
USING dmFSQL FOR FINANCIAL CLUSTERING 

Ramón Alberto Carrasco 
Dpto. de Lenguajes y Sistemas Informáticos, Universidad de Granada, Granada, Spain  

María Amparo Vila 
Dpto. de Ciencias de la Computación e I.A., Universidad de Granada, Granada, Spain 

José Galindo 
Dpto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain 

Keywords: Clustering, Flexible Queries, Data Mining, Fuzzy SQL, Fuzzy Databases. 

Abstract: At present, we have a dmFSQL server available for Oracle© Databases, programmed in PL/SQL. This 
server allows us to query a Fuzzy or Classical Database with the dmFSQL (data mining Fuzzy SQL) 
language for any data type. The dmFSQL language is an extension of the SQL language, which permits us 
to write flexible (or fuzzy) conditions in our queries to a fuzzy or traditional database. In this paper, we 
propose the use of the dmFSQL language for fuzzy queries as one of the techniques of Data Mining, which 
can be used to obtain the clustering results in real time. This enables us to evaluate the process of extraction 
of information (Data Mining) at both a practical and a theoretical level. We present a new version of the 
prototype, called DAPHNE, for clustering witch use dmFSQL. We consider that this model satisfies the 
requirements of Data Mining systems (handling of different types of data, high-level language, efficiency, 
certainty, interactivity, etc) and this new level of personal configuration makes the system very useful and 
flexible. 

1 INTRODUCTION 

We can define Data Mining as the process of 
extraction of interesting information from the data in 
databases. According to (Frawley 1991) a 
discovered knowledge (pattern) is interesting when 
it is novel, potentially useful and non-trivial to 
compute. A serie of new functionalities exist in Data 
Mining, which reaffirms that it is an independent 
area (Frawley 1991): 
- High-Level Language. This representation is 
desirable for discovered knowledge and for showing 
the results of the user's requests for information (e.g. 
queries). 
- Certainty. The discovered knowledge should 
accurately reflect the content of the database. The 
imperfectness (noise and exceptional data) should be 
expressed with measures of certainty. 

- Efficiency. The process of extraction of 
knowledge should be efficient, i.e. the running time 
should be predictable and acceptable when dealing 
with very large amounts of data. 
- Handling of Different Types of Data. There are 
different kinds of data and databases used in diverse 
applications (relational data, objects, hypertext, etc.) 
so it would be desirable that a Data Mining system 
would carry out its work in an effective way. 
- Interactive Mining Knowledge at Multiple 
Abstraction Levels. The interactive discovery of 
knowledge allows the user to refine a Data Mining 
request on line, dynamically change data focusing, 
progressively deepen a Data Mining process, and 
flexibly view the data and Data Mining results at 
multiple abstraction levels and from different angles. 
- Mining Information from Different Sources of 
Data. Currently the knowledge mining from 
different sources of formatted or unformatted data 
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with diverse data semantic is perceived to be a 
difficult challenge. 
  
 In this paper we discuss the implementation of 
two prototypes for Data Mining purposes: we have 
used a combination of DAPHNE which was initially 
designed for clustering on numeric data types 
(Carrasco, 1999) and dmFSQL which was designed 
for fuzzy (or flexible) queries (Galindo 1998, 
Galindo 1998b, Galindo 1999). At this point, we 
would like to point out that Data Mining is an 
autonomous and self-interesting field of research, in 
which techniques from other fields could be applied. 
Among these techniques are the use of dmFSQL 
(data mining Fuzzy SQL), which is a database query 
language which incorporates fuzzy logic. In 
particular, we use dmFSQL to solve, in real time, 
queries, which obtain objects (tuples) with similar 
characteristics, i.e. objects of a specific group 
through a process of clustering. Often, the clustering 
is carried out on a set of examples from the database 
and not on the entire database. We present some 
experimental results with this alternative solution in 
the context of a bank. This area needs a Data Mining 
system tailored to its needs, because this area 
manages very large databases and these data has a 
very concrete meaning. Thus, data must be treated 
according to this meaning. Finally, as conclusions 
we consider that this model satisfies the 
requirements of Data Mining systems [Chen 1996, 
Frawley 2001) (handling of different types of data, 
high-level language, efficiency, certainty, 
interactivity, etc.) and this new level of personal 
configuration makes the system very useful and 
flexible.  

