
SECURING XML WEB SERVICES – A PLUG & PLAY
APPROACH

Cristian Donciulescu, Luminita Vasiu
Westminster University, London, UK

Keywords: XML Web Services, security, Web Services architecture, plug and play architecture

Abstract: XML Web Services have the potential of becoming the underlying technology on which the future of the
Internet is built. However, several hurdles stand in the way before that can happen. Security issues, for one,
are slowing down the rate at which industry adopts the use of Web Services and in spite of the coordinated
efforts made to correct those problems, the actual results can be years away. This paper is aimed at
providing a more immediate solution for Web Services in the form of an architectural design, not only
regarding security aspects, but rather enabling a wider range of e-commerce supporting features which are
of utmost importance for a wide acceptance of this technology within the industry.

1 CONTEXT

The XML Web services technology has been around
for some time now, however, its potential is still
largely unused due to certain problems that were not
addressed by their original specification and by
several additions that have appeared over time. The
biggest such problem was and still is to this day the
lack of security mechanisms available for
developers. Because of this, the vast majority of web
services available now are simple pieces of code,
without the need for security. The few XML Web
Services used commercially in industry have custom
security implementations that usually take more time
to build than the actual service functionality
(Trivendi, 2002; Rosenberg, 2004).

While attempts to solve this stringent problem
have been made for some time now by big players
on the software market, such as Microsoft and IBM,
the most notable result was the WS-Security
specification. This specification is only the basis for
more than 30 other specifications developed or
under development under the umbrella of Web
Services Interoperability Organisation (WS-I). Every
such standard is designed to cover some particular
aspect of security for XML Web Services.

With the entire standards development effort
going on, it is small wonder that developers are still
confused and unable to unleash the full potential of
the technology and with much more than one

standard coming up, combining everything into a
comprehensive security solution might be very
difficult (Bergholz, 2004).

Of course, the issue of time is always present.
The delay in adopting the technology on a wide
scale can only erode its credibility in the IT
community. This delay might cause further delays
resulted from the lack of trust in the security that
would be offered as a specification add-on rather
than as part of a comprehensive initial set of
specifications. Technology offers a recent example
on how an initial impression made by the lack of a
sufficient security mechanism carries on even after
the problem was addressed. The WiFi technology is
still avoided by many because of that delay in
implementing strong security in the first place.

This paper presents a solution that could be used
to speed up the wide-scale adoption of the XML web
services technology by providing a straight-forward
way of securing services, as well as opening the way
for further enabling the technology for e-commerce
use.

2 MAIN ISSUES WITH WEB
SERVICES

As discussed above, providing developers some
straight-forward way of securing services is the main
concern at the moment. However, the technology

25
Donciulescu C. and Vasiu L. (2005).
SECURING XML WEB SERVICES – A PLUG & PLAY APPROACH.
In Proceedings of the Second International Conference on e-Business and Telecommunication Networks, pages 25-32
DOI: 10.5220/0001419500250032
Copyright c© SciTePress

has more than one hurdle before it can really become
a fundamental building block of the Internet, as
many IT specialists envisioned it when its
specification was first published.

The main problems that we have identified with
Web Services are:
• Privacy – web services communicate via SOAP

XML documents that are simple text streams
sent over the network.

• Routing/messaging – specifications have been
drafted and are in the final stages of being
approved.

• Transaction handling – there is no implemented
way as of yet to perform any sort of
transactional operations for services, which is an
essential for any business operation.
Specifications are being developed now
(Trivendi, 2002)

• There is no way to do any
performance/tuning/audit on web services.
Developers cannot know which service offers a
better performance and reliability. There is no
planned way of doing this in the near future,
although there is some related research in the
field (Bravetti, 2004)

• Dynamic discovery – there is no way of
automatically discovering which service
performs a specific type of task, nor there is a
way of switching between implementations of
similar web services (Bergholz, 2004). Further,
there is no way of finding a web service based
its functionality rather than its description

