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Abstract: An ontology version needs be created when changes are to be made in an ontology while keeping the basic 
structure of the ontology more or less intact.  It has been shown that an Ontology Perspective theory can be 
applied on a set of ontology versions. In this paper, we present a Virtual Perspective Interface (VPI) based 
on this theory that ensures that old data is still accessible through ontology modifications and can be 
accessed using new ontologies, in addition to the older ontologies which may still be in use by legacy 
applications. We begin by presenting the problems that are to be dealt with when such an infrastructure 
needs be created. Then we present possible solutions that may be used to tackle such problems. Finally, we 
provide an analysis of these solutions to support the one that we have implemented.   

1 INTRODUCTION 

Many discrepancies may be caused due to 
incompatible changes between ontologies. These 
changes may happen when various versions of an 
ontology are created where new concepts are added, 
for example when an abstract super class for two 
classes is added, or a class is moved, renamed etc. It 
has been shown that an Ontology Perspective theory 
(Heflin and Pan, 2004) can be applied on a set of 
ontology versions. In this paper, we present a Virtual 
Perspective Interface (VPI) based on this theory that 
ensures that old data is still accessible through 
ontology modifications and can be accessed using 
new ontologies, in addition to the older ontologies 
which may still be in use by legacy applications. 
VPI obviates the need for wholesale translation of 
existing data every time an ontology is changed. The 
focus of VPI is on prospective use (i.e., using newer 
versions of some ontologies to access knowledge 
represented in previous versions of those ontologies) 
versus retrospective use (i.e., using older versions of 
some ontologies to access knowledge represented in 
newer versions of those ontologies).  
     We begin, in section 2, by providing relevant 
background for the technologies used. We also 
define the problem we are addressing in this paper 

and give some motivation for the need of a system 
that solves the problem. In section 3, we present the 
architecture for such a system. We produce the VPI 
modules and the implementation details. This is 
followed by an analysis of the system in section 4. In 
section 5, we present snapshots of our implemented 
system and some samples. Finally, in section 6, we 
conclude with an overview of our system and future 
work. 

2 BACKGROUND 

In this section, we will provide a brief description of 
related terms that will be frequently used throughout 
this paper and some discussion of the research that 
our paper builds up on.  

2.1 Ontologies for Information 
Systems 

Ontology is a central issue for the development of 
Internet commerce systems. The main barrier to 
electronic commerce lies in the need for applications 
to meaningfully share information, not in the 
reliability or security of the Internet. This is because 
of the variety of enterprise and e-commerce systems 
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deployed by businesses and the way these systems 
are variously configured and used. Although it is 
useful to strive for the adoption of a single common 
domain-specific standard for content and 
transactions, this is often difficult to achieve, 
particularly in cross-industry initiatives, where 
companies co-operate and compete with one 
another. In this regards, there has been previous 
work to develop a core ontology which may be used 
as a base to develop domain specific ontologies 
(Hunter, 2003). 
     For over a decade, knowledge representation 
researchers have studied the use of ontologies for 
sharing and reusing knowledge (Gruber, 1993; 
Guarino, 1998; Noy and Hafner, 1997). Although 
there is some disagreement as to what comprises an 
ontology, most ontologies include a taxonomy of 
terms (e.g., a Car is a Vehicle), and many ontology 
languages allow additional definitions using some 
form of a logic. Guarino (1998) has defined an 
ontology as “a logical theory that accounts for the 
intended meaning of a formal vocabulary.” A 
common feature in ontology languages is the ability 
to extend preexisting ontologies. Thus, users can 
gain the interoperability benefits of sharing 
terminology where possible, but can also customize 
ontologies to include domain specific information. 
     Research on the development of the Semantic  
Web (Berners-Lee et al., 2001) has led to progress in 
the design and use of distributed ontologies. Two 
languages have been developed for representing 
describing and semantics on the Web. The Resource 
Description Framework (RDF) is provides a graph-
base data model, in which every resource is 
identified by a Unified Resource Identifier (URI). 
For syntactic convenience a URI can be abbreviated 
using namespace prefixes which can be defined in 
each document. An arc in the graph can be viewed 
as a triple consisting of subject, predicate and object. 
For example, <subject, subClassOf, object> means 
that subject is a subclass of object. The Ontology 
Web Language (OWL) extends RDF to provide a 
richer set of modeling constructs that allow the 
semantics of data to be more precisely defined. 
These languages can be used to describe the 
semantic for enterprise information systems. 
     However, it is usually impossible to establish, a 
priori, rules (technical or procedural) governing 
participation in an electronic marketplace. In the fast 
paced scenario of e-commerce and m-commerce, an 
enterprise must be able to adapt its information 
systems quickly. We, in this paper, are focussing on 
ontology changes. Hence the ultimate goal is the 
development of reusable, dynamic ontologies 
(Heflin and Hendler, 2000) that can be applied 
across multiple disciplines. This calls for a 
comprehensive framework to formulate and 

maintain ontology versions. Ontology Versioning 
Theory (Heflin and Pan, 2004; Heflin 2001), in 
section 2.2, presents such a framework. 