2 dmFSQL A LANGUAGE FOR 
FLEXIBLE QUERIES 

The dmFSQL language (Galindo 1998, Galindo 
1998b, Galindo 1999) extends the SQL language to 
allow flexible queries. We have extended the 

SELECT command to express flexible queries and, 
due to its complex format, we only show an abstract 
with the main extensions added to this command: 
 
- Linguistic Labels: If an attribute is capable of 

undergoing fuzzy treatment then linguistic 
labels can be defined on it. These labels will be 
preceded with the symbol $ to distinguish them 
easily. They represent a concrete value of the 
attribute. dmFSQL works with any kind of 
attributes (see 2.1.1 section) therefore, by 
example, a label can have associated: a 
trapezoidal possibility (Figure 1), a scalar (if 
there is a similarity relationship defined 
between each two labels in the same domain), a 
text, a XML document, etc. 

Figure 1: Trapezoidal possibility distributions: A, B 

- Fuzzy Comparators: In addition to common 
comparators (=, >, etc.), dmFSQL includes 
fuzzy comparators in Table 1. There are some 
different kinds of fuzzy comparators. By 
example a fuzzy comparator is used to compare 
two trapezoidal possibility distributions A, B 
with A=$[αA,βA,γA,δA] B=$[αB,βB,γB,δB] (see 
Figure 1). In the same way as in SQL, fuzzy 
comparators can compare one column with one 
constant or two columns of the same type. More 
information can be found in (Galindo 1998b, 
Galindo 1999). These definitions can are based 
in fuzzy set theory, classical distance functions 
and other type of similarity functions. 

 
Table 1: Fuzzy Comparators for dmFSQL 

Fuzzy Comparator (fcomp) 
for: 

Possibility   Necessity 

Significance 

FEQ NFEQ Fuzzy EQual 
FGT 
FGEQ 

NFGT 
NFGEQ 

Fuzzy Greater Than 
Fuzzy Greater or Equal 

FLT 
FLEQ 

NFLT 
NFLEQ 

Fuzzy Less Than 
Fuzzy Less or Equal 

MGT 
MLT 

NMGT 
NMLT 

Much Greater Than 
Much Less Than 

  
- Fulfilment Thresholds γ: For each simple 

condition a Fulfilment threshold may be 
established with the format <condition> 
THOLD γ, indicating that the condition must be 
satisfied with a minimum degree γ in [0,1] 
fulfilled.  

- CDEG(<attribute>) function: This function 
shows a column with the Fulfilment degree of 
the condition of the query for a specific 
attribute, which is expressed in brackets as the 
argument.  

- Fuzzy Constants: We can use and store all of 
the fuzzy constants (which appear in Table 2) in 
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dmFSQL. 
 

Table 2: Fuzzy Constants of dmFSQL 
F. Constant Significance 
UNKOWN 
UNDEFINED 
NULL 

Unknown value but the attribute is applicable 
The attribute is not applicable or it is meaningless 
Total ignorance: We know nothing about it 

A=$[αA,βA, γA,δA] 
$label 
 
[n, m] 
 
#n 

Fuzzy trapezoid (αA≤βA≤ γA≤δA): See Figure 1 
Linguistic Label: It may be a trapezoid or a scalar 
(defined in dmFMB) 
Interval “Between n and m” (αA=βA=n and 
γA=δA=m) 
Fuzzy value “Approximately n” (βA=γA=n and n-
αA=δA=margin) 

2.1 Architecture of dmFSQL 

In this section, we shall describe the first prototype 
to be integrated in our approach. At present, we have 
a dmFSQL Server available for Oracle© Databases, 
mainly programmed in PL/SQL. The architecture of 
the Fuzzy Relational Database with the dmFSQL 
Server is made up by: 
1. Data: Traditional Database and data mining 
Fuzzy Meta-knowledge Base (dmFMB). 
2. dmFSQL Server. 

