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Abstract: New types of data processing applications are no longer satisfied with the capabilities offered by the 
relational data model. One example of this phenomenon is the growing use of the Internet as a source of 
data. The data on the Internet is inherently non-relational. As a result, demand developed for database 
management systems natively built on advanced data models. The semantic binary data model (Rishe, 
1992), satisfies the criteria for the models required for today’s applications by providing the ability to build 
rich schemas with arbitrarily flexible relationships between objects. In this paper, we discuss a new design 
for a semantic database management system which is based on the semantic binary data model. Our 
challenge was to design and implement a database engine which, while being native to the model, is 
reasonably efficient on a wide variety of industrial applications, and which surpasses relational systems in 
performance and flexibility on those applications that require non-relational modelling. Special attention is 
given to multi-platform support by the semantic database engine. 

1 INTRODUCTION 

The Semantic Binary Database Engine is a multi-
threaded, multi-platform computer program. Multi-
threading allows it to utilize the full CPU power of 
multi-processor computers. Typically, two different 
approaches are used for multi-threaded program 
implementation. One approach is to use one thread 
per CPU, a queue of work items, and non-blocking 
operating system calls. Another approach is to use 
one thread per request with blocking operating 
system calls. While the first approach allows higher 
performance, the second approach is easier to 
implement and requires less effort to port to 
different platforms. 
Multi-platform support allows the engine to be 
easily portable and to run on different platforms, 
such as Microsoft Windows, Sun Solaris, HP-UX, 
and Linux. It makes it possible for a client on one 
platform to communicate with a server running on a 
different platform. A detailed discussion of multi-
platform support is provided in section 5. 
The Semantic Binary Database Engine consists of 
two major parts – the Database Engine Kernel and 

the User-Level Engine Environment as shown in 
Figure 1. The interface between these two parts is 
the Kernel API, which provides access to the 
Kernel’s functionality. 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Semantic Binary Database Engine. 

 
The name 'Kernel' does not imply that it runs as a 
part of the operating system kernel. The Database 
Kernel consists of tightly coupled modules that 
provide essential functionality and high performance 
execution. The User-Level Engine Environment is a 
set of loosely-coupled modules (add-ons) that have 
access to the Kernel API and that provide user 
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programs with the service interfaces. The set of add-
on modules may vary depending on the DBMS 
packaging. Examples of add-on modules are a 
remote access module and database monitoring 
tools.  

2 DATABASE ENGINE KERNEL 
API 

The Database Engine Kernel API is an interface 
between the Database Kernel and the User-Level 
Engine Environment. It has the following properties. 
The Kernel API is a set of functions intended to 
provide the functionality of the semantic database 
and to hide the implementation details. While the 
internal implementation of the Database Kernel and 
modules in the User-Level Environment can be done 
in an object-oriented fashion, it is preferable to keep 
the API as a flat set of functions for easier and more 
efficient inter-process communication. 
The interface is accessible, but is not intended to be 
used by the user application programs. The interface 
was designed to support efficient execution rather 
than ease of use. Add-on modules in the User-level 
Engine Environment provide easy to use interfaces 
for user programs. This separation provides better 
reliability and stability than an alternative design 
with all the software modules fitted into the database 
kernel since the system can more easily survive 
faults in modules of the database engine that are 
running outside the Kernel. It also makes the Kernel 
code smaller, less prone to errors, and easier to 
debug and maintain. It is important for the database 
Kernel not to crash even if some ill-behaved 
programs misuse the Kernel API. 
Since the Database Engine Kernel is a separate 
process, the Kernel API is an interface between 
processes running on the same computer. The 
functionality of remote access is not provided at this 
level, but is instead provided by the Remote Access 
Server, which is one of the add-ons in the User-
Level Engine Environment. The Remote Access 
Server can be added or removed from the system 
depending on the expected functionality of the 
system. For example, it may not be needed for 
embedded applications. 
The Kernel API handles data in terms of facts that 
are not yet encoded for any storage structure. This 
allows users of the interface to see the database in its 
semantic representation. At the same time, the 
storage subsystems in the kernel may employ any 
kind of encoding and data structures to physically 
store the data. 

