
 

RESEARCH ON SUPPORT TOOLS FOR OBJECT-ORIENTED 
SOFTWARE REENGINEERING 

Xin Peng, Wenyun Zhao, Yijian Wu, Yunjiao Xue 
Computer Science and Engineering Department, Fudan University, Shanghai, China 

Keywords: Software Reengineering, CASE Tools, Reverse Engineering, Component. 

Abstract: Reengineering presents a practical and feasible approach to transform legacy systems into evolvable 
systems. Component-based systems are evolvable and can be easily reengineered. Object-oriented software 
reengineering should base on component library and focus on seamlessly cooperating with component 
library and assembly tool to construct the whole reengineering system. So the reengineering discussed here 
concentrates on extracting components from legacy systems via comprehension and analysis. In this paper, 
we present our java-based tool prototype FDReengineer and introduce the component extraction algorithm. 
The method and the advantage is demonstrated through a case study. 

1 INTRODUCTION 

Object-oriented method has been the mainstream of 
software development. However, lack of experience 
of OO design and immaturity of OO technology 
during its development will make the existing 
systems lack evolvability and such systems cannot 
be easily adapted to meet the variety of requirements 
by maintenance. Reengineering presents a practical 
and feasible approach to transform legacy systems 
into evolvable systems (Yao, G. et Al.). 

The increasing complexity of today’s legacy 
systems demands for automated tool support and 
some commercial and academic tools are available, 
such as JBPAS (Xie, T. et Al.), FAMOOS (Bär, H. 
et Al.), McCabe IQ, etc. 

Along with the development of CBSD 
(Component-Based Software Development), 
reengineering changes to focus on reconstructing 
existing object-oriented systems to component-based 
applications. Accordingly, the tool should also 
support this orientation and be integrated seamlessly 
with the component library. This paper presents a 
package-spreading based component extraction 
algorithm and the prototype is also introduced. 

The paper is organized as follows: Sect. 2 
introduces our prototype tool FDReengineer. Sect. 3 
presents in detail the method we used in system 
partition and component extraction. Sect. 4 
demonstrates the advantage by contrasting our 
method with other ones in a case study. Finally Sect. 
5 draws our conclusions.  

2 FDREENGINEER 

FDReengineer is the prototype of our tool, the kernel 
task of which is to extract, filter, encapsulate and 
submit components according to the concrete 
reengineering requirements. In the forward process, 
it cooperates with enterprise component libraries and 
assembly platforms (Figure 1). Here are some 
features of FDReengineer: 

 UML diagrams generation: Two kinds of 
class diagrams, namely global view and local view 
are supported. The global view presents structure of 
the whole system, while the local view concentrates 
on single class by presenting the inner structure of 
the class and the relations with other classes.  

 Metrics: Some general metrics, such as 
length of codes, depth of inheritance, are provided. 
Especially for measurement of the tightness of a 
package we define cohesion as below: 

(1)  
 

  
(2)  

 
  

Here P is a package of classes (the package here is 
not the term in Java, it only presents a set of classes), 
(1) is the direct cohesion of package P, while (2) is 
the indirect cohesion of package P.  

)1|(|||
)|(|)( −×= PP

PR
d

dPTCC
{ })(|),()( brefersaPbPabaPRd 　　∧∈∧∈=

)()( * PRPR di =

)1|(|||
)|(|)( −×= PP

PR
i

iPTCC

399
Peng X., Zhao W., Wu Y. and Xue Y. (2005).
RESEARCH ON SUPPORT TOOLS FOR OBJECT-ORIENTED SOFTWARE REENGINEERING.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 399-402
DOI: 10.5220/0002513703990402
Copyright c© SciTePress



 

3 COMPONENT EXTRACTION 

According to the RE2 (Reverse Engineering and 
Reuse Reengineering), a reuse reengineering process 
is modeled by five sequential phases: Candidature, 
Election, Qualification, Classification and Storing, 
Search and Display (Canfora, G. et al., 1955). This 
is a clear reuse reengineering process aiming at 
reuse reengineering of structural programs.  

In object-oriented programs, classes are atomic 
units. So we should aim at composing reusable 
components from atomic classes by analyzing 
relations between them. Components of higher 
abstract levels can be composed of lower ones. 

Class diagrams present the bottom structure of 
legacy systems. In order to extract reusable 
components for the forward engineering phase, the 
tool must support the promotion of abstract level and 
provide designs at a higher abstract level. 

3.1 The process of extraction 

In our method java classes are the atomic units of 
partition. The initial partition object is the whole 
system, including all the classes in it. At first the 
whole system is divided into several subsystems 
according to relations between classes. That is the 
partition at the first abstract level. Then similar 
operations can be done within each subsystem. 
When performing partition within a subsystem, only 
relations between classes of the current subsystem 
will be taken into account.  

Blocks of appropriate granularity will be 
available when partition reaches certain abstract 
level. The block here comprises some close related 
classes and can be chosen as a candidate component 
if certain functions are well encapsulated in it. So 
candidate components are the results of certain 
phase of partition. Granularities of candidate 

components can vary a lot depending on different 
business functions and aims of acquirement (for 
public reuse or only for the reuse in reconstruction). 
Generally, the granularity of business components 
for single domain is relatively coarse, while 
components for public reuse are finer. 

