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Abstract: Local bisimilarity has been proposed as an approximate structural summary for XML and other semi-
structured databases. Approximate structural summary, such as A(k)-Index and D(k)-Index, reduce the 
index's size (and therefore reduce query evaluation time) by compromising on the long path queries. We 
introduce the A(k)-Simplified and the A(k)-Relevant, approximate structural summaries for graph 
documents in general, and for XML in particular. Like A(k)-Index and D(k)-Index, our indexes are based on 
local bisimilarity, however, unlike the previous indexes, they support the removal of non-relevant nodes. 
We also describe a way to eliminate false drops that might occur due to nodes removal. Our experiments 
shows that A(k)-Simplified and A(k)-Relevant are much smaller then A(k)-Index, and give accurate results 
with better performance, for short relevant path queries. 

1 INTRODUCTION 

XML (eXtensible Markup Language) has rapidly 
become the data representation language of choice 
for information exchange on the web (Bray, T., et 
al.), (Busse, R., et al, 2001). XML document is a 
semi-structured database (Buneman, P., et al, 1997), 
(Li, Q. and Moon, B., 2001) , i.e. can be described as 
a directed graph. In Figure 1 we see an example of a 
graph representing a semi structured database. As 
with relational databases, evaluating queries using 
only the original database can be very costly in 
terms of time and resources needed. Clearly, an 
index is needed for an efficient evaluation. Several 
types of indexes were suggested, such as connection 
indexes, which are designed to support ancestor-
descendent connection, like HOPI (Schenkel, R. et 
al., 2004), but most of the indexes proposed are 
based on structure summary of the document.  
Existing structure summaries are based on NFA to 
DFA transition like Strong DataGuide (Goldman, R. 
and Widom, J., 1997), graph index with hash tree to 
support common prefixes, like APEX (Chung, C. W. 
et al., 2002), and bisimilarity based summaries like 
1-Index (Milo, T. and Suciu, D., 1999), (Kaushik, R. 
et al., 2003) , T-Index (Milo, T. and Suciu, D., 
1999), F&B-Index (Kaushik, R. et al., 2002), A(k)-
Index (Kaushik, R. et al.) and D(k)-Index (Qun, C., 
Lim A. and Ong, K. W., 2003).  

In this paper we introduce A(k)-Simplified and 
A(k)-Relevant – a structure summary of a semi 

structured database, based on local bisimilarity, 
which supports removing nodes with non relevant 
tags (and therefore significantly decreasing the index 
size), while saving the document structure, so short 
queries can still be answered accurately.  The main 
assumption our indexes is based upon is that we can 
classify the tags into 2 groups: relevant and non 
relevant (as mentioned in (Kaushik, R. et al., 
2002),(Qun, C., Lim A. and Ong, K. W., 2003)). By 
declaring a tag as a relevant tag we either mean that 
the expression paths are built from relevant tags only 
– and we have A(k)-Simplified to support query 
evaluation, or, we mean that the results will be 
composed of relevant tags only – and we have A(k)-
Relevant to support these queries. The proposed 
approximate indexes are much smaller then A(k)-
Index, and therefore give much better processing 
time results. Additional contributions in this paper 
are: 
1. Presenting a method to eliminate false drops in 
A(k)-Simplified and A(k)-Relevant (with respect to 
A(k)-Index) using partial order. This method 
increases the size of the indexes only by a tiny 
amount, and uses data saved on a small percent of 
the edges. 
2. Showing experimentally that A(k)-Simplified and 
A(k)-Relevant reduce both the size of the index and 
the processing cost (compared to A(k)-Index). We 
also examine the indexes behavior when evaluating 
queries with length greater then k. 
The idea of replacing irrelevant tags with the label 
"other", as a method to reduce index size, appeared 
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already both in (Milo, T. and Suciu, D., 1998) and 
(Kaushik, R. et al., 2002). However, both papers do 
not elaborate on the algorithmic implications of this 
idea, and in the context of A(k)-Index. This 
algorithmic elaboration is the main contribution of 
this paper (see also section 2). 