3 USER-LEVEL ENGINE 
ENVIRONMENT 

The User-Level Engine Environment is a set of 
modules running as one or several processes on the 
same computer where the Kernel runs. All these 
modules (except the first three below) are 
independent and can be designed and implemented 
separately. It is important to separate them from the 
Kernel modules to ensure stability and reliability of 
the database engine. 
The Local Semantic API module provides a 
conventional semantic API for database 
applications. This ensures compatibility with old 
programs that use previous versions of the semantic 
binary database engine. The semantic API was 
designed with the assumption that the engine and the 
user program would run in the same address space 
(it uses pointers to internal memory structures). 
While this is faster than remote access, it is not 
secure since the database engine is not protected 
from the ill-behaved user programs. This is the 
reason for the current design to employ a Kernel API 
to protect internals of the database and to run a 
Local Semantic API module in the User-level 
Engine Environment. 
The complex query language for semantic databases, 
called AVDV, is described in (Vaschillo, 2000). The 
Complex Query Executor analyzes an AVDV query 
graph, builds the execution plan, then performs 
queries and obtains results according to the 
execution plan. Several other components in the 
User-Level Engine Environment, such as Web 
Query Tool and Semantic SQL Server require 
execution of complex queries and rely on this add-
on module. 
The Semantic SQL Server module allows users to 
query databases by means of semantic SQL (Rishe, 
1999) and standard database protocols such as 
ODBC. Semantic SQL Server accepts a SQL 
statement and parses it. Parsing semantic SQL 
statements involves discovering the relevant sub-tree 
of the semantic schema given an unambiguous path 
postfix as described in (Rishe et.al., 2000). The 
corresponding query AVDV graph can then be 
constructed. When the AVDV query graph is 
constructed, it is passed to the Complex Query 
Executor module for optimization and execution. 
The result of execution is returned to the user. 
The Export/Import module provides export and 
import of a database into interchangeable standard 
formats. Some of the common formats are Comma 
Separated Values (CSV) and Extensible Markup 
Language (XML). The module also provides export 
to the proprietary native Semantic Definition 

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

434



 

Language (SDL) and to the XML-based Semantic 
Definition Language (XSDL). 

4 DATABASE ENGINE KERNEL 

The Database Engine Kernel is the main component 
of the Database Engine. The Kernel consists of 
several modules that are tightly integrated to provide 
maximum efficiency; all the modules run in one 
address space. The modules have well defined 
interfaces to communicate with each other, and the 
internal details of each module’s implementation can 
be designed independently. Figure 2 shows the basic 
data flow between the modules.  
 
 
 
 
 
 
 
 
 

 
Figure 2: Database Engine Kernel. 

 
The Integrity Constraint Module is used to verify the 
integrity constraints. The system reports updates to 
the Integrity Constraint module. For some updates, 
the system makes an immediate decision that the 
operation should be rejected. Information about 
other updates is stored and a decision is deferred 
until commit time. For example, a decision on a 
cardinality constraint can be verified right away, 
while a decision on a totality constraint should be 
deferred until transaction commit time. 
The Transaction Coordinator carries out the 
transaction lifecycle. The system supports two types 
of transactions – transactions with versioning and 
without versioning. The typical execution of a 
transaction with versioning is shown in Figure 3. 
The Concurrency Control module manages 
transactions and ensures the consistent state of the 
database. All requests for updates and queries in the 
system are communicated to the module in the form 
of lock requests and releases. The Concurrency 
Control module stores enough information to decide 
whether to grant or to delay certain lock request. The 
module also verifies all the locks at the end of a 
transaction and decides whether the transaction is 
allowed to commit. Concurrency Control supports 
several types of transactions and makes the final 

commit/rollback decision according to the 
transaction type. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Transaction lifecycle. 

