
ADDING SUPPORT FOR DYNAMIC ONTOLOGIES
TO EXISTING KNOWLEDGE BASES

Upmanyu Misra, Zhengxiang Pan, Jeff Heflin
Department of Computer Science and Engineering, Lehigh University,

19 Memorial Dr West, Bethlehem, PA 18015, USA

Keywords: Ontology, Ontology Versioning, OWL, Semantic Web technology, Intelligent Agent

Abstract: An ontology version needs be created when changes are to be made in an ontology while keeping the basic
structure of the ontology more or less intact. It has been shown that an Ontology Perspective theory can be
applied on a set of ontology versions. In this paper, we present a Virtual Perspective Interface (VPI) based
on this theory that ensures that old data is still accessible through ontology modifications and can be
accessed using new ontologies, in addition to the older ontologies which may still be in use by legacy
applications. We begin by presenting the problems that are to be dealt with when such an infrastructure
needs be created. Then we present possible solutions that may be used to tackle such problems. Finally, we
provide an analysis of these solutions to support the one that we have implemented.

1 INTRODUCTION

Many discrepancies may be caused due to
incompatible changes between ontologies. These
changes may happen when various versions of an
ontology are created where new concepts are added,
for example when an abstract super class for two
classes is added, or a class is moved, renamed etc. It
has been shown that an Ontology Perspective theory
(Heflin and Pan, 2004) can be applied on a set of
ontology versions. In this paper, we present a Virtual
Perspective Interface (VPI) based on this theory that
ensures that old data is still accessible through
ontology modifications and can be accessed using
new ontologies, in addition to the older ontologies
which may still be in use by legacy applications.
VPI obviates the need for wholesale translation of
existing data every time an ontology is changed. The
focus of VPI is on prospective use (i.e., using newer
versions of some ontologies to access knowledge
represented in previous versions of those ontologies)
versus retrospective use (i.e., using older versions of
some ontologies to access knowledge represented in
newer versions of those ontologies).
 We begin, in section 2, by providing relevant
background for the technologies used. We also
define the problem we are addressing in this paper

and give some motivation for the need of a system
that solves the problem. In section 3, we present the
architecture for such a system. We produce the VPI
modules and the implementation details. This is
followed by an analysis of the system in section 4. In
section 5, we present snapshots of our implemented
system and some samples. Finally, in section 6, we
conclude with an overview of our system and future
work.

2 BACKGROUND

In this section, we will provide a brief description of
related terms that will be frequently used throughout
this paper and some discussion of the research that
our paper builds up on.

2.1 Ontologies for Information
Systems

Ontology is a central issue for the development of
Internet commerce systems. The main barrier to
electronic commerce lies in the need for applications
to meaningfully share information, not in the
reliability or security of the Internet. This is because
of the variety of enterprise and e-commerce systems

97
Misra U., Pan Z. and Heflin J. (2005).
ADDING SUPPORT FOR DYNAMIC ONTOLOGIES TO EXISTING KNOWLEDGE BASES.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 97-104
DOI: 10.5220/0002529700970104
Copyright c© SciTePress