• Complexity of the upcoming security model -
the specifications that are now being drafted
under the patronage of WS-I address different
security issues and are built to be used as
modular components added to service messages.
These specifications are supposed to work and
integrate very well with each-other. For
example, a Web Service that needs to have its
users authenticated would use WS-Security
along with higher level standards like
WS-Authorization and maybe WS-Trust.
Making all these standards interact will prove in
our opinion to be a difficult task. Added
complexity means higher chance of failure in
any type of system, and as it stands now, the
complexity of the security policies that will be
applied is very high (Rosenberg, 2004)

Discovering web services is essential, after all a
service that cannot be found by clients is useless.
The problem is that the mechanism available for
service discovery is very basic and does not allow
clients to perform any sort dynamic discovery. A
service is basically embedded in an application at
development time and there is no default way of
changing it after the application is shipped to clients.

There is no way to even switch automatically to
another address if the service moves. While this
issue might not seem security related at all, it proves
to be extremely important regarding service
availability and reliability. We will also show that
while everybody agrees that dynamic discovery is
necessary, the industry hasn’t even agreed to what
we should understand by dynamic discovery
(Bergholz, 2004; Vinosky, 2004). By dynamic
discovery we refer here at the “ability to describe
systems in which clients search through registries to
first discover and then invoke services supporting
the capabilities they require” (Vinosky, 2004).

The architecture that will be presented in this
article proposes some solutions to some of these
problems.

3 THE PROPOSED SOLUTION

The approach proposed here relies on the fact that all
communication involving web services takes place
through the SOAP protocol; therefore the SOAP
message would necessarily be the main engine that
would carry any payload for a potential attack.
Moreover, controlling SOAP message flow, by
identifying the message source and destination as
well as monitoring the specific Web Service to
where each message is addressed can prove to be an
effective way of managing certain services that run
in a controlled environment.

The basic architectural element we rely on
controlling the flow of SOAP messages is the
security context. A security context is meant to
group together a set of security policies that are
applied to all the services that will be managed
inside that context. Each context is administered by
an administrative entity, be it one or more
individuals. A context is set to act as a buffer
between the service provider (Web Service) and
requestor (Web Service Client).

A context is comprised of the following basic
elements, based on the initial design resulted after
the research conducted. They are presented in the
relative order in which an incoming message would
reach them:
• A bidirectional envelope that intercepts the

incoming and outgoing SOAP requests and
responses as they arrive to and from the Web
Services that are managed. The interception
would take place much in the same way a
firewall intercepts packages. There are firewalls
that can already recognize and block SOAP
messages. If needed, the SOAP message would
be decrypted at this level using probably a
private context key. Encryption/decryption

ICETE 2005 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

26

would take place here if required. While SSL
could be used here to secure the communication
channel, it is not always feasible, especially
since both endpoints must have a digital
certificate. Due to the relatively high cost of the
digital certificates it is highly unlikely that the
clients will employ them on a large scale
(Cremonini, 2003).

• An access control list which retains permissions
for groups/users (CACL). The administrative
entity of the context has the exclusive right to
modify CACL.

• An authenticator, sitting behind the envelope.
The authenticator receives the messages
intercepted by the envelope and interprets the
information about the message source. Message
authentication takes place here. The
authenticator has access to the security context’s
access control list.

• The message is passed further down to an
audit/logging unit that retains the information
about the requestor, time of request, etc.

• A load balancing unit that forwards the message
to the actual web service that is the intended
destination. There are two ways this mechanism
can be implemented in our opinion (using a
centralized or decentralized approach) and this
issue will be addressed later.

• A database for storing CACL and
logging/auditing information

• Finally, a context manages zero or more web

services belonging into two categories. These
categories will be described when discussing
about context inheritance, for now we will
mention that they are either the managed
services or proxy ones.

A security context can trust another context and
only one. Multiple trust relationships are possible,
however it has been decided that the trust
relationship complexity would be too high, at least
for a first version of the architecture.

