
A FORMAL LANGUAGE FOR MODEL TRANSFORMATION
SPECIFICATION

Dan Song, Keqing He, Peng Liang, and Wudong Liu
The State Key Laboratory of Software Engineering, Wuhan University 430072, China

Keywords: MDA, model transformation, meta-model, formal language

Abstract: Model transformation and its automation have been the core and major challenge of MDA; consequently
OMG issued a QVT RFP to standardize its process. Though many approaches have been proposed, their
efficiency cannot be validated and their application scope is still limited. The task of providing a reliable
solution to model transformation is critical. This paper proposes a formal language for model transformation
specification to achieve automatic implementation. The foundation of our work is explained and some basic
elements of the language are defined. A concrete transformation example from UML 1.4 models to UML
2.0 models is presented using the formalism.

1 INTRODUCTION

The Object Management Group (OMG)’s Model
Driven Architecture (MDA) (Joaquin Miller, Jishnu
Mukerji, 2003) initiative has gained widespread
reputation due to its adoption of a model-backboned
approach for software system development. The
process of building a final system can be regarded as
a series of model transformations. Model
transformation thus becomes the focus of model
driven software development (Shane Sendall,
Wojtek Kozaczynski, 2003).

A major challenge of the model-driven
development is to be able to achieve the automation
of model transformation. While there exist
well-established modelling standards, there lacks
sound model transformation mechanisms and hence
prevent it from automating. In order to change this
embarrassment, the OMG initiated a standardization
process by issuing a Request for Proposal (RFP) on
Query/Views/Transformations (QVT) in 2002 (Tata
Consultancy Services, 2003). As an effort to respond
to this RFP, a large number of approaches have been

cannot be guaranteed in practice. Additionally,
automatic tools available only offer limited
capabilities and lack proper theoretical foundation.

To achieve the maximum degree of automation,
we may need a precise and unambiguous modal
transformation language. A formal language, which
is mainly based on mathematical logic and set theory
can meet this goal. Formal language allows software
engineers to create integral, conformant and
unambiguous specifications. Additionally, formal
language is easy for automation.

In this paper, we present our effort to design
such a formal language for model transformation
specification. The paper is organized as follows.
Section 2 explains OMG’s transformation model,
which is our working foundation. Section 3 gives the
basic elements of our proposed formal language.
Section 4 presents a concrete example of model
transformation from the UML 1.4 model to UML
2.0 model. And Section 5 summaries our solution
and discuss the future work.

2 TRANSFORMATION MODEL

We introduce the OMG’s simplified QVT
transformation model (DSTC, IBM, CBOP, 2003),
shown in Figure 1, to explain our working rationale.
As we can see from the figure, there are two types of
transformation: relation and mapping (Keith Daddy
et al., 2003). Relations are non-executable and can
proposed in the past two years (Krzysztof Czarnecki,
Simon Helsen, 2003). However, their effectiveness

+This research project was supported by the National Natural
Science Foundation of China under Grant No. 60373086;
Wuhan Science & Technique Key Project under Grant No.
20021002043; Open Foundation of SKLSE under Grant No.
03-03; the Provincial Natural Science Foundation of Hubei
under Grant No. 2002ABB037; Hubei Province Key Project
under Grant No. 902130819.
429
Song D., He K., Liang P. and Liu W. (2005).
A FORMAL LANGUAGE FOR MODEL TRANSFORMATION SPECIFICATION.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 429-433
DOI: 10.5220/0002546104290433
Copyright c© SciTePress

be automatically refined into mappings. Mappings
are typically uni-directional and must be consistent
with the relations it refines.

A model transformation specification defines how a
target model is derived from an existing source
model. Since MDA requires its model to be
well-formed, there are always two meta-models, i.e.,
source meta-model and target meta-model, to
validate their conformance. What will be
transformed are the actual data models, while rule
sets are defined on meta-model level. The
equivalence of source model and target model are
reflected in the static relations of the corresponding
meta-models.