deployed by businesses and the way these systems
are variously configured and used. Although it is
useful to strive for the adoption of a single common
domain-specific standard for content and
transactions, this is often difficult to achieve,
particularly in cross-industry initiatives, where
companies co-operate and compete with one
another. In this regards, there has been previous
work to develop a core ontology which may be used
as a base to develop domain specific ontologies
(Hunter, 2003).
 For over a decade, knowledge representation
researchers have studied the use of ontologies for
sharing and reusing knowledge (Gruber, 1993;
Guarino, 1998; Noy and Hafner, 1997). Although
there is some disagreement as to what comprises an
ontology, most ontologies include a taxonomy of
terms (e.g., a Car is a Vehicle), and many ontology
languages allow additional definitions using some
form of a logic. Guarino (1998) has defined an
ontology as “a logical theory that accounts for the
intended meaning of a formal vocabulary.” A
common feature in ontology languages is the ability
to extend preexisting ontologies. Thus, users can
gain the interoperability benefits of sharing
terminology where possible, but can also customize
ontologies to include domain specific information.
 Research on the development of the Semantic
Web (Berners-Lee et al., 2001) has led to progress in
the design and use of distributed ontologies. Two
languages have been developed for representing
describing and semantics on the Web. The Resource
Description Framework (RDF) is provides a graph-
base data model, in which every resource is
identified by a Unified Resource Identifier (URI).
For syntactic convenience a URI can be abbreviated
using namespace prefixes which can be defined in
each document. An arc in the graph can be viewed
as a triple consisting of subject, predicate and object.
For example, <subject, subClassOf, object> means
that subject is a subclass of object. The Ontology
Web Language (OWL) extends RDF to provide a
richer set of modeling constructs that allow the
semantics of data to be more precisely defined.
These languages can be used to describe the
semantic for enterprise information systems.
 However, it is usually impossible to establish, a
priori, rules (technical or procedural) governing
participation in an electronic marketplace. In the fast
paced scenario of e-commerce and m-commerce, an
enterprise must be able to adapt its information
systems quickly. We, in this paper, are focussing on
ontology changes. Hence the ultimate goal is the
development of reusable, dynamic ontologies
(Heflin and Hendler, 2000) that can be applied
across multiple disciplines. This calls for a
comprehensive framework to formulate and

maintain ontology versions. Ontology Versioning
Theory (Heflin and Pan, 2004; Heflin 2001), in
section 2.2, presents such a framework.

2.2 Ontology Versioning

Once a database schema changes one faces the
problem of managing the data using its different
versions in a consistent and economical fashion. In
this context, database schema versioning (Roddick,
1995) is similar to the ontology versioning. Roddick
pointed out two ways database schema can be
viewed as, prospective (viewing data from the point
of view of a newer ontology) and retrospective
(viewing data from the point of view of an older
ontology). Klein and Fensel (2001) were the first to
compare ontology versioning to database schema
versioning. They proposed that both prospective use
and retrospective use of data should be considered in
ontologies as well. However, Klein and Fensel do
not describe a formal semantics.
 Stuckenschmidt and Klein, (2003) provide a
formal definition for modular ontologies and
consider the impact of change in it. However, their
approach involves physical inclusion of extended
ontologies and requires that changes be propagated
through the network. This approach is unlikely to
scale in large, distributed systems. Furthermore, they
do not allow for resources to be reasoned with using
different perspectives, as is described here.
 Heflin, (2001) has suggested that there should not
be a universal model of all the resources and
ontologies on the Web. In fact, it is extremely
unlikely that one could even exist. Instead, we must
allow for different viewpoints and contexts, which
are supported by different ontologies. Ontology
Perspective Theory from Heflin (2001) defines
perspectives which then allow the same set of
resources to be viewed from different contexts,
using different assumptions and background
information.
 Heflin and Pan (2004) builds on this and presents
a model theoretic description of ontology
perspectives. Each perspective is based on an
ontology, called the basis ontology or base of the
perspective. By providing a set of terms and a
standard set of axioms, an ontology provides a
shared context. Thus, resources that commit to the
same ontology have implicitly agreed to share a
context. We also want to maximize integration by
including resources that commit to different
ontologies. This includes resources that commit to
ancestor ontologies and resources that commit to
earlier versions of ontologies that the current
ontology is backward compatible with. Heflin
defines that an ontology version is backward

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

98

compatible with a prior version if it contains all of
the terms from the earlier ontology and the terms are
supposed to mean the same thing in both ontologies.
See the paper for details regarding entailment in the
theory.