2.2 Ontology Versioning 

Once a database schema changes one faces the 
problem of managing the data using its different 
versions in a consistent and economical fashion. In 
this context, database schema versioning (Roddick, 
1995) is similar to the ontology versioning. Roddick 
pointed out two ways database schema can be 
viewed as, prospective (viewing data from the point 
of view of a newer ontology) and retrospective 
(viewing data from the point of view of an older 
ontology). Klein and Fensel (2001) were the first to 
compare ontology versioning to database schema 
versioning. They proposed that both prospective use 
and retrospective use of data should be considered in 
ontologies as well. However, Klein and Fensel do 
not describe a formal semantics. 
     Stuckenschmidt and Klein, (2003) provide a 
formal definition for modular ontologies and 
consider the impact of change in it. However, their 
approach involves physical inclusion of extended 
ontologies and requires that changes be propagated 
through the network. This approach is unlikely to 
scale in large, distributed systems. Furthermore, they 
do not allow for resources to be reasoned with using 
different perspectives, as is described here. 
     Heflin, (2001) has suggested that there should not 
be a universal model of all the resources and 
ontologies on the Web. In fact, it is extremely 
unlikely that one could even exist. Instead, we must 
allow for different viewpoints and contexts, which 
are supported by different ontologies. Ontology 
Perspective Theory from Heflin (2001) defines 
perspectives which then allow the same set of 
resources to be viewed from different contexts, 
using different assumptions and background 
information. 
     Heflin and Pan (2004) builds on this and presents 
a model theoretic description of ontology 
perspectives. Each perspective is based on an 
ontology, called the basis ontology or base of the 
perspective. By providing a set of terms and a 
standard set of axioms, an ontology provides a 
shared context. Thus, resources that commit to the 
same ontology have implicitly agreed to share a 
context. We also want to maximize integration by 
including resources that commit to different 
ontologies. This includes resources that commit to 
ancestor ontologies and resources that commit to 
earlier versions of ontologies that the current 
ontology is backward compatible with. Heflin 
defines that an ontology version is backward 
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compatible with a prior version if it contains all of 
the terms from the earlier ontology and the terms are 
supposed to mean the same thing in both ontologies. 
See the paper for details regarding entailment in the 
theory. 

 

     We use Web Ontology Language (OWL) to 
represent knowledge bases. But OWL has little to no 
semantics for versioning properties yet. Ontology 
Perspective Theory allows multiple views of the 
same data where each view is based on an ontology. 
It also provides an initial semantics for versioned 
ontologies, in particular, semantics for backward-
compatibility. Figure 1: Simple Example of Ontology versioning 

      Prospective use of data is a highly desirable 
concept and backward compatibility facilitates this. 
Hence its use will be an incentive for ontology 
engineers.  However in the present OWL world we 
can’t state that backward compatible versions are 
more common than ones that are not. OWL is too 
new and there aren’t many, if any, new versions of 
existing ontologies. However, we argue that, if the 
versions are truly incompatible then it does not make 
sense to reuse data. For example, if a new version 
significantly alters the modeling of knowledge in the 
previous version, it may not be useful to construct a 
link between the two versions. Moreover, backward 
compatibility could allow ‘deprecation’ of terms 
between two versions and hence is more flexible 
than it might initially seem. Say there are two 
incompatible versions of an ontology: Ov1and Ov2. 
We can have a Ov1.5 which is compatible with Ov1 
and deprecate all the terms that will disappear in Ov2. 
Then Ov2 can delete those deprecated terms while 
being compatible with Ov1.5. Thus deprecation 
facilitates backward compatibility without hindering 
the validity of a previous version that might be in 
use by some other application. 