2.1.1 Data: Traditional Database and dmFMB 

The data can be classified in two categories: 
 

- Traditional Database: They are data from our 
relations with a special format to store the fuzzy 
attribute values. The fuzzy attributes are 
classified by the system in 4 types: 
- Fuzzy Attributes Type 1: These attributes 
are totally crisp (traditional), but they have 
some linguistic trapezoidal labels defined on 
them, which allow us to make the query 
conditions for these attributes more flexible. 
Besides, we can use all constants in Table 2 in 
the query conditions with these fuzzy 
attributes. 
- Fuzzy Attributes Type 2: These attributes 
admit crisp data as well as possibility 
distributions over an ordered underlying 
domain. With these attributes, we can store and 
use all the constants we see in Table 2. 
- Fuzzy Attributes Type 3: These attributes 
have not an ordered underlying domain. On 
these attributes, some labels are defined and on 
these labels, a similarity relation has yet to be 
defined. With these attributes, we can only use 
the fuzzy comparator FEQ, as they have no 
relation of order. Obviously, we cannot store or 

use the constants fuzzy trapezoid, interval and 
approximate value of Table 2. 
- Attributes Type 4: There are different kinds 
of data in a database used in diverse 
applications (relational data, objects, hypertext, 
XML, etc.) therefore, it would be desirable that 
a Data Mining system would carry out its work 
in an effective way. In order to manage these 
data we have defined these attributes. It is a 
generic type (fuzzy or crisp), which admits 
some fuzzy treatment. We permitted this 
attribute is formed by more than a column of 
the table (complex attributes). Therefore, with 
attributes Type 4 is possible to redefine the 
attributes Type 1, 2 and 3 using other 
representations (by example, alternative 
representation to the fuzzy trapezoid) or fuzzy 
comparators. With these attributes, we can 
store and use the constants linguistic label in 
Table 2. 

- data mining Fuzzy Meta-knowledge Base 
(dmFMB): It stores information about the Fuzzy 
Relational Database in a relational format. It 
stores attributes which admit fuzzy treatment 
and it will store different information for each 
one of them, depending on their type: 
- Fuzzy Attributes Type 1: In order to use 
crisp attributes in flexible queries we will only 
have to declare them as being a fuzzy attribute 
Type 
1 and store the following data in the dmFMB: 
Trapezoidal linguistic labels: Name of the label 
and αA, βA, γA and  δA values (as in Figure 1). 
Value for the margin of the approximate values 
(see Table 1). Minimum distance in order to 
consider two values very separated (used in 
comparators MGT/NMGT and MLT/NMLT). 
- Fuzzy Attributes Type 2: As well, as 
declare them as being a fuzzy attribute Type 2, 
these attributes have to store the same data in 
the 
dmFMB as the fuzzy attributes Type 1. 
- Fuzzy Attributes Type 3: They store in the 
dmFMB their linguistic labels, the similarity 
degree amongst themselves and the 
compatibility between attributes of this type, 
i.e., the attributes that use the same labels and 
that can be compared amongst them. 
- Attributes Type 4: The dmFMB stores 
information for the fuzzy treatment of the 
attributes Type 4:  

- Fuzzy Comparison Functions: The 
user can define the functions of comparison 
(Table 1) for the treatment of each attribute 
of Type 4.  The format is: CDEG (A fcomp 
B) -> [0,1] with CDEG the compatibility 
degrees, A, B two attributes or linguistic 
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labels Type 4 and fcomp any fuzzy 
comparator in Table 1. The user can 
associate each attribute functions already 
defined in the dmFMB. 
- Representation Functions: The user 
can optionally define it to show the 
attributes in a more comprehensible way.  
Of course, the user can associate each 
attribute functions already defined in the 
dmFMB 
 - Linguistic labels: They represent a 
concrete value of the attribute. 
- Complex attributes: We permitted this 
attribute is formed by more than a column 
of the table. Therefore, the dmFMB stores 
information on structure of the attributes 
Type 4. 