 We use Web Ontology Language (OWL) to
represent knowledge bases. But OWL has little to no
semantics for versioning properties yet. Ontology
Perspective Theory allows multiple views of the
same data where each view is based on an ontology.
It also provides an initial semantics for versioned
ontologies, in particular, semantics for backward-
compatibility. Figure 1: Simple Example of Ontology versioning

 Prospective use of data is a highly desirable
concept and backward compatibility facilitates this.
Hence its use will be an incentive for ontology
engineers. However in the present OWL world we
can’t state that backward compatible versions are
more common than ones that are not. OWL is too
new and there aren’t many, if any, new versions of
existing ontologies. However, we argue that, if the
versions are truly incompatible then it does not make
sense to reuse data. For example, if a new version
significantly alters the modeling of knowledge in the
previous version, it may not be useful to construct a
link between the two versions. Moreover, backward
compatibility could allow ‘deprecation’ of terms
between two versions and hence is more flexible
than it might initially seem. Say there are two
incompatible versions of an ontology: Ov1and Ov2.
We can have a Ov1.5 which is compatible with Ov1
and deprecate all the terms that will disappear in Ov2.
Then Ov2 can delete those deprecated terms while
being compatible with Ov1.5. Thus deprecation
facilitates backward compatibility without hindering
the validity of a previous version that might be in
use by some other application.

 This makes it undesirable to discard the data
contained in any of the older versions. In practise,
there will be many complex cases that will result in
Ontology versioning. One such case may be where a
subclass is deleted. Fig. 1 denotes a part of ontology
concerning Fish genealogy. OV1 wrongly conveys
that the class ‘dolphin’ is a subclass of class ‘fish’
whereas OV2 rectifies this and reassigns the ‘dolphin’
class to be a subclass of class ‘mammal’.
Additionally, Flipper and Batty are instances of class
‘dolphin’ in OV1 and OV2 respectively. Therefore,
according to OV1, Flipper is a dolphin and hence a
fish. Whereas, Batty is a type of dolphin, and hence
is a mammal. This is also a case demonstrating the
use of backward-compatibility. It must be
emphasized here that the intended meaning (and not
only the name) of a class must remain the same in
subsequent versions. For example, the dolphin, in
version 2, must remain to be the living creature that
is commonly known and not a different entity.
 This requires us to come up with a system where
such discrepancies can be removed while retaining
as much knowledge as possible. VPI provides a
simple yet effective method to achieve these goals. It
is designed such that it sits on top of the underlying
model of knowledge bases and acts as an agent
mediating between the querying user and the
knowledge bases. For example, a query for ‘Fish’
from the perspective of version 2 must produce
Nemo. The same query from the perspective of
version 1 will give us Flipper. A query for
‘Mammal’ from the perspective of version 2 will
give us both Batty and Flipper. The Flipper solution
comes from the inference using version 1. Without
using perspectives, our answer would have been
Batty only.

3 VPI

As an ontology evolves, multiple versions are
created. These versions coexist in the containing
knowledge base. Most legacy applications will want
to keep the snapshots of these versions at all time
and query for different data with respect to different
versions. Additionally, many Enterprise Systems are
inherently distributed and dependent.

ADDING SUPPORT FOR DYNAMIC ONTOLOGIES TO EXISTING KNOWLEDGE BASES

99

Figure 2: High Level Design of VPI

3.1 Architecture

VPI acts as the middle layer between the user and
any OWL knowledge base system. It facilitates the
knowledge base to perform perspective based
entailment without modifying any internal
knowledge in the system. It creates a virtual OWL
Ontology, the details of which are provided later,
that results in perspective entailment using only
OWL entailment. This is shown in Fig. 2. There are
two main modules of the VPI.

Document Loader: The document loader takes an
ontology and computes the virtual perspective
ontology for it. This will be OWL file with the same
local names as the other ontology, but will contain
mappings to ontologies with which the ontology is
backward-compatible. Both the original ontology
and the virtual perspective ontology will be stored in
the underlying knowledge base.

Query System: All queries to the knowledge base
pass through the VPI. An application may either
select a default perspective or the user may specify a
perspective for each query. The VPI translates the
query to the terms of the corresponding virtual
perspective ontology, and issues the query to the
underlying knowledge base. It then returns the
results to the client application.