A trust relationship between two contexts allows
the “child” to trust a “parent”. A child-parent trust
relationship implies that the security policies given
by the parent security context are applicable to the
child. That is, the child inherits an ACL from the
parent. The child ACL takes precedence over the
parent ACL.

The implementation of such a trust relationship
implies generating proxy web services. A proxy web
service is defined as being a Web Service whose
function is to forward all incoming requests to
another service that has a similar signature (WSDL
contract) as the proxy. It is theoretically possible to
generate proxy services based on the contracts of
real web services because generating proxy objects
from WSDL contracts is basic functionality in all the
Web Service supporting infrastructures. Such a
proxy would be generated by the child context and
published on the parent context in a trust
relationship. The publishing process would require
human supervision at least in the current design

Authenticator Audit
Logging

Load
balancer

ACL DB Logger Balancer

CACL

WS

WS

WS

WS WS

Client

r

SECURING XML WEB SERVICES – A PLUG & PLAY APPROACH
Figure 1: Security context architecture with centralized load balance
27

phase, in order to minimize the security risks of such
operation. The proxy services will become clients
for the original services, but they will have the right
to make calls to the original services because the
child context in which those reside trusts the context
in which the proxies reside. There are plans to
automate the process completely. The publishing
process would require of course some security
privileges to be given to the child context by the
administrative entity of the parent.

This implication generates a special type of web
service that resides in a parent context: a proxy
service, as described above. This means that a
context can have two types of services: proxies and
regular services. A proxy service can be made
discoverable by clients or not, depending on the
security policies implemented in the security context
it resides in.

As previously mentioned, there are two ways of
implementing a load balancing mechanism. The two
options available are depicted in Figures 1 and 2.

The first method of providing a load balancing
mechanism is depicted in Figure 1. The client sends
a SOAP request to the service which was discovered
before by any means. The message is intercepted by
the envelope and if necessary decrypted using a
context private key. The decrypted message is
passed through to the authenticator unit which
checks the message sender against a context access
control list (CACL). Provided that the CACL
permits the originator to interrogate the given Web
Service, the authenticator passes the message to an
audit/logging unit that will store whatever
information is necessary about the request, the web
service it was addressed to and so forth. The
authentication can be based either on the content of
the SOAP message or on the information that can be
gathered about its origin, although a combination of
the two would provide the most accurate results.
Research is taking place for identifying the best way
of achieving a comprehensive authentication model.

The message is then passed into a central load
balancing unit that decides which service will
actually perform the business logic associated with
the request. This decision can be based on a
multitude of factors, such as:
• The number of identical web services available

to service a request at a certain moment. Using
WS-Addressing it is (theoretically) possible for
a client to make a general request to a service
that has many instances running without having
the knowledge of this. However, the solution is
only provisional since the standard is not final
yet. At the time when this paper is written

(October 2005), the WS-Addressing standard
has been submitted for review (W3C, 2004).

• The information available from the audit unit,
detailing the usage history and present load on a
specific service instance.

• The information available in the balancer
database which typically would describe an
addressing table for each service inside the
context.

This load balancing solution can be very easily
expanded to a pseudo-dynamic discovery solution.
Using an XML equivalence language, either
proprietary (at first) and then a standardized one, the
balancer database can not only hold information
about identical web service instances running in
different points on the network, but also information
about similar services that perform the same
functions but have other contracts. This situation
could be very frequent, the classic example of a
credit card validation service being eloquent. Using
a semantic language, such as OWL-S this
mechanism could be expanded into a fully fledged
dynamic discovery system, where services are
invoked based on their functionality rather then their
description (daml.org, 2004).

Once the message is relayed to the Web Service
that is intended to service it, the service will execute
the business logic required and will return the SOAP
response to the load balancer. The load balancer is
the only client the service will actually answer to.
While this might seem bad practice from a
performance stand-point, it is essential that the
response is returned by the service to the party that
requested it in the first place, for maintaining
compatibility with the basic Web Services
specifications.