2.1.2 dmFSQL Server 

It has been programmed mainly in PL/SQL and it 
includes three kinds of functions for attributes Type 
1, Type 2 and Type 3: 
- Translation Function: It carries out a lexical, 
syntactic and semantic analysis of the dmFSQL 
query. If errors, of any kind whatsoever, are found, it 
will generate a table with all the found errors. If 
there are no errors, the dmFSQL query is translated 
into a standard SQL sentence. The resulting SQL 
sentence includes reference to the following kinds of 
functions. 
- Representation Functions: These functions are 
used to show the fuzzy attributes in a 
comprehensible way for the user and not in the 
internally used format. 
- Fuzzy Comparison Functions: They are utilized 
to compare the fuzzy values and to calculate the 
compatibility degrees (CDEG function). 
 
 As we have seen, Translation and Representation 
Functions are included in the dmFMB for the 
attributes Type 4. 

3 USING dmFSQL TO 
CLUSTERING PROCESS 

In this section, we shall describe the integration of 
dmFSQL Server to the clustering process. This is a 
part of a project, which is currently under 
investigation with some Spanish banks. It deals with 
customer database segmentation, which allows 
differentiated treatment of customers (Direct 
Marketing). 

 Included in this project we have a prototype 
called DAPHNE (Carrasco, 1999). It is a generic 
tool for clustering focused on the financial 
environment. The prototype uses techniques, which 
come from diverse fields: hierarchical clustering, 
unsupervised learning based on fuzzy-set tools, 
statistical techniques, etc. In this paper, we show a 
new version of DAPHNE witch incorporate the 
dmFSQL Server to do effective clustering. 
Following we explain the full process. 
 Operation of DAPHNE: In the first step, the 
relevant features of the customers for the clustering 
are chosen using the user's knowledge. For this 
selection, the user can use a method that we have 
developed for automatic selection of relevant 
characteristics based on genetic algorithms (Martín-
Bautista 1998). Therefore, the user inserts a new 
project for clustering in the meta-database of the 
prototype specifying the table or view with the 
source data (id_table_clustering) and the attributes, 
which DAPHNE will use for the clustering 
(col_clu1, col_clu2,…, col_clum). Theses attributes 
have to define in the dmFMB as Type 1, 2, 3 or 4 
specifying their characteristics. The user does not 
need to specify anything on the domains of the 
previously used attributes. It is important to note that 
they are not restriction: on the type of attributes to 
use for the clustering process (text, scalar, binary, 
numerical, etc) and the on possible uncertainty of the 
value of this attributes (unknown, undefined, null 
and certain degree of belong). Besides the user 
specify the weight of each attributes in the clustering 
process (w_clu1, w_clu2,…, w_clum such that w_clur 
∈  [0,1] with r=1..m and verifying                   ) ∑

=

=
m

r

rcluw
1

1  _

 
 Subsequently the main processes of DAPHNE are 
explained, as well as its underlying theoretical base: 
 

1. Computing Ultrametric Distance Matrix (see 
Figure 2): This process attempts to obtain the 
population's ultrametric distance matrix. Since the 
results by Dunn, Zadeh y Bezdek (Delgado 1996) 
it has been well known that there is equivalence 
between hierarchical clustering, max-min 
transitive fuzzy relation, and ultrametric 
distances. Therefore, in the ultrametric matrix all 
the possible clustering that can be carried out on 
the population specified. The “dendogram" or 
“tree diagram" may be viewed as a diagrammatic 
representation of the results of a hierarchical 
clustering process which is carried out in terms of 
the distance matrix. This process contains the 
following treatments: 
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Figure 2: Computing a ultrametric distance matrix (dendograme) for six elements 

- Computing population's normalized (in [0,1]) 
distance matrix (by example, the matrix D in 
Figure 2). For each pair of the population's 
individuals (i, j) the distance that separates both 
(dij) is obtained using dmFSQL as following: 
 