     This makes it undesirable to discard the data 
contained in any of the older versions. In practise, 
there will be many complex cases that will result in 
Ontology versioning. One such case may be where a 
subclass is deleted. Fig. 1 denotes a part of ontology 
concerning Fish genealogy. OV1 wrongly conveys 
that the class ‘dolphin’ is a subclass of class ‘fish’ 
whereas OV2 rectifies this and reassigns the ‘dolphin’ 
class to be a subclass of class ‘mammal’. 
Additionally, Flipper and Batty are instances of class 
‘dolphin’ in OV1 and OV2 respectively.  Therefore, 
according to OV1, Flipper is a dolphin and hence a 
fish. Whereas, Batty is a type of dolphin, and hence 
is a mammal. This is also a case demonstrating the 
use of backward-compatibility. It must be 
emphasized here that the intended meaning (and not 
only the name) of a class must remain the same in 
subsequent versions. For example, the dolphin, in 
version 2, must remain to be the living creature that 
is commonly known and not a different entity. 
     This requires us to come up with a system where 
such discrepancies can be removed while retaining 
as much knowledge as possible. VPI provides a 
simple yet effective method to achieve these goals. It 
is designed such that it sits on top of the underlying 
model of knowledge bases and acts as an agent 
mediating between the querying user and the 
knowledge bases. For example, a query for ‘Fish’ 
from the perspective of version 2 must produce 
Nemo. The same query from the perspective of 
version 1 will give us Flipper. A query for 
‘Mammal’ from the perspective of version 2 will 
give us both Batty and Flipper. The Flipper solution 
comes from the inference using version 1. Without 
using perspectives, our answer would have been 
Batty only.  

3 VPI 

As an ontology evolves, multiple versions are 
created. These versions coexist in the containing 
knowledge base. Most legacy applications will want 
to keep the snapshots of these versions at all time 
and query for different data with respect to different 
versions. Additionally, many Enterprise Systems are 
inherently distributed and dependent. 
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Figure 2: High Level Design of VPI 

 
3.1 Architecture 

VPI acts as the middle layer between the user and 
any OWL knowledge base system. It facilitates the 
knowledge base to perform perspective based 
entailment without modifying any internal 
knowledge in the system. It creates a virtual OWL 
Ontology, the details of which are provided later, 
that results in perspective entailment using only 
OWL entailment. This is shown in Fig. 2. There are 
two main modules of the VPI.  
 
Document Loader: The document loader takes an 
ontology and computes the virtual perspective 
ontology for it. This will be OWL file with the same 
local names as the other ontology, but will contain 
mappings to ontologies with which the ontology is 
backward-compatible. Both the original ontology 
and the virtual perspective ontology will be stored in 
the underlying knowledge base. 
 
Query System: All queries to the knowledge base 
pass through the VPI. An application may either 
select a default perspective or the user may specify a 
perspective for each query. The VPI translates the 
query to the terms of the corresponding virtual 
perspective ontology, and issues the query to the 
underlying knowledge base. It then returns the 
results to the client application. 
 
     For all the following discussion, we will use the 
following convention for naming ontologies, 
Version X of any ontology is written as OVX. Hence 
version 4 of an ontology will be OV4. To denote a 
Virtual Perspective we will use OVP. The class C of a 
version, say 3, will be denoted as OV3:C.  
    Fig. 3 is a graphical example of a naïve solution to 
our problem. In this case there are two ontologies, 
OV1 and its latest version OV2. It creates mappings 
such that all OV1 and OV2 classes are made subclasses 
of their corresponding VP classes. 
 
Note: VP is in perspective of OV2 here. In the new 
version, it was established that Dolphin is a subset of 
Mammal rather than a subset of Fish. The VP was 
constructed using OV2 as the perspective. The 

orientation of the class hierarchy is such that X, 
which is a OV1:dolphin, is labeled as both, a OVP:fish 
(due to version 1) and a OVP:mammal (due to 
version 2).  
 

 
Figure 3: Erroneous Virtual Perspective 

 
     It may be argued that such an outcome is 
undesirable since the primary reason for versioning 
the ontology might have been to substitute the 
knowledge that dolphins are mammals with the 
earlier version of them being fish. This is the 
approach taken by ontology perspective theory. The 
axioms of the new ontology are used in place of the 
old. We would still like to keep the knowledge for 
all OV1:fish that are not dolphin, such as Y. Hence 
the system should be equipped such that it can make 
intelligent inferences in such situations. 
     We start with OV1 where A is a subclass of B 
which is a subclass of C. In its version OV2, A no 
longer remains a subclass of B. The OVP is built with 
OV2 as the perspective. 
In this case it is not possible to make any more links 
of the version classes with the OVP classes as in Fig. 
3 (the dotted links are faulty). This is because as 
soon as we make a link, we will be confronted with 
the problem that is mentioned above. For example, 
assume a “subclassOf” relationship from OV1: B to 
OVP:B. Using the VPI inferencing, X will be type 
OV2:B and hence also of type OV2:C. Using 
perspective of OV2, we should not be able to say that 
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any instance of OV2:A is necessarily an instance of 
OV2:B. 