The rest of the paper is organized as follows: We 
review existing work in section 2, then we elaborate 
on the data model and other related issues in section 
3 – preliminaries. Afterwards we describe A(k)-
Simplified and A(k)-Relevant in section 4, and then 
we give a way to remove false drops in section 5. 
We then conclude with experimental results (section 
6) and further research (section 7).  

2 RELATED WORK 

In semi-structured databases, indexes are structural 
summaries, made to reduce time for query 
evaluation. Some of the indexes are approximate, 
which means that for some queries, verification is 
needed in order to remove false drops (by the term 
false drops we mean false positive – some of the 
index's results are incorrect). Examples for such 
indexes are: Approximate DataGuide (Goldman, R. 
and Widom, J., 1999), which is based on Strong 
DataGuide in which “similar” nodes are merged, 
APEX (Chung, C. W. et al., 2002) – An index that 
adjusts its structure using data mining strategies in 
order to efficiently evaluate queries with common 
suffixes, D(k)-Index (Qun, C., Lim A. and Ong, K. 
W., 2003), which uses different local bisimilarity 
values in order to emphasize important tags,  and 
A(k)-Index. In our work we are interested in the 
A(k)-Index and local bisimilarity on which it is 
based. We say that two nodes are bisimilar if the two 
groups of incoming label path are similar. Every 
node in a bisimilarity based index is an equivalence 
class for the bisimilar relation. The first bisimilarity 
based index was 1-Index, which is safe and accurate 
but tends to be very large, especially with “complex” 
documents. A(k)-Index offers a way to reduce the 
index size by relaxing the bisimilarity demand for 
having all the incoming label paths, and declaring a 
new relation – local bisimilarity. Two nodes are k 
local bisimilar, if their two groups of incoming label 
paths, not longer than k, are similar. Local 
bisimilarity is based on the assumption that long 
queries are rare, and therefore we can build a 
structure that gives accurate results for short queries, 
while in long queries the results are approximate, 
and sometimes need verification (i.e. A(k)-Index is 
safe). Experiments show that A(k)-Index is much 
smaller then 1-Index. 

In A(k)-Index both relevant and non-relevant tags 
gets the same treatment, because we define one k for 
all the index, in D(k)-Index we can emphasize 
relevant tags by giving the nodes with the desired 
tags different ‘k’ (local similarity) value, however, 
in spite the fact that some tags are known to be non 
relevant at all, D(k)-Index still includes all the nodes 
whether their tags are relevant or not.  

As seen in (Kaushik, R. et al., 2002),(Milo, T. 
and Suciu, D., 1998) using partial data can improve 
evaluation time. The schema in (Milo, T. and Suciu, 
D., 1998) is based on simulation and is used for 
creating efficient regular path expressions, which 
improves DB scanning time. "other" edges are used 
as a replacement for unknown tag's edges which 
exist in the DB. However, the goal of the data 
structure in (Milo, T. and Suciu, D., 1998) differs 
from the goal of (Kaushik, R. et al., 2002) and ours. 
We use a bisimulation data structure to efficiently 
evaluate the query, rather then creating a more 
efficient one, both (Kaushik, R. et al., 2002) and us 
offer a method to reduce the index size, by replacing 
irrelevant tags with the tag "other", and removing 
isolated "other" nodes. This method allows an 
efficient evaluation of queries based on relevant tags 
only. (Kaushik, R. et al., 2002) uses this method to 
reduce the F&B index size, but does not give 
detailed algorithms for constructing the index and 
evaluating the query using "other". We present these 
algorithms in depth, especially in the context of 
A(k)-Index structure, and exploit the local 
bisimulation in treating "other" nodes.  A(k)-
Simplified uses this idea and adds a method to 
remove "other" node's path, and A(k)-Relevant 
exploits local bisimilarity and relaxes the demand 
for queries with relevant tags only, by just requiring 
a relevant tag at the end of the query and therefore 
supports all queries which return relevant data. Both 
indexes support the collapse of "other" paths without 
introducing false results. 