SELECT A1.ROW_ID AS i, A2.ROW_ID AS j, 
1-(CDEG(A1.col_clu1)* wclu1 +…+  
    CDEG(A1. col_clum)* w_clum) AS dij, 
FROM id_table_clustering A1,  
             id_table_clustering A2 
WHERE A1.ROW_ID < A2.ROW_ID 
AND (A1.col_clu1 fuzzy_ecomp1 A2.col_clu1 THOLD 0 
           | A1.col_clu1 fuzzy_ecomp1 A2.col_clu1 THOLD 0 
AND  
              A2.col_clu1 fuzzy_ecomp1 A1.col_clu1 THOLD 0 
           | A1.col_clu1 fuzzy_ecomp1 A2.col_clu1 THOLD 0 
OR  
              A2.col_clu1 fuzzy_ecomp1 A1.col_clu1 THOLD 0) 
     AND … AND 
             (A1.col_clum fuzzy_ecompm A2.col_clum THOLD 0 
           | A1.col_clum fuzzy_ecompm A2.col_clum THOLD 0 
AND  
              A2.col_clum fuzzy_ecompm A1.col_clum THOLD 0 
           | A1.col_clum fuzzy_ecompm A2.col_clum THOLD 0 
OR  
              A2.col_clum fuzzy_ecompm A1.col_clum THOLD 0); 
 
where fuzzy_ecompr is the fuzzy equal 
comparator (FEQ or NFEQ) chosen for the user 
for the fuzzy attribute col_clur. For each attribute 
col_clur the WHERE clausule has three optional 
forms (specified by | symbol): 
 
 a) If fuzzy_ecompr is symmetric:  
    A1.col_clur fuzzy_ecompr A2.col_clur THOLD 0 

 b) Using a T-norm if fuzzy_ecompr is not 
symmetric:  
 A1.col_clum fuzzy_ecompr A2.col_clur THOLD 0 
  AND 
 A2.col_clum fuzzy_ecompr A1.col_clur THOLD 0 
 c) Using a T-conorm if fuzzy_ecompr is not 
symmetric:  
 A1.col_clum fuzzy_ecompr A2.col_clur THOLD 0 
  OR 
 A2.col_clum fuzzy_ecompr A1.col_clur THOLD 0 
 
- Computing population's ultrametric distance 
matrix (by example, the matrix D’ in Figure 2). In 
the distance matrix, each of the three elements 
verifies the triangle inequality. The matrix is 
transformed so that each of the three elements of 
the ultrametric inequality is also verified. An 
algorithm based on the method of Benzécri 
(Benzécri, 1976) is used. For this purpose, we use a 
parallel algorithm using MPI (Quinn 2003). 

2. Computing possible α -cuts: Since the ultrametric 
matrix is finite, it contains only a finite set of 
different values. Thus, for the hierarchical clustering 
or ultrametric matrix we can always determine 
unequivocally the set of all possible different α -
cuts, that is, the set of all different equivalence 
relations associated with the matrix. In other words, 
every α -cut implies a different partition or the 
population's clustering. By example, in the Figure 2 
the possible α -cuts are 0.1, 0.15, 0.2, 0.5 and 0.6. 
3. Clustering: This process assigns each individual 
in the population to a certain cluster. In order to do 
so it is necessary to obtain a certain partition from 
the ultrametric matrix. Therefore, the problem 
consists of choosing an α -cut among the possible 
α -cuts already obtained, according to the 
hypothesis that no previous information about the 
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structure of the data is available. The partition can 
be obtained in different ways according to the user's 
choice: 
- Absolute good partition. We obtain the partition 
determined by the α -cut 0.5 (Vila 1979). By 
example, in the Figure 2 the α -cut 0.5 determines 
the classes {5, 6, 3} and {4, 2, 1}. 
- A good partition. We use an unsupervised 
learning procedure based on fuzzy-set tools. This 
procedure determines a good partition as the 
minimum value of a measure denned on the set of all 
possible  α -cuts (Delgado 1996). 
- Partition that determines a certain number of 
groups. By means of a binary search algorithm on all 
possible  α -cuts, we obtain the α -cut which 
implies a number of groups which are closest to the 
user's request. 

