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Abstract. A research on the development of a new public-key encryption 
scheme based on matrix diagonalization problem over a ring of algebraic 
integers is reported in this paper. The research is original, although it is still 
in its early stage. The new public key encryption algorithm has three 
original features that distinguish it from existing ones: (a) it works on an 
infinite field instead of a Galois field; (b)it recognizes the ability of 
adversaries to factor big integers; (c) it requires only simple (without 
modulus) additions and multiplications for message encryption and 
decryption, no high-order exponentiation is required. 

1  Introduction 

The idea of inventing new public key cryptographies by exploring the matrix 
diagonalization problem (MDP) was first suggested in [1]. The original 
encryption system was implemented with modulo-p addition and multiplications, 
where p is a big prime, which was broken due to the fact that the characteristic 
polynomial of the public key matrix can be factored efficiently over GF(p) using 
Cantor-Zassenhaus algorithm [2]. Improved public key encryption and digital 
signature schemes were developed later with the same idea,  but with the 
underlying algebraic setting selected differently as Zn, the ring of integers with 
modulo-n addition and multiplication, where n is an RSA modulus [3][4]. The 
new selection links MDP to integer factorization problem (IFP). In fact, 
diagonalizing a 2×2 matrix over Zn is equivalent to solving a modulo-n quadratic 
equation, or inverting the Rabin public key function [5], which is a proven hard 
problem. 

The purpose of this paper is to report the further research on developing an 
encryption scheme based on MDP over yet another algebraic setting, which is an 
infinite field instead of a Galois field, as is the case with almost all existing 
schemes. Since factoring a polynomial over the specially formulated algebraic 
setting is a brand new crypto problem, the complexity of which is still under 
study. However, we have made important progress on this aspect, which will be 
presented in this paper. 
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2  The new encryption scheme 

2.1  The algebraic setting 

First, we choose a big composite integer, denoted n, which is a product of a large 
number of primes. Let p and q be two secret divisors of n, pq=n, a ring of 
algebraic integers, denoted Ω, can be defined as 
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s is an integer, s  is an irrational number, Z  stands for the ring of integers, 

...}.,3,2,1{
...},,3,2,1,0{

=

±±±=±
*Z
Z  

Another algebraic setting, denoted Π, can be defined with Ω, 
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where  
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It is easily verified that ]n,s[R  is a field under normal addition and 

multiplication. Meanwhile, one notices that (1) can be rewritten as 
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One notices from the above discussions that Π is closed under ordinary addition and 
multiplication. Further more, let Πξξξ ∈+= 21 , where ]ns[ ,, 21 RΩ ∈∈ ξξ , 

one also obtains from the above discussion  
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which is invertible within ]ns[ ,R , and  
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gives the inverse of 21 ξξξ +=  in Π .  So we conclude that Π is also a field under 

normal addition and multiplication. 

There are 168 primes between 1 and 1000[6], we suggest that n be selected as 150 

primes among them, so that , the size of which will be 

comparable with that of widely used RSA modulus[7]. 
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2.2  The keys 

The private key for the encryption scheme is given by  
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where  
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r>4, while the public key is given by 
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where σ1 , σ2, …σr are algebraic integers computed from λ1, λ2,… λr using the 
following equations: 
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We have [8] 
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Note that the private key can be represented by (λ1, λ2,…λr), while the public key 
can be represented by (σ1 , σ2, …σr). 

2.3  The trap-door one-way function 

The following trap-door one-way function is used for message encryption in this 
paper: 
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where  is an  r×1 matrix, the elements of which can be 

computed as , so that  
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2.4  Message encryption 

The encrypting process is divided into the following three steps 

Step 1 Create r random numbers in Ω. These numbers, denoted , can be 

computed from the public key as  
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where  are random numbers in rkkk ,..., 21 ]s[R , 1ψ  is a publicly known 

one-way function, which can be made as the combination of a hash function with 
some arithmetic operations.  

Step 2 Compute the first component of the cipher-text, denoted y, which is an r×1 
matrix obtainable from the public key function: 
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Step 3 Compute the second component of the cipher-text, denoted z, which is an 
integer, 

)...,,( 212 rxxxmz ψ=  
(14) 

where m is the message,  2ψ  is a publicly known one-way function similar to 1ψ . 

The full cipher text of m is given by (y, z). 