3 PRELIMINARIES 

XML or other semi-structured databases are 
modeled as a directed, labeled graph G, with each 
edge indicating an object-subobject or object-value 
relationship. Each node in G has a label, and an OID 
(as described in (Papakonstantinou, Y., 1995)), with 
simple objects having a distinguished label, 
VALUE. In Figure 1 we can see an example of a 
semi structured data graph. The id-idref edges are 
sketched with dotted line, but in our model, we 
consider all the edges in the same manner. Queries 
in semi structured databases are based on regular 
path expression. Let G be a data graph, and ΣG be 
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the set of labels in G, we define a regular path 
expression R as follows: R := L | _ | R.R | (R|R ) | 
R*, where L∈ ΣG, ‘_’ denotes any label (one label 
only), ‘.’ denotes sequence, ‘|’ alternation and ‘*’ 
denotes repetition. From now on, we will use a 
common abbreviation – the sign “*.” will replace 
“_*.”. Before explaining the usage of regular path 
expressions, we give some formal definitions. A 
node path in G is a sequence of nodes, n1, n2,… nm, 
such that ni∈G, and an edge exists between ni and 
ni+1 for 1≤i≤m-1 . A label path is a sequence of 
labels l1, l2,… lm. A node path matches a label path if 
label(ni)=li for 1≤i≤m. We denote L(R) to be the 
regular language specified by R, and we say that R 
matches a data graph node n if there is a label path 
for some word in L(R) that matches a node path 
ending in n. Now, the result of evaluating a query R 
on a data graph G, is the set of nodes in G that 
matches R. for example, the path expression 
*.movie.title evaluated on Figure 1 data graph, is all 
the movie’s titles.  

Each node in the index graph is associated with 
an extent, which is the set of nodes in the matching 
equivalence class. If an edge exists from a node in 
one equivalence class to a node in another 
equivalence class, we add the appropriate edge to the 
index. We denote the index for data graph G as IG. 
Evaluating a query, which is a regular path 
expression R on IG is a union of the extents of index 
nodes in IG that matches R.  

Definition 1. (Safe and Accurate) Let R be a 
regular path expression, we say that an index IG is 
safe if for each node v∈VG, if R matches v, then v is 
in the result of evaluating R on IG. We say that IG is 
accurate if for each node v∈VG, R matches v if and 
only if v is in the result of evaluating R on IG.  

Definition 2. (Reversed Bisimulation) Let G be a 
data graph in which the symmetric, binary relation 
≈, the reversed bisimulation, is defined as : two 
nodes u and v are bisimilar (u ≈ v), if: 
1. u and v have the same label. 
2. if u’ is a parent of u, then there is a parent v’ of v, 

s.t. u’ ≈ v’, and vice verse. 

Definition 3. (Local Bisimulation – k-
Bisimilarity) Let G be a data graph in which the 
symmetric, binary relation ≈k, the local bisimulation, 
is defined inductively: given the local similarity 
value k, we define two nodes u and v to be k-
bisimilar (u ≈k v) recursively: 
1. u ≈0v iff u and v have the same label. 
2. u ≈kv iff u ≈k-1v and for every parent u’ of u, there 

is a parent v’ of v, s.t. u’ ≈k-1 v’, and vice verse. 
If two nodes are bisimilar then all the incoming 

label paths are equal, while if two nodes are k-
bisimilar, then all the incoming label paths not 
longer then k, are equal. 1-Index and A(k)-Index are 
based on bisimulation and k-bisimilarity 
respectively. We note that 1-Index is accurate while 
A(k)-Index is safe. In Figure 1 we see an example of 
A(0)-Index (label split index), A(1)-Index and 1-
Index for the data graph shown in Figure 1. Each 
index node has its extent attached. 

A command is the basic instruction that a script 
file contains. Some commands require parameters 
that further define what the command should do. An 
expression is a combination of operators and 
arguments that create a result. Expressions can be 
used as values in any command.  Examples of 
expressions include arithmetic, relational 
comparisons, and string concatenations. 

