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Abstract. In this paper, we present our experience in applying collaborative fil-
tering to real-life corporate data in the light of data quality and sparsity. Tiak q
ity of collaborative filtering recommendations is highly dependent on tladitgu
of the data used to identify users’ preferences. To understand therinéuthat
highly sparse server-side collected data has on the accuracy of caligbdilter-
ing, we ran a series of experiments in which we used publicly availableadatas
and, on the other hand, a real-life corporate dataset that does net fitcfile of
ideal data for collaborative filtering. We have also experimentally coathawvo
standard distance measures (Pearson correlation and Cosine similagityhpy
k-Nearest Neighbor classifier, showing that depending on the datasetutper-
forms the other - but no consistent difference can be claimed.

1 Introduction

Data quality is recognized as an important issue for diffeproblems where the re-
sults highly rely on the data, such as machine learning,datang or recommendation
systems. In addition, a problem of data sparsity is rece&ghas important in recom-
mendation systems especially when based on collabordteerfyg. The goal of collab-
orative filtering in general is to explore a vast collectiditems in order to detect those
which might be of interest to the active user. In contrasiiatent-based recommender
systems which focus on finding contents that best match #esuguery, collaborative
filtering is based on the assumption that similar users hiwias preferences. It ex-
plores the database of users’ preferences and searchesefsrtbat are similar to the
active user. The active user’s preferences are then ifénwen preferences of the simi-
lar users. One of the main advantages of pure collaboraliigerig is that it ignores the
form and the content of items and can therefore also be apjgiron-textual items.

The accuracy of collaborative filtering recommendatiortighly dependent on the
quality of the users’ preferences database. In this papevawdd like to emphasize the
differences between applying collaborative filtering tdlely available datasets and,
on the other hand, to a dataset derived from real-life cagdVeb logs. The latter does
not fit the profile of ideal data for collaborative filtering.

The rest of this paper is arranged as follows. In SectiongiZ3ame discuss collab-
orative filtering algorithms and data quality for collabibra filtering. Our evaluation
platform and the three datasets used in our experimentseangilded in Sections 4 and
5. In Sections 6 and 7 the experimental setting and the el@tugsults are presented.
The paper concludes with the discussion and some ideasttoefwork (Section 8).
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2 Collaborative filtering

There are basically two approaches to the implementatioa obllaborative filter-
ing algorithm. The first one is the so called “lazy learningpeoach (also known as
the memory-based approach) which skips the learning plsss time it is about to
make a recommendation, it simply explores the databaseeofitesn interactions. The
model-based approach, on the other hand, first builds a noodelf the user-item in-
teraction database and then uses this model to make recatatimars. “Making rec-
ommendations” is equivalent to predicting the user’s peafees for unobserved items.

The data in the user-item interaction database can be tadleither explicitly (ex-
plicit ratings) or implicitly (implicit preferences). Ie first case the user’s participation
is required. The user is asked to explicitly submit his/faging for the given item. In
contrast to this, implicit preferences are inferred from tiser’s actions in the context
of an item (that is why the term “user-item interaction” issdsinstead of the word
“rating” when referring to users’ preferences in this papBata can be collected im-
plicitly either on the client side or on the server side. la finst case the user is bound
to use modified client-side software that logs his/her asti®ince we do not want to
enforce modified client-side software, this possibilityigially omitted. In the second
case the logging is done by a server. In the context of the Wgdlicit preferences can
be determined from access logs that are automatically aiaed by Web servers.

Collected data is first preprocessed and arranged into dtesematrix. Rows rep-
resent users and columns represent items. Each matrix ilésnie general a set of
actions that a specific user took in the context of a specdin.ith most cases a matrix
element is a single number representing either an expétitg or a rating that was
inferred from the user’s actions.

Since a user usually does not access every item in the repgshe vector (i.e. the
matrix row), representing the user, is missing some/matuegaTo emphasize this, we
use the terms “sparse vector” and “sparse matrix”.

The most intuitive and widely used algorithm for collabaratfiltering is the so
called k-Nearest Neighbors algorithm which is a memoryeldaspproach. Technical
details can be found, for example, in [6]. The algorithm i$adiews:

1. Represent each user by a sparse vector of his/her ratings.

2. Define the similarity measure between two sparse vedtoithis paper, we con-
sider two widely used measures: (i) the Pearson correlat@ificient which is
used in statistics to measure the degree of correlationdastwo variables [12],
and (ii) the Cosine similarity measure which is originallsed in information re-
trieval to compare between two documents (introduced btoSand McGill in
1983).