2.5  Message decryption 

One notices that (13) can be reduced to a univariate quadratic equation by multiplying 
the inverse of H on both sides of the equation. We have 
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where  
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which is an alternative form of (8).  Let [ ]Trδδδ ...21
1 =− yH ,  

rixxx r
r
i

r
ii ,...2,1,...2

2
1

1 =+++= −− λλµ  
(16) 

where , and equation (15) can be reduced to  [ T
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which can be further rewritten as 
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The above equations are readily solved, the solutions of which are given by 
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(18) 

Meanwhile, one obtains from (6) and (16) 
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so we have 
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Note that 2r possible solutions to (13) can be computed from (18) and (19), and 
(12) can be used to find out the correct one. The original message can then be 
recovered as  

1
212 )]...,,([ −= rxxxzm ψ . 

3  Security of the encryption scheme 

We study in this section two kinds of possible attacks on our encryption scheme. The 
first kind of attacks aims at recovering the secret key, while the second kind of attacks 
tries to crack the cipher texts. 

3.1  Attacks aiming at recovering the private key 

An adversary can recover H, if and only if the adversary can diagonalize the 
corresponding public key A, or factoring its characteristic polynomial 
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over Π. Since Π is an infinite field, the polynomial factoring algorithms that work 
well on Galois fields, such as the famous Cantor-Zassenhaus algorithm, will not work 
on it. According to Abel’s theorem [9], it is also hard for the adversary to solve 
φ(λ)=0 over R, the real number field, as  this task is incapable of finite number of 
additions, multiplications and root extractions if r>4.  

The adversary may also substitute 
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However, it is easily verified that (21) can not be broken into a small number of 
rational equations over Z, so this transformation can not reduce the complexity of 
recovering the private key. 

The third method for key recovery is substituting 
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into (20), which will transform φ(λ)=0 over Π to eight polynomial equations of  
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over Z. This transformation makes it possible to recover the private key with existing 
polynomial factorization algorithms over finite fields. However p and q, the factors of 
n, should be found before the above method can be applied, and for this purpose we 
can not find any existing method that is more effective than enumeration. Suppose n 
is selected as a product of 150 different primes, and p is selected as the product of 70 

prime factors of n, it takes maximal  tries for the adversary to find p. We have  70
150C

1294370
150 21066.6 >×=C , 
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which is more than the number of all 128-bits symmetric keys. 

3.2  Attacks aiming at cracking the cipher texts 

We have studies three methods that may be used to solve (20). These methods may 
also be used to solve (13), in order to crack the cipher text directly. Complexity of 
applying the second and the third methods to (13) is the same as that of applying it to 
(20), while complexity of solving (13) over R depends heavily on that of reducing it 
into quartic or lower order univariate equations. The basic methods for the reduction 
are linear transformations, including linear eliminations and linear substitutions. We 
have the following proposition: 

Proposition 1 Breaking (13) into univariate equations through linear 
transformations is as hard as finding the eigenvalues of A. 

Proof One may represent a scalar equation obtained from (13) through linear 
eliminations as 
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where , , yvTw =0 [ ] Hvw TT
rwww ==...21 0≠w  since H is of full 

rank. Without loss of generality, we assume that 01 ≠w . Meanwhile one obtains from 
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and one obtains from the above equation 
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 So we have 
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which reveals the fact that v is a left eigenvector of A, and an eigenvalue of A can be 
obtained by multiplying A with it on the left side.  

In summary, obtaining a univariate equation from (13) through linear 
transformations is equivalent to computing an eigenvalue of A. If an adversary can 
obtain r independent univariate equations from (13), the adversary will also be able to 
obtain all r eigenvalues of the public key matrix. This is the end of the proof. 

4  Conclusions 

Extracting irrational roots from a high-order polynomial equation has been proved to 
be an impossible task, while complexity of finding a secret composite factor from a 
big integer is decided by the number of prime factors contained in the integer, and 
apparently irreducible with algebraic tools. Our encryption scheme is novel since we 
have built a strong relationship between complexity of breaking the scheme to that of 
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solving the above two original problems, which are different substantially from the 
underlying mathematical problems of existing public-key encryption schemes. 
However we have not been able to reduce the cryptographic problem formulated in 
this paper to either of the proven hard problems mentioned above. The security topics 
that remained open to further research includes the complexity of reducing (13) to 
quartic or lower order univariate equations through nonlinear transformations and the 
complexity of solving (13) over R without breaking it into univariate equations.   
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