The load balancer will forward the message to
the logging/audit unit that will again record
information such as response time and service
instance that performed the business logic if
necessary. This in turn will be used again in routing
further requests. The information will also be useful
for developers in deciding which service to use, if it
will be made public in UDDI registries.

The audit unit will pass the response directly to
the client, but the envelope will again intercept that
request and perform an encryption on it if dictated
by the security policies enforced by the context.
Finally, the response is forwarded to the client.

Evidently, the whole process described above is
transparent for the client, an essential requirement
for maintaining conformance with the Web Services
specification.

ICETE 2005 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

28

The second appro
context architecture w
different and present
approach, each mana
balancer. Each servi
which stores inform
services that can
processes that it doe
check if the service i
and forward it to the
that service.

The message path
would be relatively si
approach; however,
pass the request dire
was chosen by the cli
would then be inter
envelope, which wou
balancer. If the serv
logic would be exec
back to the balancer a
to the client similar
the service is unava
passed to an alternate
that matter, although
in all cases so we did
grounds that it canno
would repeat itself un
perform the request an

Authenticator Audit
Logging

ACL DB Logger

CACL

Client

WS

F

SECURING XML WEB SERVICES – A PLUG & PLAY APPROACH
ach for implementing a security
ith load balancing is slightly

ed above in Figure 2. In this
ged service has its own load
ce has a repository attached
ation about the alternative

perform the same business
s. The service balancer would
s available to process a request
 service or to an alternative of

 through the security context
milar to the previous discussed
the audit/logging unit would
ctly to the web service which
ent as destination. The message
cepted again by a secondary
ld direct it to the service load
ice is available, the business
uted and the response passed
nd would follow the path back
to the centralized approach. If
ilable, the request would be
 service (or more than one for
that approach would not work
 not take it into account on the
t be generalized). The process
til a service would eventually
d return a response.

The advantage of this approach is that the load
balancer becomes decentralized. This means that
given a decent network of services, the request
would travel through the network without problems
until it would be serviced, without the need for a
huge list of alternates for each service. Also, if a
service does not have any alternates specified, in
other words if it is working like a standalone service,
the balancer does not interfere at all in the whole
process, being completely bypassed and reducing
network stress and processing time. Also, each
balancer can decide whether its own service is
available or not to service a specific request, this
functionality being easier to fine-tune on this
approach.

The downside of the security context being
architected this way is that it is more difficult to
manage, although it would provide finer control
detail. Also, the balancer would most probably not
have all the information that a centralized approach
would be able to use. For example, the auditing and
logging information would be more difficult to
access and gather, mostly time-wise. Another
possible downside is that due to this distributed
nature, it would be difficult and unfeasible to use an
actual database for storing the balancer related
information, thus losing the advantages offered by a
modern DBMS. Finally, we believe that it would be
more beneficial to have all the information relating
to a context into the same data source.

igure 2: Security context architecture with decentralized load balancing

29

Taking into consideration the advantages and
disadvantages presented, it is our opinion that the
first approach is more feasible for implementing,
although the decentralized version would be more
versatile. However, further testing will still be
carried out to determine the feasibility of the
decentralized model, but, at this time we are leaning
towards using the centralized one.

The following diagram (Figure 3) presents a
top-level view of the architecture, above the security
context level. The diagram presents a theoretical and
reduced version of the architecture, with the purpose
of demonstrating the trust relationships between
security contexts. Depicted are three contexts,
marked as WSMC(A) 1, 2 and 3. Each context has
an access control list associated with it.

WSMC2 and WSMC3 trust WSMC1, which
implies that they inherit ACL1.

Each context has a number of managed services,
depicted with a continuous line and context 1 has
some proxy services (dotted lines) which it manages
also, since it is trusted by WSMC 2 and WSMC3.

Of course, the trust-inheritance tree could be and
is desirable to be much larger than this. An optimal
size is difficult to predict, although some testing is
planned on this issue, in later stages of the project.
The following section will describe various
scenarios of security situations in which clients
invoke services residing in the three contexts and the
responses received.