 For all the following discussion, we will use the
following convention for naming ontologies,
Version X of any ontology is written as OVX. Hence
version 4 of an ontology will be OV4. To denote a
Virtual Perspective we will use OVP. The class C of a
version, say 3, will be denoted as OV3:C.
 Fig. 3 is a graphical example of a naïve solution to
our problem. In this case there are two ontologies,
OV1 and its latest version OV2. It creates mappings
such that all OV1 and OV2 classes are made subclasses
of their corresponding VP classes.

Note: VP is in perspective of OV2 here. In the new
version, it was established that Dolphin is a subset of
Mammal rather than a subset of Fish. The VP was
constructed using OV2 as the perspective. The

orientation of the class hierarchy is such that X,
which is a OV1:dolphin, is labeled as both, a OVP:fish
(due to version 1) and a OVP:mammal (due to
version 2).

Figure 3: Erroneous Virtual Perspective

 It may be argued that such an outcome is
undesirable since the primary reason for versioning
the ontology might have been to substitute the
knowledge that dolphins are mammals with the
earlier version of them being fish. This is the
approach taken by ontology perspective theory. The
axioms of the new ontology are used in place of the
old. We would still like to keep the knowledge for
all OV1:fish that are not dolphin, such as Y. Hence
the system should be equipped such that it can make
intelligent inferences in such situations.
 We start with OV1 where A is a subclass of B
which is a subclass of C. In its version OV2, A no
longer remains a subclass of B. The OVP is built with
OV2 as the perspective.
In this case it is not possible to make any more links
of the version classes with the OVP classes as in Fig.
3 (the dotted links are faulty). This is because as
soon as we make a link, we will be confronted with
the problem that is mentioned above. For example,
assume a “subclassOf” relationship from OV1: B to
OVP:B. Using the VPI inferencing, X will be type
OV2:B and hence also of type OV2:C. Using
perspective of OV2, we should not be able to say that

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

100

any instance of OV2:A is necessarily an instance of
OV2:B.

3.2 Solution

We looked at some possible techniques for the
solution. Later we briefly describe and compare
them in terms of various attributes such as their
scalability, soundness and completeness. Here we
explain the technique that we finally accepted and
implemented as the solution.
 Before that we will delineate the some more
notations used throughout the paper. For denoting
triples we use <Subject, Predicate, Object>. We will
use colons to indicate namespaces whenever
relevant. Hence, considering ontology in fig. 1,
OV1:A implies a class A in ontology version 1.
Hence B is a sub class of A can be written as,
 <B, subClassOf, A>
and I is a type of a Class C can be written as,
 <I, typeOf, C>
Note: “type of” is a synonym of “instance of”.
 This method makes use of a separate “type
graph” that is formulated for every ontology. Each
ontology will have two virtual ontology. The virtual
perspective ontology will be identical to the original
except for a different namespace. The type graph
ontology contains copy of each class and type values
(instances) for all classes without any relationships
(property). Each version will have its own type
graph. The linking between each version will be
done using their type graphs. Let’s consider the
same example as in fig. 3.
 For type graphs, we will be using the following
convention, the type graph of version k will be
written as OT

k, and OT will be any type graph in
general. The pseudo code for constructing a virtual
perspective graph and a type graph is as follows,

// Copy classes and properties into the virtual ontologies
 For each triple <On:C type rdfs:Class> in On
 Add <OT:C type rdfs:Class> to OT
 Add <OV:C type rdfs:Class> to OV
 Add <OT:C subClassOf OV:C> to OV
For each triple <On:P type rdf:Property> in On
 Add <OV:P type rdf:Property > to OT
 Add <OV:P type rdf:Property > to OV
 Add <OT:P subPropertyOf OV:P> to OV
// Copy axioms into virtual perspective ontology
 For each triple <On:C1 subClassOf On:C2> in On
 Add <OV:C1 subClassOf OV:C2> to OV
For each triple <On:C1 subPropertyOf On:C2> in On
 Add <OV:C1 subPropertyOf OV:C2> to OV
//Link corresponding instances to type graph
 For each triple <On:I type On:C>
 Add <OT:I type OT:C> to OT

 This gives us a representation of each ontology
version with type graphs and virtual perspective
graphs linked together. Now we present three
candidate solutions for linking each ontology
version to its backward compatible version. Let B be
the set of backward compatible versions for each of
the ontology.