3.1 The Set L 

Normally we can split our DB into relevant and 
irrelevant data (with respect to the queries on the 
database). For example, in our movie database we 
might want to query only movies or actors so 
director and director’s name are irrelevant. We split 
the database by defining L (L ⊂ ΣG) to be the set of 
relevant tags in the database. We will see later in 
this paper that by exploiting the existence of L, we 
can reduce the index size and query evaluation time 
significantly. By defining L, we should consider two 
types of queries containing relevant tags: 
1. Relevant queries. Queries built only on relevant 

tags. i.e. the query is a regular path expression R,  

Figure 1:  Semi structured database represented as a graph, 1-Index and A(k)-Index 

(b) A(0)-Index (c) A(1)-Index (d) 1-Index (a) Database 
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R=r1.r2. … rn, and for i=1,…,n-1, ri∈L ∪ {‘*’, 
(ri1|ri2)}, rn∈L 

2. Relevant end queries. Queries that end with a 
relevant tag. This means we have relevant tags as 
our results, but irrelevant tags can be a part of the 
queries. We define those queries as a regular path 
expression R, R=r1.r2. … rn, and for i=1,…,n-1, 
ri∈VG ∪ {‘*’, (ri1|ri2)}, rn∈L. 

The symbol “_” was not mentioned, but since we 
are using a relevant set, it can be used in queries 
only in order to replace a relevant tag.  

In this paper we will propose 2 indexes: A(k)-
Simplified and A(k)-Relevant. These indexes exploit 
the existent of L in order to reduce index size and 
query evaluation time. A(k)-Simplified is very 
efficient when evaluating queries from the first type 
(relevant tags only), while A(k)-Relevant supports 
both type of queries, and is preferred when dealing 
with queries which contains irrelevant tags along the 
path. A(k)-Simplified and A(k)-Relevant are very 
efficient when L is defined, and the queries comply 
with one of the two types. If this is not the case, 
using these indexes may result in false drops. The 
term 'relevant' will be used both when discussing 
tags and nodes with relevant tags. The meaning will 
be clear from the context. 

4 A(K)-SIMPLIFIED AND A(K)-
RELEVANT 

4.1 Introduction to A(k)-Simplified 
and A(k)-Relevant 

A(k)-Simplified index is based on k-bisimilarity by 
the fact that we preserve all the incoming paths with 
length less or equal to k. furthermore, giving the set 
L, each tag in A(k)-Simplified is either from L or 
“other”. A(k)-Simplified is built by replacing all the 
irrelevant tags by the tag “other”, and then replacing 
an “other” tree with one “other” node. A(k)-
Relevant is also based on k-bisimilarity, but in this 
index, besides the relevant tags and the tag “other”, 
we preserve the tags of nodes that have a relevant 
descendant in distance not greater than k (we will 
elaborate later in this section). A(k)-Simplified is the 
index which results from the following 4 steps (see 
also section 4.2): Replacing all the irrelevant tags 
with the tag “other”, Removing all the nodes with 
tag “other” with no relevant descendent node, 
Applying the A(k)-Index building algorithm, 
Replacing every “other” node tree with one “other” 
node. Before building A(k)-Relevant there are 2 
important issues that should be considered: 

1. Like A(k)-Simplified, if there is an “other” node 
from which we cannot reach a relevant tag node, 
then the “other” node can be removed. 

2. A(k)-Index properties suggest that two data graph 
nodes u, v will be in the same extent if all the 
incoming label paths with length ≤ k are the same, 
and there is a node with tag T which is k+1 steps 
from u and which is not matched by any node 
with tag T and k+1 steps from v. Since A(k)-
Relevant supports queries that end with relevant 
tag nodes, we can conclude that there is no need 
to preserve the tag of irrelevant nodes with 
distance k+1 or more from a relevant node. 

Building A(k)-Relevant is quite similar to 
building A(k)-Simplified, with a small modification 
in the first step: Replacing all the irrelevant tags of 
nodes with no relevant tag descendent within 
distance less or equal to k with the tag “other”.  