On the lower level of Figure 1, we can see
clearly that the relation consists of several
transformation rules, represented by TRule. TRule is
usually responsible for transforming a clipping of
source model into a clipping of target model. So
each TRule has a source ExtentVar and a target
ExentVar. An ExtentVar is an extent variable
representing a meta-model or a meta-model
fragment, since a transformation rule. Similarly,
mapping is composed of several PatternDefn, which
is a pattern definition describing the details of
transformation. Each PatternDefn specifies how a
source Term is transformed into a target Term. And
a Term tracks to a MOF class in a model.

3 BASIC FORMALISM

As for the expression of specifications and
implementations of transformation, it may need a
specific modal transformation language. This
language should be precise and unambiguous. A
formal language based on mathematical logic and set
theory can meet this goal. Formal language allows
software engineers to create integral, conformant
and unambiguous specifications. Additionally,
formal language is easy for automation.

According to our designed transformation
model, such a formal transformation language
should provide at least definitions of three aspects:

- meta-model: a set of concepts to be matched
for an instantiated model,
- model: a set of entities to be dealt with by
transformation, and

Fig

- transformation: a functional mapping reflecting
a set of relations and evolution of elements from
the source to the target.
In the following, we will present the essential

formal definitions of all the elements in the
transformation model in part 2.

3.1 Definitions of Meta-models
ure 1: Transformation Model adapted from OMG. These three consecutive concepts are defined on

meta-model level. To be mentioned here, all the
concepts have the most common sense. For example,
the attribute of class here is a general concept,
including universal attribute of the primitive type,
association end of Object type and method of the
class, and we use a full stop to attach it to its
belonging class. So a meta-model, which actually
contains meta-classes and associations between
them, can be simplified to be a group of
meta-classes.

Def1 A meta-class mc(id, A)
 An identifier id
 A meta-attribute set A of tuples (n, t) with

an identifier n and a type t, with the
property:

jijjjii ttnnAtntn i =⇒=∈∀ :),(),,(
Def2 A meta-model mm is a collection of
meta-classes {m0, m1,…,mn}, with the property:

:, mmmcmc ji ∈∀
jiji mcmcidmcidmc =⇒= ..

Def3 A meta-model fragment mmf(mm, MCC)
 A meta-model mm which it belongs to
 A set MCC is a collection of meta-classes,

with the property:
mmmmfMCCmmfmmf ..: ⊆∀

3.2 Definitions of Models

Def4 to Def6 deals with the model and its containing
elements. These definitions are dependent on the
above definitions since models are the instances of
meta-models. So, each of the following definitions
attach a tag or mark reflecting its belonging meta
source.

Def4 A class c(id, mc, V)
 An identifier id
 A regarding meta-class mc
 An attribute set V of tuples (a, v), with the

property:
jijjjii vavaVvava i =⇒=∈∀ :),(),,(,and

:.),(,.),(, AmctnVcvac ∈∃∈∀∀
AmcVcna .. =∧= , which ensure that the

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

430

class has all the attributes specified in the
meta-class definition.

Def5 A model m(mm, CC)
 A regarding meta-model mm
 A set CC is a collection of classes {c0, c1,…

,cn}, with the property:
jijiji ccidcidcCCcc =⇒=∈∀ ..:,

Def6 A model fragment mf(m, CC’)
 A model m which it belongs to
 A subset CC’ is a collection of classes, with

the property:
CCmmfCCmfmf ..'.: ⊆∀

3.3 Definitions of Model
Transformations

Model transformations consist of a series of
transformation rules. Each rule embodies the relation
of source and target model. And each rule is refined
by a mapping. A mapping is a mathematical
function, described by several pattern definitions.