Figure 4: Various Type Graph implementations

Instance to type graph mapping (green dotted
lines in fig. 4): All the instances in a type graph
version are mapped onto corresponding classes of all
the subsequent backward-compatible versions of that
type graph.

Type graph to virtual perspective mapping (red
dashed lines in fig. 4): All classes and properties in
the type graph are mapped to their sisters in the
virtual perspective graphs of all ontologies that are
backward compatible with the current ontology.

Type graph to type graph mapping (blue line in
fig. 4): To link type graphs such that we can
successfully access all relevant ontologies, we add
the following pseudo code to the one that we
previously presented,
//Find the ontology Ob∈ B, such that Ob immediately
//precedes O
For each triple <Ob:C type rdfs:Class> in Ob
 Add < OT

b:C subClassOf OT> to OT
For each triple <Ob:C type rdfs:Property> in Ob
 Add < OT

g:C subPropertyOf OT> to OT

 Fig. 4 shows an example of the above discussed
solution applied on a simple test case. An ontology
OV1 is shown in the first set of the figure. For the

ADDING SUPPORT FOR DYNAMIC ONTOLOGIES TO EXISTING KNOWLEDGE BASES

101

next version OV2 of the same ontology, property P1
is deleted. Also an instance Y of type A is added.
Their corresponding type graphs are also shown.
The link between the type graphs is shown by the
blue solid line. In the next section, we will compare
these three alternatives.

Instance to type graph mapping: Since every
instance must be linked to the type graph of every
subsequent version, the number of additional triples
is I (m)(n)(n-1)/2. This is because linking the
instances of any ontology to one subsequent
ontology requires I (m) triples, and this must be done

= (n)(n-1)/2 times. ∑
−

=

1

1

n

i
i

4 ANALYSIS
Type graph to virtual perspective mapping:
Every class in the type graph must be linked to every
subsequent virtual perspective graph, which requires

= (n)(n-1)/2 links per class. Thus this approach

requires (m)(n)(n-1)/2extra triples.

∑
−

=

1

1

n

i
i

The three variations of the algorithm can be
evaluated with respect to different criteria. First, the
algorithms must be sound with respect to ontology
perspective theory, meaning that any result deduced
by the algorithm must be entailed by the theory.
Second, the algorithms must be complete with
respect to the theory, meaning that any formula
entailed by the theory must be inferred b the
algorithm. Third, we can distinguish the scalability
of the algorithms, based on the number of triples that
they require.

Type graph to type graph mapping: Since each
type graph only establishes links to a single
preceding type graph, and every class must have a
link, the number of triples will be (n-1)m.
 All of the algorithms are sound and complete for

ontology perspective theory, assuming that the
knowledge base system is sound and complete for
OWL. However, due to limited space we omit the
proof of this.

 Clearly, the instance to type graph mapping
approach is the least scalable. Furthermore, as long
as n > 2, then the type graph to type graph mapping
requires fewer triples than type graph to virtual
perspective mapping. For example, for n=10, type
graph to virtual perspective mapping requires 5
times as many additional triples as type graph to
type graph. We decided that this improved
scalability more than offset the potential query time
advantage of the type graph to virtual perspective
mapping approach, and thus implemented type graph
to type graph mapping.

 However, all three algorithms differ in terms of
scalablity. In each method, triples have to be
replicated many times. Given the enormous size of
ontologies to deal with, scalability is a major
priority.
 Given below are a few variables that will be used
throughout the analysis,
No. of versions of ontologies: n
No. of instances per class: I Additionally, the type graph method is simple to

comprehend, implement and present. Taking all
these factors into consideration, the type graph
method seems to be a befitting approach. Hence we
implemented the VPI with type graph method.

In the following cases we compare different
techniques mentioned earlier in terms of the total
number of extra triples required to be created when
each technique is applied. Consider that the process
of creating links between classes has reached upto
the kth version.