4 EXPERIMENTAL RESULTS 

This system has been applied to some problems of 
the segmentation of bank customers in real life 
situations. Here we show a particular case of 
segmentation. The relevant attributes identified by 
the banking expert have been:  
- Payroll (payroll): is a binary attribute that 

indicates if the client receives payroll through 
the financial company (value 1) or not (value 0). 
We decide define this attribute as Type 4 
specifying a FEQ comparator in the dmFMB 
based in the Sokal and Michener distance. 

- Average account balance of the client in last 12 
moths (balance): it is obtained through an 
analytic study in the company data warehouse 
system. This is a crisp attribute but we decide 
define this as Type 1 in the dmFMB using the 
fuzzy constants value #n = 500 (approximately n, 
see Table 2).  

- Geographic area of clients (area): there are 
three areas in the study: Madrid, Barcelona 
(Spanish cities) and rest of World. Obviously, 
this is a scalar attribute (Type 3), therefore we 
define a similarity relationship for the FEQ 
comparator in the dmFMB (see Table 3). 

 
Table 3: Similarity relationship defined for area 

area Madrid Barcelona Rest of World 

Madrid 1 0.6 0 

Barcelona  1 0 

Rest of  World   1 

 
 Now we must specify the weight of each 
attributes in the clustering process in order to better 
focus the customers clustering according to the user 

criteria. The weights chosen are 0.4 for area and 
payroll and 0.2 for balance. 
 Finally, by means of a sample of a few tuples the 
system here proposed has obtained six clusters as the 
optimum number in the population (see Table 4). 
 

Table 4: Results of clustering: six clusters 
id_ 

client area pay 
roll balance id_ 

cluster 
93036 Rest of World 0 -959 1 
60932 Rest of World 0 1 1 

65940 Rest of World 0 35 1 

07788 Madrid 0 10 4 

87992 Madrid 0 241 4 

67476 Madrid 1 1 2 

44596 Madrid 1 16 2 

14160 Madrid 1 141 2 

11281 Madrid 1 353 2 

65532 Madrid 1 631 2 

74188 Madrid 1 965 2 

18096 Barcelona 0 -36 5 

45700 Barcelona 0 0 5 

21184 Barcelona 0 5 5 

10427 Barcelona 0 9 5 

49867 Barcelona 1 0 6 

01384 Barcelona 1 7 6 

50392 Barcelona 1 1580 3 

55689 Barcelona 1 1831 3 

87752 Barcelona 1 1989 3 

23952 Barcelona 1 2011 3 

5 CONCLUSIONS 

dmFSQL Server has been extended to handling of 
different types of data (Carrasco 2002) and used as a 
useful tool for certain Data Mining process 
(Carrasco 1999, Carrasco 2001, Carrasco 2002) and 
other applications (Galindo 1999). Now we have 
applied dmFSQL for the clustering problem. Besides 
the specific requirements of the clustering problem, 
the prototype has been designed considering the 
above-mentioned desirable functionalities of Data 
Mining systems: 
- Handling of Different Types of Data: The 
possibility of combination any type of data for the 
clustering process is considered novel in the 
implementations of systems of this type. 
- Mining Information from Different Sources of 
Data: DAPHNE is very flexible when managing data 
of different DBMS. 
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- Efficiency and Interactive Mining Knowledge: 
The prototype has been designed to be interactive 
with the user and to give the answer in real time in 
order to obtain the wanted population's partition. 
- Accuracy: The use of the classic method of 
Benzécri to obtain the hierarchy of parts has 
guaranteed the goodness of such a partition. In 
addition, the procedure to obtain a good partition 
based on fuzzy sets has given excellent results 
during the tests. 
- Friendly Interface: The interface of DAPHNE is 
graphic and completely user guided. Like-wise, the 
prototype includes a meta-database, in such a way 
that the management of a clustering project can 
become quick and easy for the user. 
 
 Regarding future works: 
- we will show a theoretical study of the 

properties of the new similarity functions 
incorporated in this work (combining fuzzy set 
theory, classical distance functions, etc.) and 
how imply the clustering process; 

- we will specify an extension of dmFSQL 
language that includes clustering clausules; 

- we will integrate DAPHNE functionalities into 
dmFSQL Server. 
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