4 CONCLUSION

The architecture described was designed with the
purpose of providing security features for XML Web
Services, features that are not available at present
and that will most probably be missing or hard to
implement in the foreseeable future as well. The
design has been carefully steered towards being
compatible with the XML Web Services basic
standards and future developments. We do believe
that it is compatible with upcoming specifications
and, of course, with the WS-I Basic profile.

This is achieved by not interfering with the inner
workings of the managed web services or the SOAP
request/response messages’ content. The main
advantages that we see available to the technology
once the architecture would be used on a decent
scale are outlined below:
• WSMA basically provides a plug & play

security mechanism for web services. As the
architecture is designed, a service with no
security features whatsoever can be placed into
a context (or more than one) and it would
“inherit” all the security policies defined by the
administrator of that context

• The plug & play functionality would allow
developers to focus on the business logic of
most services, rather than writing complicated,
security-related code which is error-prone and
often leaves security gaps behind and takes up

WS WS WS

WS WS WS

WS

WS

WS

WS

Client 1

WSMA 1 + ACL1 (Client 1)

WSMA2 + ACL2 (Client 2, ACL1) WSMA 3 + ACL (ACL1)

Client 2

A1
A2 A3

B1

B2

B3

WS

A4 C1

C2

C3

e

ICETE 2005 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

30
Figure 3: Top level view of the WSMA architectur

valuable time
• WSMA separates completely the business logic

implementation of the service from the security
related one

• WSMA can be used with any Web Service, both
legacy and new ones being accommodated

• Because of the context-oriented architecture, an
entire business process could be deployed inside
a security context, providing clients access to
the entire range of services that comprise that
process. This allows for the possibility that in a
business process which is composed of many
services, the client must only be authenticated
once, rather than with every service at a time,
decreasing the overall response time for that
business process

• The authenticator can be customized to allow
multiple security policies, depending on the
specific needs addressed by the security context

• The WSMA allows specifying method level
access rights for the web services managed by a
context. This functionality is not possible at
present, nor will it be made available by any of
the upcoming specifications. However, it is
usable and desirable, considering that Web
Services can expose multiple methods at a time,
with different security policies needed on them.
For example, a service that interrogates and
updates a customer database would want to
expose the interrogation methods to a set of its
clients and the update methods to a subset of
those clients. At present, the only way of
implementing this kind of functionality is
providing two separate services

• The architecture is designed in such a way that it
allows for on-the-fly deployment (creation or
update) of web services into a security context.
This means that the services can be updated
without the context being unavailable to the
clients at any time

• The administrative entity of the context can
modify the security policies at any time without
any downtime for the context or the services
managed

• The policies for all the services managed can be
modified all at once, thus allowing for the
access rights on an entire business process to be
modifiable at once

• Each security context has complete control over
the service managed, thus making the
administration of those services an easy task

• WSMA allows a chain of trust to be built,
which, in turn, allows a client to have access to
XML Web Services for which specific security
settings have not been specified. In other words,
a client is not authenticated by the service, but
by the context

• The architecture provides a mechanism for
performing various audits and logging on the
managed Web Services, which gives developers
a benchmarking tool for selecting the proper
web service for their application

• A load balancing mechanism is provided which
helps insure that one service will always be
available to service requests, even at the busiest
times

• A pseudo-dynamic mechanism for discovery is
provided, which allows a request to be serviced
by another service than the one originally
intended, provided that the business logic
performed by the alternate service is similar to
the business logic performed by the original one

• A truly semantic discovery model for web
services can be envisaged subject to integrating
a semantic language such as OWL-S into the
Web Services architecture

• The architecture is open to implementing any of
the specifications related to Web Services as
soon as they would become a WS-I requirement,
thus ensuring interoperability with services and
applications that are not using WSMA