5 VPI IMPLEMENTATION For ease of analysis we assume that each Ok is
backward compatible with its previous version, each
ontology contains m classes such that
<Cm-1, subClassOf, Cm> (for k > 1), and, Version Ok
removes the (k-1)th “subClassOf” link.

 We have implemented the VPI in Java. This
implementation make use of Jena, a Java framework
for semantic web applications. Jena provides a
programmatic environment for RDF, RDFS and
OWL, including a rule-based inference

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

102

Figure 5: VPI User Interface

engine. The core of the VPI is a Java class that
consists of two methods, loadDocument() and
issueQuery(), that have the functionality already
discussed in section 3.1.
 In order to evaluate the VPI, we created a simple
user interface shown in fig. 5. This interface allows
the user to load in OWL documents one at a time
and issue queries using different perspectives. The
user selects a perspective from a list of loaded
ontologies and types a KIF-like query into a text
box. When the user presses the “Query using VP”
button, the VPI is used to issue the query, and the
answers are returned in the Results field. If the user
presses the “Query without VP” button, the query is
issued directly to the knowledge base, circumventing
the VPI. Using these two methods, the user can see
the advantages of ontology perspective theory over
standard OWL entailment.

6 CONCLUSION

In this paper we discussed the problems that may
arise when we deal with a group of ontology and its
versions. It was argued that both discarding the older
version and storing redundant or obsolete data are
naïve ways to handle ontologies. The former results
in loss of knowledge whereas the

latter induces overheads on computation. We
provided a simple, yet effective, solution to tackle
the discrepancies that arise. We saw how several
techniques qualifies as potentials solutions. We gave
relevant analysis to sift out the most suitable
solution. In future, we plan to enable handling of
imports, i.e. support perspectives for ontologies that
import other ontologies. We will also be looking at
deploying and testing an OWL reasoner. This will
facilitate the handling of versioning for richer
ontologies, i.e. those that contain OWL axioms
rather than just RDFS axioms. This will require an
alternative to Jena and we are looking at HAWK and
DLDB, developed at Lehigh. DLDB is a knowledge
based systems developed for large semantic web
applications and includes a description logic
reasoner that implements a significant fragment of
OWL referencing. Finally, an empirical evaluation
comparing this approach with other alternatives will
be desirable.

REFERENCES

Berners-Lee, T., Hendler, J., Lassila, O., 2001. The
Semantic Web. In Scientific American.

Gruber, T., 1993. A Translation Approach to Portable
Ontology Specs. In Knowledge Acquisition.

ADDING SUPPORT FOR DYNAMIC ONTOLOGIES TO EXISTING KNOWLEDGE BASES

103

Guarino, N., 1998. Formal Ontology and Information
Systems. In Formal Ontology and Information Systems.
IOS Press.

Heflin, J., Hendler, J., 2000. Dynamic Ontologies on the
Web. In AAAI’00, 7th National Conference on
Artificial Intelligence. AAAI/MIT Press.

Heflin, J., 2001. Towards the Semantic Web: Knowledge
Representation in a Dynamic, Distributed
Environment. PhD thesis, University of Maryland.

Heflin, J., Pan Z., 2004. A Model Theoretic Semantics for
Ontology Versioning. In ISWC’04 ,3rd International
Semantic Web Conference. Springer.

Hunter, J., 2003. Enhancing the Semantic Interoperability
of Multimedia through a Core Ontology. In ICEIS’03,
5th International Conference on Enterprise Information
Systems.

Klein, M., Fensel, D., 2001. Ontology Versioning for the
Semantic Web. In SWWS’01, 1st Semantic Web
Working Symposium.

Noy, N., Hafner, C., 1997. The State of the Art in
Ontology Design. In AI Magazine.

Roddick, J., 1995. A Survey of Schema Versioning Issues
for Database Systems. In Information and Software
Technology.

Stuckenschmidt, H., Klein, M., 2003. Integrity and
Change in Modern Ontologies. In IJCAI’03.

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

104