  
All transaction updates are communicated to the 
Transaction Log module. This module provides 
storage of the local transaction log on a per-
transaction basis. The transaction log can be 
retrieved later on to be run against the database. This 
module also maintains the global database 
transaction log and appends the local transaction log 
to the global database transaction log at transaction 
commit time. 
Storage Codecs perform encoding and decoding 
between storage representation and semantic 
representation. Fact, Record and Bitmap 
representation can be used in appropriate situations. 
When the components of the storage item are sent to 
the module, it composes the storage item that will be 
placed in the storage subsystem. When the storage 
item is retrieved from the storage subsystem, the 
module decodes it to semantic components. For 
example, the fact representation codec takes two 
object IDs and a relation ID and combines them into 
a binary string when the information is to be stored. 
On retrieval it takes the binary string and parses it 
into two Object IDs and the relation ID. 
The Storage Subsystem is the module which 
stores/retrieves information to/from files composed 
of fixed-size blocks. The information is already 
encoded for storage by the Storage Codec module. A 
B-Tree structure is the main storage subsystem used 
in fact and record representation.  
The Multi-version Disk Cache improves 
performance of the disk subsystem by keeping the 
content of disk blocks in memory and saving disk 
I/O operations. If a block that is already in the cache 
is requested, it is not retrieved from the disk and the 
cached copy is used instead. If subsequent 
modifications are made to the same block, the cache 
keeps the block in memory and saves time on disk 
write operations by waiting until the last 
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modification is made. In addition to these standard 
write-back cache functions, the Multi-version Disk 
Cache provides functionality specific to the database 
engine. It allows the storage subsystems to lock 
blocks in memory. Whenever a block is needed by 
the storage subsystem for certain operations, such as 
binary search within the block, the storage 
subsystem does not create its own copy of the block. 
Instead, it requests the disk cache to lock this block 
in memory for the duration of operation and uses the 
same copy of the block. Sharing of the block copy is 
possible since the modules in the Kernel, including 
the disk cache, run in the same address space. This 
type of sharing eliminates the necessity of block 
copy operations. It is important that the lock is held 
for only a short period of time, since all the locked 
blocks have to be present in memory. If locks are 
held for a long time, the system may run out of 
memory. 
The disk cache provides support for block 
versioning. A block ID in the cache is two-
dimensional: it is composed of a sequential block 
number in the database file and a sequential database 
version (B, V). The transaction coordinator increases 
the database version with every read-write 
transaction and assigns the version to the 
transaction. Whenever the transaction requests block 
B for modification, the block ID is composed of B 
and the database version V assigned to the 
transaction. If the block does not already exist, a 
new copy of the block is created. The new copy is 
based on the block with the same block number B 
and the database version that was current at the 
beginning of the transaction. The old block is 
retained until a transaction in the system requests it. 
The Binary Server module hides the file structure of 
the database and provides the user with flexible 
storage options. The module is used to store data of 
the database engine’s files with fixed size blocks to 
the disk. The Binary Server implements a simple file 
system that can provide this functionality by using 
one disk file or several disk files or even raw disks 
not formatted by the operating system. The Binary 
Server can also distribute the database across 
multiple computers. All storage subsystems share 
the same space of disk blocks provided by the 
Binary Server. Whenever a block is freed from a 
storage structure, it goes into the common pool of 
free blocks. This allows for better management of 
space allocated to the database. 

5 CONCLUSION 

Semantic databases have many advantages over 
relational databases that will allow them to grow in 

popularity as the complexity of data increases. 
However, the semantic database engine should be 
implemented in a way that is not prohibitively 
expensive on operations typical to relational 
databases. We have shown that a number of 
reasonable tradeoffs are possible in the design of the 
semantic database engine that can make it 
competitive on applications that are widely-used 
today. 
This work shows how a framework that allows 
investigation of advantages and disadvantages of 
different approaches in each of the database engine 
modules can be built. A number of conclusions have 
been made on the feasibility of particular choices 
based on theoretical considerations, as well as 
practical experience implementing various parts of 
this design in several combinations. 
Innovative technologies missing in the previous 
semantic database theory and prototype 
implementations have been designed and discussed. 
These technologies are expected to overcome some 
of the shortcomings that have kept semantic 
databases from being widely accepted in the field. 
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