Def7 A model transformation rule r(mmf0,
mmf1) denotes there is a certain equivalence
between source model instance of mmf0 and
target model of mmf1.
Def8 A relation R(mm0, mm1) is a model
transformation rule set {r0, r1, …, rn}, which is a
finite set of model transformation rules, with the
property:

:},1,0{,},1,0{ njik L∈∀∈∀
mmmmfrmmmmfr kjki = , which determines

that all transformation rules of a model
transformation rule set define transformations
between the same two meta-models.
Def9 A mapping is a mathematical function
containing a number of pattern definitions. A
mapping extends a model transformation rule
and can be described as follows:

{rextendsmfmfMAPPING),(10
),(BATIONTRANSFORMA

AmmfsSRC :::: 0
BmmftTAR :::: 1

−−−− ExpressionBooleanPRE :
−−−− ExpressionBooleanPOS :

ORidtidsMAP ..: →
:.VsattSOME ∈∃

atttattsattALLFOR ..: →
−−−− patternTIONTRANSFORMAother }

It denotes a mapping is responsible for
transforming a source model to a target model.
Each area beginning with TRANSFORMATION
label is called a pattern definition, in which the
id or certain attributes of a source class is
evaluated to the id or attributes of a target class.

3.4 Other Auxiliary Definitions

As we can see from Def9, model can be decomposed
into fragments and also can be integrated into a
whole.

Def10 meageable(CCa,CCb) iff
∧=∈∈¬∃ idcidcCCcCCc jibjai ..:,
∧=∈∈∃ nmjnnimm aaVcvaVcva (:.),(,.),(

)..)) mccmccvv jinm ≠∨≠ , i.e., two class
collections are meageable only if there exists no
class in both collections with an identical
identifier but with contradictory attribute values
or an contradictory meta-class.
Def11 merge(CCa,CCb)=CC’ iff
mergeable(CCa,CCb). The result of merge is a
class collection containing all classes in the
participating collection if these are mergeable.
Therein, CC’ is the set of classes which holds:

'..: CCcidCCidcCCc jbiaj ∈⇒∉∈∀
CCcidCCidcCCc jajbj ∈⇒∉∈∀ ..:

:'',..,, CCcidcidcCCcCCc jibjai ∈∃=∈∈∀
∧=∧=).'..'.(idcidcidcidc ji

∧=∧=).'..'.(mccmccmccmcc ji
).'..'.(VcmccVcVc ji =∧=

 It denotes that to merge two class collections,
and all the same classes in separate collection are
merged into one and all the different classes are
preserved in the new collection.
Def12 mergeable(mfa, mfb) iff

)'.,'.(.. ccmfccmfmergeablemmfmmf baba ∧= ,
i.e., two model fragments are mergeable only if
they are attached to the same model and their
class collections are mergeable.
Def13 A model fragment merging mfmerge(mfa,
mfb)=mf’ iff ∧),(ba mfmfmergeable

).,.('. ''' CCaCCaCC mfmfmergemf = , which
merges two model fragments mfa, mfb to a new
model fragment.
Def14 A transformation rule set R(mm0, mm1) is
complete when it holds:

:),,1,0{ Rrni i∈∈∀ L
1100 mmmmmmfrimmmmmmfri =∧=

000100).,,.,.(mmmmfrmmfrmmfrmerge n =∧ L
100100).,,.,.(mmmmfrmmfrmmfrmerge n =∧ L

4 MODEL TRANSFORMATION
FROM UML 1.0 TO UML 2.0

4.1 The Example Meta-models

To perform a model transformation requires clear
understanding of the abstract syntax and the
semantics of both the source and target. Meta-model,
which is used to define the abstract syntax and

A FORMAL LANGUAGE FOR MODEL TRANSFORMATION SPECIFICATION

431

semantics of models, serves for this purpose. The
left part and right part of Figure 2 represent the core
UML 1.4 meta-model (OMG, 2001) and
corresponding core UML 2.0 meta-model (OMG,
2003) respectively.

4.2 Transformation Rules

Transformation rules should clearly express how the
source model and target model relates with each
other. But since the UML meta-model is rather
complex, this relation is not so distinctive. However,
it is not too difficult for us to find that the core UML
meta-model can be decomposed from such four
aspects as backbone, relationship, feature and
association. Accordingly, four rules can be
customized.