A(k)-Simplified and A(k)-Relevant have the 
following properties (w.r.t A(k)-Index (Kaushik, R. 
et al.), (Qun, C., Lim A. and Ong, K. W., 2003)) : 
1. For relevant tags, which are our main (and usually 

all) interest, A(k)-Relevant keeps all paths with 
length ≤ k (and therefore accurate for those 
queries). Using false drops removal, A(k)-
Simplified is also accurate for relevant queries 
with length ≤ k. 

2. A(k)-Simplified and A(k)-Relevant are safe. 
For k values large enough, A(k)-Simplified and 

A(k)-Relevant do not change (they have a steady 
structure) and they can be considered as 1-Index 
with relevant support. 

4.2 Construction Algorithms 

We first describe the A(k)-Simplified construction 
algorithm and then the modifications needed for 
building A(k)-Relevant. The construction algorithm 
has 4 steps:  
1. Collapse – replacing irrelevant tags with the tag 

“other”, and removing irrelevant nodes which 
have no relevant descendent. 

2. A(k)-Index – creating an index structure where k-
bisimilar nodes are combined to the same extent. 

3. MaxOtherPath – marking the “other” trees. 
4. Replacing other trees – replacing the trees 

marked in step 3 by one “other” node. 
 

Algorithm 1: Collapse 
Input: The inversed data graph G’=(V,E). 
Output: The data graph G with irrelevant tags 

replaced with the tag “other”, and irrelevant nodes 
with no relevant descendent removed. 
1. Empty (Q) 
2. for each vertex v∈V(G) do  
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3.      If v∈L (Relevant) then Distance(v) = 0; 
Status(v) = "Visited"; Enqueue(Q,v) 

4.      Else Distance(v) = ∞; Status(v) = "Not 
Visited"; Label(v) = "other" 

5. While Q is not Empty 
6.      u = head(Q) 
7.      for each s son of u do 
8.           if Status(s) = "Not Visited" then 

Status(s) = "Visited"; Distance(s) = Distance(u) 
+ 1; Enqueue(Q,s) 

9.      Dequeue(Q) 
10.     Status(u) = "Finished" 
11.Remove all vertices with Distance = ∞ and 

Reverse G’ back to G 
We can see the collapse running example in 

Figure 2. We remark that the input is G’ (G 
reversed) because the distance is calculated from the 
descendents to their parents. We will also remark 
that in step 8 we save the distance from a irrelevant 
node to a relevant node. This is not important here 
(in A(k)-Simplified we are only interested to know 
whether it is ∞ distance (no path) or not). We will 
use this parameter later, when we describe A(k)-
Relevant. The algorithm is based on BFS with some 
modifications – we traverse G’ – the reversed graph 
and initialize the next node queue with all the 
relevant nodes (the grey nodes in Figure 2 will 
become clearer when we describe A(k)-Relevant) 

As stated earlier, the next step is applying A(k)-
Index to  Collapse’s result. The algorithm is 
described in (Kaushik, R. et al.). The third step is 
MaxOtherPath  - this algorithm is based on depth 
first search, where for each “other” node we 
encounter – we either relate it to the current path (if 
exist) or start a new path. The motivation is to mark 
"other" nodes trees before replacing each one with a 
single node. 

 
Algorithm 2: MaxOtherPath 

Input: The result of the second step (A(k)-Index) – 
the index graph G. 

Output: The index graph G with each “other” node 
related to an "other" tree. Each "other" tree has a set 
of all incoming and outgoing edges. 
1. Global-Current-Tree = 0 
2. For each vertex u∈V(G) Visited(u) = Never; 

Path(u) = Global-Current- Tree 
3. MaxOtherPath-DFS-Visit(root, False, 0) 
MaxOtherPath-DFS-Visit(u, Path-Indication, 
Current-Tree) 
1. Visited(u) = Visited 
2. if u∈L (i.e. Relevant) then Tree -Indication = 

False 
3. Else 
4.   If Tree -Indication = False then Path-

Indication = True; Global-Current-Tree = 
Global-Current-Tree +1; Current-Tree = 
Path(u) = Global-Current-Tree 

5.   Else Path(u) = Current-Tree  
6. For each v∈Son(u)  
7.  If Visited(v) = Never then 
8. MaxOtherPath-DFS-Visit(v, Path-Indication, 

Current-Tree) 
9. For each path found – walk through the nodes 

and for every edge not part of the path add it to 
incoming set or outgoing set according to the 
edge origin. 