3. Find k users that have rated the item in question and arésio#ar to the active
user (i.e. the user’s neighborhood).

4. Predict the active user’s rating for the item in questigrtélculating the weighted
average of the ratings given to that item by other users ft@meighborhood.
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3 Sparsity problem and data quality for collaborative filtering

The fact that we are dealing with a sparse matrix can resuhenmost concerning
problem of collaborative filtering — the so called sparsitglgem. In order to be able
to compare two sparse vectors, similarity measures recoinge values to overlap.
Furthermore, the lower the amount of overlapping values]dlver the relialibility of
these measures. If we are dealing with high level of spansityare unable to form
reliable neighborhoods. Furthermore, in highly sparsa da¢re might be many un-
rated (unseen) items and many inactive users. Those itears/wnfortunately, cannot
participate in the collaborative filtering.

Sparsity is not the only reason for the inaccuracy of recontagons provided
by collaborative filtering. If we are dealing with implicitrgferences, the ratings are
usually inferred from the user-item interactions, as alyementioned earlier in the
text. Mapping implicit preferences into explicit ratings & non-trivial task and can
result in false mappings. The latter is even more true foreseside collected data in
the context of the Web since Web logs contain very limitedrinfation. To determine
how much time a user was reading a document, we need to cottifgutifference in
time-stamps of two consecutive requests from that uses, Tiowever, does not tell us
weather the user was actually reading the document or hdtshexample, went out
to lunch, leaving the browser opened. Furthermore, the msgrbe accessing cached
information (either from a local cache or from an interméeligroxy server cache) and
there is no way to detect these events on the server side.
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Fig. 1. Data characteristics that influence the data quality, and the positioning of éeettitasets
used in our experiments, according to their properties.

Also, if a user is not logged in and he/she does not acceptesoke are unable to
track him/her. In such case, the only available informatiat could potentially help us
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to track the user is his/her IP address. However, many userstare the same IP and,
furthermore, one user can have many IP addresses even iartteesession. The only
reliable tracking mechanisms are cookies and requiringsitedlog in order to access
relevant contents.

From this brief description of data problems we can conclimde for applying
collaborative filtering, explicitly given data with low sgsity are preferred to implicitly
collected data with high sparsity (as also pointed out i [The worst case scenario
is having highly sparse data derived from Web logs. So whylevaue want to apply
collaborative filtering to Web logs? The answer is that atitey data in such manner
requires no effort from the users and also, the users arehtiged to use any kind of
specialized Web browsing software. This “conflict of intsg is illustrated in Figure 1.

4 Evaluation platform

To understand the influence that highly sparse server-sitiected data has on the ac-
curacy of collaborative filtering, we built an evaluatiomiibrm. This platform is a set
of modules arranged into a pipeline. The pipeline consisth@following four con-
secutive steps: (i) importing a user-item matrix (in thescasimplicit preferences, data
needs to be preprocessed prior to entering the pipeling}p(itting data according to
an evaluation protocol, (i) setting a collaborative filtey algorithm (in the case of
the kNN algorithm we also need to specify a similarity meagufiv) making predic-
tions about users’ ratings and collecting evaluation tesdlhe platform is illustrated
in Figure 2.

Popularity (baseline)
kNN Pearson (120 neighbors)
kNN Cosine (120 neighbors)

CF algorithm
EachMovie (10,000 rnd users) X l T
Jester (10,000 md users) given data Preﬁ'cé'cl’_”ts'
Corporate 1/2/3/3 & 1/2/3/2 rankedilists
70%
collaborative
filtering
30%
. evaluation
+  hidden data results

average per-user NMAE

evaluation
protocol
all-but-30% given

Fig. 2. The evaluation platform. The notesitalics illustrate our experimental setting (see Sec-
tion 6).
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Let us briefly discuss some of these stages. In the procesglitiing the data,
ratings from each user are partitioned into “given” and tled” ratings, according
to the evaluation protocol. Notice that this is differerdrfr splitting all the users to
training and testing as used in [7]. For example, 30% of rarigselected ratings from
a particular user are hidden, the rest are treated as orsmldedge about the user (i.e.
given ratings). Given ratings are used to find neighborsl|eatidden ratings are used
to evaluate the accuracy of the selected collaborativeifijealgorithm. The algorithm
predicts the hidden ratings and since we know their actuakgawe can compute the
mean absolute error (MAE) or apply some other evaluatiomimet

5 Data description

For our experiments we used three distinct datasets. Thalfitaset was EachMovie
(provided by Digital Equipment Corporation) which conta@xplicit ratings for movies.
The service was available for 18 months. The second datageexplicit ratings was
Jester (provided by [5]) which contains ratings for jokeslJected over a 4-year pe-
riod. Users were using a scrollbar to express their ratinygy-had no notion of actual
values. The third dataset was derived from real-life caafokVeb logs. The logs con-
tain accesses to an internal digital library of a fairly igpmpany. The time-span of
acquired Web logs is 920 days. In this third case the useefemnces are implicit
and collected on the server side, which implies the worst datlity for collaborative
filtering (see Figure 1).