5 CURRENT AND FURTHER
WORK

While the big picture on the WSM architecture
design is relatively finalized, there still are some
problems that need to be addressed, or questions that
need to be answered before starting any
implementation. The issues being worked on now
are listed below:
• It is unclear how the WSMA would behave

when the trust inheritance tree becomes big. The
response time to a request is quite important and
the load balancing mechanism would slow
things down a little. If the request must follow a
long network path until it is answered, the delay
might become significant. It is important then to
determine the actual optimal size of the
inheritance tree, or else the number of forwards
a SOAP message would be allowed to pass
through before the client gets an exception

• Also, in a big trust inheritance tree, every time a
service is updated in a child context, the
publishing of the proxy service triggers an
update that must take place in every parent
context above the child. It is necessary to test
the required resources this update would need in
different context sizes. If this update is too
expensive, resource-wise, a solution should be
found to either reduce its cost, frequency or the

SECURING XML WEB SERVICES – A PLUG & PLAY APPROACH

31

update should be limited to only a number of
parent contexts.

• There must be a way for the client to receive an
error if the request cannot be serviced for some
reason. This response, if sent, should of course
be an XML SOAP document. It is unclear
whether the client should actually receive the
response or not. There are pros and cons to
either approach. If the client receives a response
every time the request is unavailable, even for
lack of proper credentials, there is a security risk
of favoring denial of service attacks (see Erro!
A origem da referência não foi encontrada.).
Not returning a message implies that a client
must always wait for a timeout error, on a
timeout interval specified locally. There is of
course a middle way of sending messages back
only in certain conditions, but the approach that
will be taken is not clear

• The model of the inheritance system for the trust
tree has not been decided yet. We are oscillating
between a simple approach, in which a service
can be visible or not and a more complex one in
which each service would have a visibility flag
attached which could specify information about
the number of levels the service should be
visible, and related issues. For the first
implementation we are leaning towards the
simple approach

• In the future, we are looking at implementing
support for transactions into the WSM
architecture, which would make WSMA an truly
e-commerce ready deployment platform for web
services

An evaluation of existing implementations of
open source firewalls will be carried out in order to
assess whether one of those could be used for the
building of the security context envelope, since its
functionality resembles that of a firewall quite a lot.
Hope is to find a solution that would be easily
adaptable or convertible for our purposes. However,
if such a solution will not be found, a custom
implementation can be made (Cremonini, 2003).

REFERENCES

Trivendi R., 2002. Professional Web Services Security.
Wrox Press Inc., ASIN: 1861007655

Rosenberg J, 2004. Securing Web Services with WS-
Security: Demystifying WS-Security, WS-Policy,
SAML, XML Signature, and XML Encryption.
Pearson Higher Education. ISBN: 0672326515

Bergholz, A., Chidlovskii, B., 2004. Learning query
languages of Web Interfaces, Proceedings of the 2004
ACM symposium on Applied computing

Bravetti, M., Lucchi, R., 2004. Web Services for E-
Commerce: guaranteeing security access and quality
of service, Proceedings of the 2004 ACM symposium
on applied computing

Vinosky S., IONA technologies, 2004. White paper – Web
Services and Dynamic Discovery -
http://www.iona.com/devcenter/articles/stevev/1101sv.
htm

Cremonini M., 2003. Security for Web Services: An XML
based approach to combine firewalls and web services
security specifications. Proceedings of the 2003 ACM
workshop on XML security

MSDN Library, 2004,
http://msdn.microsoft.com/webservices/understanding/
specs/default.aspx

W3C - Web Services Addressing (WS-Addressing), 2004
-http://www.w3.org/Submission/2004/SUBM-ws-
addressing-20040810

DAML Services, 2004 -
http://www.daml.org/services/owl-s

ICETE 2005 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

32

http://www.iona.com/devcenter/articles/stevev/1101sv.htm
http://www.iona.com/devcenter/articles/stevev/1101sv.htm
http://msdn.microsoft.com/webservices/understanding/specs/default.aspx
http://msdn.microsoft.com/webservices/understanding/specs/default.aspx