We can see an example of MaxOtherPath in 
Figure 3. The last step of the construction algorithm, 
is replacing each “other” nodes tree by one “other” 
node. This is done simply by removing all the 
“other” nodes and their edges and replacing them 
with one node with tag “other”. For every incoming 
and outgoing edge we saved in step 9 in 
MaxOtherPath, we add the appropriate edge to our 
new node (see Figure 3d). Note that if instead of 
replacing every “other” tree, we replace all the 
“other” nodes with one node, we may add many 
false drops, and this may cause a lot of verifications 
when we process the queries, and therefore 
substantially increase time for evaluating the 
queries. We will also note that self edges will be 
created when we have 2 (or more) “other” paths 
(paths built on “other” nodes only) from one “other” 

     
 
 
 
 
 
      

 
 

 
Figure 2: collapse  algorithm (k=2): (a) the original data graph (relevant notes are black, irrelevant nodes – 
white) (b) the reversed graph, (c)-(e) three passes of steps 12-18, (f) result 
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node to another. For now, self edges can be omitted; 
we will discuss this in the next section – removing 
false drops. 

Until now we discussed A(k)-Simplified 
building algorithm. As we have already seen, the 
difference between A(k)-Simplified and A(k)-
Relevant is that the former replaces the tag of all the 
irrelevant nodes with the tag “other”, while the latter 
only replaces the tag of irrelevant nodes with distant 
relevant descendent (distance > k). In order to 
achieve this, we have to modify the first step 
(collapse). The modifications are: k will be added to 
the input for the algorithm, and instead of replacing 
all the irrelevant nodes, we will replace only those 
nodes which have distance > k. In Figure 2f, we 
marked with gray dots the irrelevant nodes which 
will not be tagged as “other”. If the data graph is 
G=(V,E), the total constructing time is O(k⋅|E|) 
(A(k)-Index time complexity). In more details, we 
have the time complexity O(|E|) for collapse (BFS 
complexity), O(k⋅|E|) (Kaushik, R. et al.) for A(k)-
Index, O(|E|) for MaxOtherPath (DFS complexity) 
and O(|E|) for replacing other trees (removing 
irrelevant nodes, and restoring all the effected 
edges). 

Theorem 1. A(k)-Simplified is safe for l≤k 
relevant queries. A(k)-Relevant is safe and accurate 
for l≤k relevant end queries. 

Proof. Obvious from the indexes definitions. 

5 REMOVING FALSE DROPS 

As mentioned earlier, replacing the “other” trees 
may result in increasing number of false drops (w.r.t. 
A(k)-Index). In Figure 4  we can see that replacing 
the irrelevant tree increases the number of false 
drops in A(k)-Simplified for paths with length < k 
(in Figure 4b the dotted line shows the path which 
does not exist in the original data graph). A(k)-
Relevant is accurate for short relevant end queries, 
however, in Figure 4 we see an example where for 
path longer than k, A(k)-Relevant adds false drops 
which are not returned by a lookup in the A(k)-
Index. In Figure 4c the dotted line marks the result 

of the query R.A.*.B. In Figure 4d we see the result 
of this query on A(4)-Relevant, which includes one 
false drop.  

The reason for increasing number of false drops 
w.r.t. A(k)-Index is that we replace the “other” trees 
with one node and add paths which do not exist in 
the original graph. From these observations we see 
that removing invalid paths involving “other” nodes 
can reduce the number of false drops for A(k)-
Simplified (for queries in any length) and for A(k)-
Relevant (query’s length > k). In this section we will 
present a method to remove these invalid paths. For 
each “other” tree replaced by one node, we mark the 
location of every incoming and outgoing edge, and 
use these marks in query calculation. We now 
describe a way to mark the edges using a partial 
order relation. 