In contrast to EachMovie and Jester, Web logs first needee &xtensively pre-
processed. Raw logs contained over 9.3 million requestst, Failed requests, redirec-
tions, posts, and requests by anonymous users were renWgedere left with slightly
over 1.2 million requests (14% of all the requests). Thegaests, however, still con-
tained images, non-content pages (such as index page®thardrrelevant pages. Fur-
thermore, there were several different collections of doents in the corporate digital
library. It turned out that only one of the collections wakevant for the application of
collaborative filtering. Thus, the amount of potentiallyexent requests dropped dras-
tically. At the end we were left with only slightly over 20 B@iseful requests, which is
0.22% of the initial database size.

The next problem emerged from the fact that we needed to malritpreferences
contained in log files, into explicit ratings. As already kxped, this is not a trivial task.
The easiest way to do this is to label items as 1 (accessedjrmt@ccessed) as also
discussed in [2]. The downside of this kind of mapping is thées not give any notion
of likes and dislikes. [3] have shown linear correlationsaen the time spent reading
a document and the explicit rating given to that same doctimethe same user (this
was already published by [10]). However, their test-usersewsing specialized client-
side software, which made the collected data more relidi#ade, in their case, we
talk about client-side implicit preferences). Despites flaict we decided to take reading
times into account when preprocessing Web logs.

We plotted reading times inferred from consecutive requesto a scatter plot.
From that plot we noticed that the area indicating around @dréreading time is
very dense. We interpret these as the last accesses of altaythe users went home
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and logged in again the next day, which resulted in approtéim@4-hour “reading”
time. Below the 24-hour line, there is a gap at approximat@hhour reading time. We
decided to use this gap to define outliers — accesses abogaphare clearly outliers.
We decided to map reading times onto a discrete 3-score mlees being 1="not
interesting”, 2="interesting”, and 3="very interestingSomewhat ad-hoc (intuitively)
we defined two more boundaries: one at 20 seconds and anoth@mainutes. Since
items were research papers and 20 seconds is merely enoligbwee through the
abstract, we decided to label documents with reading tineémab20 seconds as “not
interesting”. Documents with reading times between 20 sgs@nd 10 minutes were
labelled as “interesting” and documents with reading tifn@s 10 minutes to 10 hours
were labelled as “very interesting”. The previously definediers were included due
to the lack of data. In the first scenario they were labelléday interesting” and in the
second one as “interesting”. Since we had no reliable kndgdebout the outliers, the
second scenario should have minimized the error we mad&imgtthem into account.

Table 1 shows the data characteristics of the three datdisistgvident that a low
number of requests and somewhat ad-hoc mapping onto atdismale are not the
biggestissues with our corporate dataset. The conceraatgsfthat the average number
of ratings per item is only 1.22, which indicates extremagipoverlapping. Sparsity is
consequently very high, 99.93%. The other two datasets aokmore promising. The
most appropriate is the Jester dataset with very low spafsitowed by EachMovie
with higher sparsity but still relatively high average nuenlof ratings per item. Also,
the latter two contain explicit ratings, which means thatytare more reliable than the
corporate dataset (see also Figure 1).

Table 1. The data characteristics for the three datasets showing the kind of ratplicite im-
plicit), size of the dataset and the level of sparsity.

Ratings Size Sparsity
Explicit/ Scale Num of | Num of | Num of %** | Avg#of | Avg#of
implicit users | items ratings r'tings/usrfratings/item

|EachMovie | Explicit| Discrete 0-5 | 61,131 | 1,622 |2,558,871] 97.42 | 41.86 | 1,577.60

Jester Explicit] Continuous | 73,421 100 4,136,360 43.66 | 56.34 |41,363.60
-10-+10

Corporate Implicit | Discrete 1-3*] 1,850 | 16,941 20,669 99.93 | 11.17 1.22

*after preprocessing
**computed as the number of missing values divided by the user-item matrix size (i.e. the number
of rows times the number of columns)

6 Experimental setting

We ran a series of experiments to see how the accuracy oboo#itive filtering recom-
mendations differs between the three datasets (from Eaciehdmd Jester we consid-
ered only 10,000 randomly selected users to speed up theatieal process). Ratings
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from each user were partitioned into “given” and “hiddertings according to the “all-
but-30%” evaluation protocol. The name of the protocol iieplthat 30% of all the
ratings were hidden and the remaining 70% were used to forghberhoods.