Informally speaking, the first rule r0 identifies the
basic constructs required for elementary modelling.
Rule r1, as shown in Figure 3, identifies model
elements that define relationships. Rule r2 identifies
various kinds of features of elements. Rule r3
distinguish relationship between association and
attribute. And all the four rules consist of the rule set
R. In order to express the intuitive knowledge about
how the models relate, graphical means are made
use of to depict transformation rules.
4.3 Formal Description

As the formal language and customized rules have
been presented, the relation between the UML 1.4
meta-model and UML 2.0 meta-model can be

described as R(mm0, mm1), in which, mm0 is the
given source extent variable, mm1 is the target extent
variable and R is the transformation rule set {r0, r1,
r2, r3}. Rules in R can be respectively expresses as
r0(mmf0,0, mmf1,0), r1(mmf0,1, mmf1,1), r2(mmf0,2,
mmf1,2) and r3(mmf0,3, mmf1,3). Thereof, mmf0 and
mmf1 represent the source and target meta-model
fragment. Next, we should refine each rule by a
mapping. Take the implementation of r0 for
example, the concrete and precise mapping and its
pattern definitions can be written as:

Figure 2: UML 1.4 Meta-model and UML 2.0 Meta-model.

MAPPING (mf0,0, mf1,0) extends r0 {
TRANSFORMATION (Element, Element)
SRC: s: mmf0,0::Element
TAR: t: mmf1,0::Element
PRE: NONE
POS: NONE
MAP: s.id t.id →
TRANSFORMATION (ModelElement,
NamedElement)
SRC: s: mmf0,0:: ModelElement
TAR: t: mmf1,0:: NamedElement
PRE: s.parent instanceOf mmf0,0:: Element
POS: t.parent instanceOf mmf1,0:: Element
MAP: s.id t.id s.name t.name → →
……
}

5 CONCLUSION

In this paper, we are engaged in the effort of
designing a formal language to describe model

Figure 3: Transformation Rule r0 in Rule Set R.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

432

transformations. We argue that this formal
mechanism promises such advantages: 1. Expressive
power: formal definitions describe precise and
unambiguous relationships between the source and
models. 2. Incremental transformation: a model
fragment that describes an incremental change to the
source can be transformed to an additive model that
describes the corresponding incremental change for
the target, since transformation is based on
independent rules. 3. Easy for automation:
transformations are specified in declarative way
without involving implementing details.
Development tools can easily accept and understand
the formal input, hence convenient for automation of
transformation.

From the analysis, we believe that this solution
has general-purpose and can be applied in many
other specific domains. However, for the reason of
easy illustration, concepts that are not important for
our solution, such as method, multiplicity,
inheritance and constraint, are left out in our formal
language designing. And at present, the
implementing framework does not yet have tools to
support it. We hope that this formal language will be
further perfected and our implementing framework
can get full validation in the future.

REFERENCES

Joaquin Miller, Jishnu Mukerji, 2003. MDA Guide, OMG.
U.S.A., Version 1.0.1.

Shane Sendall, Wojtek Kozaczynski, 2003. Model
Transformation - the heart and soul of model-driven
software development. IEEE Software, Special Issue
on Model Driven Software Development, Vol.20, No.
5

Tata Consultancy Services, 2003. Revised submission for
MOF 2.0 Query / Views / Transformations RFP,
QVT-Partners. Version 1.1.

Krzysztof Czarnecki, Simon Helsen, 2003. Classification
of Model Transformation Approaches. In OOPSLA’03,
Workshop on Generative Techniques in the Context of
Model-Driven Architecture.

DSTC, IBM, CBOP, 2003. MOF Query / Views /
Transformations, QVT-Partners. 1st Revised
Submission.

Keith Daddy, Anna Gerber, Michael Lawley, Kerry
Raymond, Jim Steel, 2003. Model Transformation: A
declarative, reusable patterns approach. In EDOC’03,
Seventh International Enterprise Distributed Object
Computing Conference.

OMG, 2001. Unified Modelling Language Specification,
Version 1.4.

OMG, 2003. UML 2.0 Superstructure Specification,
Version 2.0.

A FORMAL LANGUAGE FOR MODEL TRANSFORMATION SPECIFICATION

433

