Heath, Robert Guttman, Fred Wu, Kumar
Bhaskaran, Kamal Bhattacharya, Shubir Kapoor and
David Cohn at IBM Research. They would also like
to thank Mike Conner, Manish Modh and Eoin Lane
of IBM’s Software Group, for their enterprising
efforts in applying the ABO model successfully to
real life customer problems. Special thanks go to
Chang Shu, who designed and developed the code
generation utilities to map ABO models to IBM’s
Websphere platform and made this effort a reality.

REFERENCES

Mealy, 1955, George H. Mealy, A method for synthesizing
sequential circuits, Bell System Technical Journal,
34(5):1045-1079, 1955.

E. Gamma et.al, 1995, “Design Patterns – Elements of
Reusable Object Oriented Software,” Addison-Wesley
Publishing Company, NY, 1995.

Mukerji, J. et.al, 2001, Model Driven Architecture,
http://www.omg.org/cgi-bin/doc?omg/03-06-01

Rational XDE, 2004, Rational Rose XDE Modeler,
http://www-
306.ibm.com/software/awdtools/developer/modeler/

EMF, 2004, Eclipse Modeling Framework ,
http://www.eclipse.org/emf/

IBM WebSphere, 2004, Websphere Application Server,
http://www-
306.ibm.com/software/webservers/appserv/was/

ADAPTIVE BUSINESS OBJECTS - A New Component Model for Business Integration

187

Beatty, J. et.al, 2003, Service Data Objects,
ftp://www6.software.ibm.com/software/developer/libr
ary/j-commonj-sdowmt/Commonj-SDO-Specification-
v1.0.pdf

Nandi, P. et.al 2003, ADoc-Oriented Programming, The
2003 International Symposium on Applications and
the Internet (SAINT'2003, Jan 27-31, 2003, Orlando,
Florida, USA)

Smith, R., 2001, The Screw Analogy.(Industry Trend Or
Event), Smith, Roger - Software Development, v9 n3
March, 2001 / p7

Whaley, J. et.al, 2002, Automatic extraction of object-
oriented component interfaces, International
Symposium on Software Testing and Analysis.
Proceedings of the ACM SIGSOFT 2002 International
Symposium on Software Testing and Analysis 2002 p
221-231

Jeng, J. et.al., 2000, Designing an FSM architectural
framework for service-based applications, IEEE
Computer Society's International Computer Software
and Applications Conference 2000. IEEE, Los
Alamitos, CA, USA,00CB37156. p 234-239

Park, J. et.al. 1997, Compositional approach for designing
multifunction time-dependent protocols, Proceedings
of the 1997 International Conference on Network
Protocols International Conference on Network
Protocols 1997. IEEE Comp Soc, Los Alamitos, CA,
USA,97TB100174. p 105-112

Hanson, J. et.al, 2002, Conversation Support for Business
Process Integration, The 6th International Enterprise
Distributed Object Computing (EDOC'02 - Sep 17-20,
2002, Ecole Polytechnic, Switzerland)

Hanson, J. et.al, 2002, Conversation-enabled Web
Services for Agents and e-Business, The 3rd
International Conference on Internet Computing
(IC'02 - June 24-27, 2002, Las Vegas, Nevada, USA)

Mukherjee, J. et.al, 2001, State chart based approach for
modeling video of dynamic objects, Proceedings of
SPIE - The International Society for Optical
Engineering v.4520 2001 p.74-83

Sanden, Bo I. 2000, Implementation of state machines
with tasks and protected objects, Ada User Journal v
20 n 4 2000. p 273-288

Harel, D et.al, 1998, The Statemate Approach: Modeling
Reactive Systems with Statecharts. Harel, D., Politi,
M., McGraw-Hill, 1998.

Christensen, E. et.al, 2001, Web Services Definition
Language (WSDL), http://www.w3.org/TR/wsdl

Andrews, T. et.al, 2003, Business Process Execution
Language for Web Services (BPEL4WS), http://www-
106.ibm.com/developerworks/library/ws-bpel/

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

188