3.2 Solution 

We looked at some possible techniques for the 
solution. Later we briefly describe and compare 
them in terms of various attributes such as their 
scalability, soundness and completeness. Here we 
explain the technique that we finally accepted and 
implemented as the solution.  
     Before that we will delineate the some more 
notations used throughout the paper. For denoting 
triples we use <Subject, Predicate, Object>. We will 
use colons to indicate namespaces whenever 
relevant. Hence, considering ontology in fig. 1, 
OV1:A implies a class A in ontology version 1.  
Hence B is a sub class of A can be written as, 
 <B, subClassOf, A> 
and I is a type of a Class C can be written as, 
 <I, typeOf, C> 
Note: “type of” is a synonym of “instance of”.  
     This method makes use of a separate “type 
graph” that is formulated for every ontology. Each 
ontology will have two virtual ontology. The virtual 
perspective ontology will be identical to the original 
except for a different namespace. The type graph 
ontology contains copy of each class and type values 
(instances) for all classes without any relationships 
(property).  Each version will have its own type 
graph. The linking between each version will be 
done using their type graphs. Let’s consider the 
same example as in fig. 3. 
     For type graphs, we will be using the following 
convention, the type graph of version k will be 
written as OT

k, and OT will be any type graph in 
general. The pseudo code for constructing a virtual 
perspective graph and a type graph is as follows,  
   
// Copy classes and properties into the virtual ontologies  
 For each triple <On:C type rdfs:Class> in On  
 Add <OT:C type rdfs:Class> to OT             
 Add <OV:C type rdfs:Class> to OV             
 Add <OT:C subClassOf OV:C> to OV           
For each triple <On:P type rdf:Property> in On 
 Add <OV:P type rdf:Property > to OT      
 Add <OV:P type rdf:Property > to OV    
 Add <OT:P subPropertyOf OV:P> to OV 
// Copy axioms into virtual perspective ontology  
 For each triple <On:C1 subClassOf On:C2> in On 
 Add <OV:C1 subClassOf OV:C2> to OV  
For each triple <On:C1 subPropertyOf On:C2> in On  
 Add <OV:C1 subPropertyOf OV:C2> to OV  
//Link corresponding instances to type graph 
 For each triple <On:I type On:C> 
 Add    <OT:I type OT:C> to OT 

 

     This gives us a representation of each ontology 
version with type graphs and virtual perspective 
graphs linked together. Now we present three 
candidate solutions for linking each ontology 
version to its backward compatible version. Let B be 
the set of backward compatible versions for each of 
the ontology. 

 
Figure 4: Various Type Graph implementations 

 
Instance to type graph mapping (green dotted 
lines in fig. 4): All the instances in a type graph 
version are mapped onto corresponding classes of all 
the subsequent backward-compatible versions of that 
type graph.  
 
Type graph to virtual perspective mapping (red 
dashed lines in fig. 4): All classes and properties in 
the type graph are mapped to their sisters in the 
virtual perspective graphs of all ontologies that are 
backward compatible with the current ontology.  
 
Type graph to type graph mapping (blue line in 
fig. 4): To link type graphs such that we can 
successfully access all relevant ontologies, we add 
the following pseudo code to the one that we 
previously presented, 
//Find the ontology Ob∈ B, such that Ob immediately 
//precedes O 
For each triple <Ob:C type rdfs:Class> in Ob 
 Add < OT

b:C subClassOf  OT> to OT 
For each triple <Ob:C type rdfs:Property> in Ob 
 Add < OT

g:C subPropertyOf  OT> to OT 

 
     Fig. 4 shows an example of the above discussed 
solution applied on a simple test case. An ontology 
OV1 is shown in the first set of the figure. For the 
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next version OV2 of the same ontology, property P1 
is deleted. Also an instance Y of type A is added. 
Their corresponding type graphs are also shown. 
The link between the type graphs is shown by the 
blue solid line. In the next section, we will compare 
these three alternatives. 

Instance to type graph mapping: Since every 
instance must be linked to the type graph of every 
subsequent version, the number of additional triples 
is I (m)(n)(n-1)/2. This is because linking the 
instances of any ontology to one subsequent 
ontology requires I (m) triples, and this must be done 

= (n)(n-1)/2 times. ∑
−

=

1

1

n

i
i

4 ANALYSIS  
Type graph to virtual perspective mapping: 
Every class in the type graph must be linked to every 
subsequent virtual perspective graph, which requires 

= (n)(n-1)/2 links per class. Thus this approach 

requires (m)(n)(n-1)/2extra triples.  