We applied three variants of memory-based collaboratitexifilg algorithms: (i) k-
Nearest Neighbors using the Pearson correlation (kNN Begr6i) k-Nearest Neigh-
bors using the Cosine similarity measure (kNN Cosine), aifjctlfe popularity pre-
dictor (Popularity). The latter predicts the user’s rasingy simply averaging all the
available ratings for the given item. It does not form neigitimods and it provides
each user with the same recommendations. It serves merelpaseline when evaluat-
ing collaborative filtering algorithms (termed “POP” in J2For kNN variants, we used
a neighborhood of 120 users (i.e. k=120), as suggested.iW@&]decided to evaluate
both variants of the corporate dataset (the one where thiersutere labelled as “very
interesting”, referred to as “1/2/3/3", and the one whe dltliers were labelled as
“interesting”, referred to as “1/2/3/2").

For each dataset-algorithm pair we ran 5 experiments, eachwith a different
random seed (we also selected a different set of 10,000fuser&achMovie and Jester
each time). When applying collaborative filtering to the aats of the corporate dataset,
we made 10 repetitions (instead of 5) since these datasets smgaller and highly
sparse, which resulted in less reliable evaluation resiiltas, we ran 90 experiments
altogether.

We decided to use normalized mean absolute error (NMAE)&aadhuracy evalu-
ation metric. We first computed NMAE for each user and then vezaged it over all
the users (termed “per-user NMAE”") (see [8]). MAE is exterli used for evaluating
collaborative filtering accuracy and was normalized in oyregiments to enable us to
compare evaluation results from different datasets.

7 Evaluation of results

Our evaluation of experimental results are shown in Figuré @an be seen that kNN
Cosine significantly outperforms kNN Pearson on EachMowataskt (we used two-
tailed paired Student’s t-Test with significance 0.05 teedweine if the differences in
results are statistically significant). However, in theecatJester, which has the small-
est degree of sparsity, KNN Pearson slightly, yet signiflganutperforms kNN Cosine.
On both these two datasets the two variants of a kNN algorstigmificantly outperform
Popularity. For both variants of the corporate datasethemother hand, kNN Cosine
significantly outperforms KNN Pearson. In the first scenéire with the 1/2/3/3 map-
ping), the difference between applying KNN Cosine and Paiylis statistically in-
significant. For the second scenario (i.e. with the 1/2/38pping), our intuition proves
to be right — NMAE values are generally lower than in the ficgreario. However, this
time Popularity outperforms both kNN algorithms. Evaloatresults from the corpo-
rate datasets show that predictions are less accurate andNPAE value is relatively
unstable (hence the larger error bars showing standaretievs of NMAE values).
The main reason for this is low/no overlapping between \aliie. extremely high
sparsity), which results in inability to make several potidns.
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Fig. 3. The results of experiments.

8 Discussion and future work

We have proposed a way to characterize the data used in adtake filtering to indi-
cate its quality in the light of collaborative filtering perfnance. Our experiemnts have
confirmed that high sparsity of the used corporate datasatteel in unstable perfor-
mance. Before we will really be able to evaluate collabweeafiltering algorithms on
the given corporate dataset, we will need to reduce its gpate idea is to apply LSI
(latent semantic indexing) [4] or to use pLSI (probabitigitent semantic indexing)
[9] to reduce the dimensionality of the user-item matrix,iehhconsequently reduces
sparsity. Another idea, which we believe is even more primgis our context, is to
incorporate textual contents of the items. There were djrsame researches done on
how to use textual contents to reduce sparsity and impravadhuracy of collabora-
tive filtering [11]. Luckily we are able to obtain textual dents for the given corporate
dataset.

What is evident from our experiments is that mapping impligib explicit ratings
has great influence on the evaluation results. Since thein@pas done somewhat ad-
hoc, we can not assure that the results are valid and that#rs will be statisfied with
the recommendations. This needs to be investigated inegrdapth. Also interesting,
the Cosine similarity works just as well as Pearson on Eaclidand Jester. Early
researches show much poorer performance of the Cosinasisniheasure [2].

As a side-product we noticed that the true value of collabadiltering (in general)
is shown yet when computing NMAE over some top percentagecoérdric users.
We defined eccentricity intuitively as MAE (mean absolut@grover the overlapping
ratings between “the average user” and the user in quesgfieater MAE yields greater
eccentricity). The average user was defined by averagimgggafor each particular
item. This is based on the intuition that the ideal averagewsuld rate every item with
the item’s average rating. The incorporation of the notibeaxentricity can give the
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more sophisticated algorithms a fairer trial. We computertage per-user NMAE only
over the top 5% of eccentric users. The power of the kNN algas over Popularity
became even more evident. In near future, we will define anracg measure that
will weight per-user NMAE according to the user’s ecceiilyiand include it into our
evaluation platform. We will also consider ways of handlthg more eccentric users
differently.
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