3.2 The spread algorithm 

Some methodologies for system partition have been 
proposed, such as RBCI (Xin, et al.) and cluster 
algorithm (Xu W., et al., 2003). Both of them treat 
relations between classes as undirected ones, while 
we know these relations, such as generalization, 
dependency, aggregation etc, are all directed. On the 
other hand, they view the relations as separate ones, 
which only exist between two classes. The complex 
relations among a set of classes are not taken into 
account.  
   The closure method is also a partition algorithm. 
The closure here is a kind of transitive closure, 
which is a recursively defined unit including all the 
classes related directly or indirectly by each class in 
it. The closure method is a rough way of component 
extraction and a closure is often too unwieldy to turn 
into a component. 

In view of these shortcomings, we proposed our 
spread algorithm. The improved method, which we 
call the spread algorithm, is based on further 
analysis of the reference relations. The spread 
expands a package by performing spread on the 
network of relations. Notice that the “package” is 
just an organization unit here, which is not Java 
package. The concrete algorithm is given as follow:  

Step 1: The initial package is a collection of 
entry classes (one or several). 
   Step 2: Pick out a class C from current package, 
consider all the classes directly referenced by C and 
determine whether a class should be added into the 
package one by one by means of specific algorithms. 
   Step 3: Perform step 2 until each class of current 
package is considered and the package does not 
expand any more, then the spread stops.  

Step 4: The one on which the last spread stopped 
becomes new entry class if it is not covered by any 
of the existing packages 

Step 5: Repeat step 1-4 till each of the classes 
take part in the partition is classified to certain 
package. 

Entry classes are the start of spreading. Initially 
the entry is often the class which has the largest 
closure, e.g. the main class of whole system. More 
entry classes may be needed if the system has 
several independent branches. That ensures that all 
the classes of the system can be reached from at 
least one entry class via a reference chain. 

diagrams, metrics… 
Analysis 

Database 

Encapsulate and submit 

Candidate 

components 

Source 

files 

Analyze source codes 

Reverse phase 

Component  

library 

Forward phase 

Read the data 

Assembly  

platform 

Extract 

election packing 

modify 

Figure 1: Functional model of FDReengineer 

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

400



 

During partition the evaluation criterion mainly 
represents how closely the class under consideration 
and the current package are related. For a class C 
and a package P: Let, 

and N is the set of all the classes, RCi  is the 
relating degree between class i  and C , then our 
criteria combines three measurements below: 

 
 
 

Refer operator represents directed relations, such as 
generalization, dependency, aggregation etc. In these 
factors, RCP represents the summation of relating 
degrees between C and P; RCN represents the 
summation of relating degrees between C and N; 
refCP represents the number of the classes which 
refer both class C and package P; refC represents the 
number of the classes which refer both class C. 
Calculation of the relating degree between two 
classes are discussed in (Xin, et al.) and (Xu W., et 
al., 2003). For example we can assume that: 
generalization is 3, aggregation is 2 and dependency 
is 1. Here we consider directed relations, that is, 
only the situations that C is referred by other classes 
are taken into account when considering whether C 
should be added into P. 

These factors represent different aspects of the 
evaluation. The first one reflects the probability that 
class C and package P are used together. The second 
one shows to which extents C particularly serves P. 
The third one describes the degree of class C as a 
common function provider. The more widely a class 
is used, the fewer score it can get from factor 3.  

Each time when evaluating whether class C 
should be added into package P, the tool calculates 
the score got from these three factors and compares 
it with the criterion specified to make the decision. 
FDReengineer provides a default criterion according 
to the level of each partition. Additionally, the user 
can adjust the criterion at will, cancel the last 
partition and redo it. 

After this kind of partition, the legacy system is 
divided into several parts. Some of them are close 
organized subsystems, and the classes providing 
common functions are picked out separately. The 
resulting packages can be reused in the forward 
phase. Some common ones can still be valuable in 
other domains. 

In the closure method all the classes under 
consideration will be added into the package. In fact, 
the closure method is a special case of the spread 

method in condition of setting the criterion to 0. The 
improved method has two advantages: 

1) It can determine which package the class falls 
into by means of specific algorithms in the case of 
junction classes. 

2) The classes which provide common functions 
can be extracted separately. 

Figure 2 shows an example of system partition. 
If partition begins from class B, the resulting 
package will be {B, E, F, I, J, K}. Class J and H will 
repeat in several packages, since they provide 
service for many classes. 

Let we redo the partition by the spread method. 
Suppose that the three factors are combined with the 
scale of 3:1:1 and the criterion is 70 while the full 
score is 100. So the full score of the three factors are 
60, 20, and 20 respectively. We perform the partition 
from B, so the initial package is {B}. Here are the 
steps: 

1) Consider the classes referred by B. The scores 
of E and F are: 60+20+18.2=92.2, which is above 
70, so they are added into the package. Now the 
package is {B, E, F}. The score of J is: 
36+12+10.9=58.9, so it should not be added here.  