∑
−

=

1

1

n

i
i

The three variations of the algorithm can be 
evaluated with respect to different criteria. First, the 
algorithms must be sound with respect to ontology 
perspective theory, meaning that any result deduced 
by the algorithm must be entailed by the theory. 
Second, the algorithms must be complete with 
respect to the theory, meaning that any formula 
entailed by the theory must be inferred b the 
algorithm. Third, we can distinguish the scalability 
of the algorithms, based on the number of triples that 
they require. 

 
Type graph to type graph mapping: Since each 
type graph only establishes links to a single 
preceding type graph, and every class must have a 
link, the number of triples will be (n-1)m. 
      All of the algorithms are sound and complete for 

ontology perspective theory, assuming that the 
knowledge base system is sound and complete for 
OWL. However, due to limited space we omit the 
proof of this. 

     Clearly, the instance to type graph mapping 
approach is the least scalable. Furthermore, as long 
as n > 2, then the type graph to type graph mapping 
requires fewer triples than type graph to virtual 
perspective mapping. For example, for n=10, type 
graph to virtual perspective mapping requires 5 
times as many additional triples as type graph to 
type graph. We decided that this improved 
scalability more than offset the potential query time 
advantage of the type graph to virtual perspective 
mapping approach, and thus implemented type graph 
to type graph mapping. 

     However, all three algorithms differ in terms of 
scalablity. In each method, triples have to be 
replicated many times. Given the enormous size of 
ontologies to deal with, scalability is a major 
priority. 
     Given below are a few variables that will be used 
throughout the analysis, 
No. of versions of ontologies: n                                              
No. of instances per class:                I Additionally, the type graph method is simple to 

comprehend, implement and present. Taking all 
these factors into consideration, the type graph 
method seems to be a befitting approach. Hence we 
implemented the VPI with type graph method. 

In the following cases we compare different 
techniques mentioned earlier in terms of the total 
number of extra triples required to be created when 
each technique is applied. Consider that the process 
of creating links between classes has reached upto 
the kth version. 

5 VPI IMPLEMENTATION      For ease of analysis we assume that each Ok is 
backward compatible with its previous version, each 
ontology contains m classes such that         
<Cm-1, subClassOf, Cm> (for k > 1), and, Version Ok 
removes the (k-1)th “subClassOf” link. 

             We have implemented the VPI in Java. This 
implementation make use of Jena, a Java framework 
for semantic web applications. Jena provides a 
programmatic environment for RDF, RDFS and 
OWL, including a rule-based inference 
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Figure 5: VPI User Interface 

 
engine. The core of the VPI is a Java class that 
consists of two methods, loadDocument() and 
issueQuery(), that have the functionality already 
discussed in section 3.1.  
     In order to evaluate the VPI, we created a simple 
user interface shown in fig. 5. This interface allows 
the user to load in OWL documents one at a time 
and issue queries using different perspectives. The 
user selects a perspective from a list of loaded 
ontologies and types a KIF-like query into a text 
box. When the user presses the “Query using VP” 
button, the VPI is used to issue the query, and the 
answers are returned in the Results field. If the user 
presses the “Query without VP” button, the query is 
issued directly to the knowledge base, circumventing 
the VPI. Using these two methods, the user can see 
the advantages of ontology perspective theory over 
standard OWL entailment. 

6 CONCLUSION 

In this paper we discussed the problems that may 
arise when we deal with a group of ontology and its 
versions. It was argued that both discarding the older 
version and storing redundant or obsolete data are 
naïve ways to handle ontologies. The former results 
in loss of knowledge whereas the  

 
latter induces overheads on computation. We 
provided a simple, yet effective, solution to tackle 
the discrepancies that arise. We saw how several 
techniques qualifies as potentials solutions. We gave 
relevant analysis to sift out the most suitable 
solution. In future, we plan to enable handling of 
imports, i.e. support perspectives for ontologies that 
import other ontologies. We will also be looking at 
deploying and testing an OWL reasoner. This will 
facilitate the handling of versioning for richer 
ontologies, i.e. those that contain OWL axioms 
rather than just RDFS axioms. This will require an 
alternative to Jena and we are looking at HAWK and 
DLDB, developed at Lehigh. DLDB is a knowledge 
based systems developed for large semantic web 
applications and includes a description logic 
reasoner that implements a significant fragment of 
OWL referencing. Finally, an empirical evaluation 
comparing this approach with other alternatives will 
be desirable.   
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