2) Consider I, J and K, which are referred by E. 
The score of I is: 60+20+18.2=92.2, so it is added 
into the package. Class J is considered again. Its 
score is: 48+16+10.9=74.9, and it can be added into 
current package this time. Now the package is {B, E, 
F, I, J}. Class K will not be added because its score 
is: 30+6.7+9.1=45.8. 

3) All the classes referred by the classes in the 
current package are considered, and no more classes 
will be added. Therefore, this partition ends in a 
package {B, E, F, I, J}.  

Furthermore, class K will not fall into any 
package of other classes. We will get a package only 
containing K. This is what we expect, since K 
provides service for many subsystems. Thus it can 
be seen that this method can get a better effect. 

The first partition of the legacy system produces 
some subsystems, then partitions can be performed 
on each subsystem using the same method. When 
doing this, only the references between classes of the 
subsystem will be taken into account. The right 
criterion varies with the abstract level. According to 
our experience, the partition at upper levels should 
be loose to produce subsystems of coarse 

{ }
{ },|

,))(()(|

,,

CrefersAArefC

PAPrefersACrefersAArefCP

RCiRCNRCiRCP
NiPi

　　

　　　　

=

∈∨∧=

== ∑∑
∈∈

N

refCN

RCN
RCP

refC
refCP −.3.2.1 　　　　

Figure 2: An example of system partition 

RESEARCH ON SUPPORT TOOLS FOR OBJECT-ORIENTED SOFTWARE REENGINEERING

401



 

granularity, and tighten when the abstract level 
lowers to get blocks of fine granularity. 

3.3 Advanced partition strategies 

The partition algorithm described in section 3.2 is 
somewhat deficient in practical application. Some 
advanced partition strategies are needed: 

breakpoints setting: Packages gained from the 
root probably contains entry classes of some 
subsystems which are only referred by the root class. 
That is disadvantageous if we want to acquire the 
distinct partition of subsystems in vertical direction, 
because these subsystems will not be separated from 
the root by our algorithm. A breakpoint indicated 
that the former spread will stop here, then it will 
become the start of a new spread. In this way we can 
get the subsystems in vertical direction.  

UI separation: Another problem is that when 
we concentrate on the extraction of business 
components we must specially separate UI classes 
from business classes. UI separation can make the 
spread stop between UI classes and business classes. 
Identification of UI class can be automated to some 

extent, e.g. classes inheriting Java UI classes may be 
identified as UI classes. 

4 CASE STUDY 

Figure 3 demonstrates a part of a store management 
system, in which class DbUpdate provides functions 
of database operation and DbSelect provides 
functions of database query. ConnPool is a simple 
connection pool. MyDbConnection is a wrapping 
class of database connection. It is explicit that these 
four classes compose a component providing 
database service, other classes use DbUpdate and 
DbSelect to perform database operations, such as 

Class1 and Class2. So the perfect partition result is 
packing these four classes together. 

ConnPool only has dependency relation with the 
other three classes, which is the weakest relation. If 
we perform partition according to the RBCI 
algorithm in (Xin, et al.) we can not achieve the goal. 
If we adopt the spread algorithm we can obtain a 
more perfect result  package consisting of four 
database operation classes.     

5 CONCLUSION 

CBSD presents a new framework for reengineering. 
Reengineering tools should focus on producing 
well-encapsulated reusable components under the 
direction of the user. FDReengineer has gained a 
good effect on component extraction. However, how 
to determine the criterion and the scale to combine 
the evaluation factors still needs further study. We 
will further our research on these aspects. 

REFERENCES 

Guo Yao, Yuan Wanghong, Chen Xiangkui, Zhou xin. 
Reengineering: Concepts and Framework [Electronic 
version]. Computer Science (China), 26, 78-83. 

Tao XIE, Wanghong YUAN, Hong MEI, Fuqing YANG. 
JBOOMT: Jade Bird Object-Oriented Metrics Tool. 
Retrieved from 
http://www.cs.washington.edu/homes/taoxie. 

Holger Bär，Markus Bauer，Oliver Ciupke, etc. The 
FAMOOS Object-Oriented Reengineering Handbook. 
Retrieved from http://dis.sema.es/projects/FAMOOS/. 

Gerardo Canfora, Anna Rita Fasolino, Maria Tortorella. 
Towards Reengineering in Reuse Reengineering 
Processes. Proceedings of International Conference on 
Software Maintenance, 1995, 147-156. 

ZHOU Xin, CHEN Xiang-kui, SUN Jia-su, YANG 
Fu-qing. (2003). Software Measurement Based 
Reusable Component Extraction in Object-Oriented 
System [Electronic version]. ACTA ELECTRONICA 
SINICA (China), 5, 649-635. 

Xu W, Yin BL, Li ZY. (2003). Research on the business 
component design of enterprise information system 
[Electronic version]. Journal of Software (China), 7, 
1213-1220. 

Figure 3: A segment of a store management system 

Class1 Class2 

DbUpdate DbSelect 

ConnPool 

MyDbConnection 

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

402