5.1 Partial Order Relation 

The intuition for using partial order relation is the 
observation that it stands for the relation 
"descendent of" between 2 nodes in an "other" tree 
discovered by collapse, and therefore, by keeping 
the partial order relation between the nodes we can 
reconstruct the original paths, and remove the false 
paths. 

We save the location of every node in each 
“other” tree in the following way: p1;p2;…;pn;d 
(n>0). pi represents the path from the root to the 
node, d represents the node’s depth. By the term 
“other” tree we mean the sequence of “other” nodes 
discovered during the MaxOtherPath algorithm. The 
meaning of pi is: We mark the first “other” node 
discovered in the “other” path (the path’s root) by ;1 
which stands for depth 1 (d=1, i=0). Assuming we 
are in an “other” node u which is marked with 
p1;p2;…;pk;d then: 
1. if u does not have an “other” child node there 

is nothing to do. 
2. If u has exactly one “other” child node, it will 

be marked with p1;p2;…;pn;d+1 
3. if u has k>1 “other” children nodes, their mark 

will be: p1;p2;…;pk;d;1;d+1, ..., 

                     
 
 
 
 
 
 
 
 

Figure 3: MaxOtherPath and “other” tree replacement algorithm 

(a)  original 
data graph 

(b)  partial results 
of MaxOtherPath 

 

(c)  MaxOtherPath 
result 

 

(d) Replacing “other” 
tree with one node 
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p1;p2;…;pk;d;k;d+1. (we concatenate m;d+1 for 
u’s m rightmost “other” child).  

We can now define our partial order relation. 
Assume that A=a1;a2;…;ana;da, B=b1;b2;…;bnb;db 
(A,B represent two locations in an “other” path), we 
define the relation “≤’”: A≤’B if a1;a2;…;ana ⊂ 
b1;b2;…;bnb  (a1;a2;…;ana is not equal but is a prefix  
of b1;b2;…;bnb) or if a1;a2;…;ana=b1;b2;…;bnb and 
da≤db. This is a partial order relation – it is reflexive, 
antisymetric and transitive. We will see later on, that 
given 2 nodes u,v in an “other” tree there are three 
possibilities, either there is a path from u to v (which 
translates to Mark(u)≤’Mark(v)), a path from v to u 
(Mark(v)≤’Mark(u)) or there is no path at all (no 
relation between the Mark(u) and Mark(v)). After 
defining the relation ≤’, we should mark the “other” 
nodes and take this mark into consideration when 
querying the index. In MaxOtherPath, when we 
traverse an “other” tree we keep two parameters: 
trail and depth, and we mark each node with 
trail;depth, the trail corresponds to p1,p2,..,pk and the 
depth corresponds to d. when replacing the "other" 
nodes tree with one “other” node we give each 
ingoing/outgoing edge two values: ingoing mark and 
outgoing mark. If the origin of the edge is from a  
relevant node (not an “other” node) its origin mark 
will be null, else, its origin mark will be the “other” 
node’s mark. We treat the node’s destination mark 
with a same manner. In Figure 5 we can see an 
example of how we mark each node in the “other” 
tree, and how we use those marks to mark the origin 
and destination of the appropriate edges. 

5.2 Handling Self Edges 

Both in A(k)-Simplified and A(k)-Relevant 
construction algorithms,   self  edges  could  have 
been  formed  when there where 2 (or more) “other” 
paths (paths built on “other” nodes only) from one 
“other” node to another. Those self edges were 

removed because they did not contribute to query 
analysis. However, when we add the false drops 
treatment, self edges play an important role. More 
information regarding self edges and self edges 
removal is given in (Biber, P. and Gudes, E., 2005). 

 
Theorem 2. False drops removal eliminates the 

invalid paths formed when “other” tree is replaced 
by one “other” node. 
Proof.  In order to show that no invalid path is 
added, we will see that there is a path from a node u 
to a node v (u and v are both a part of the same 
“other” tree, as found by MaxOtherPath) if and only 
if Mark(u)≤’Mark(v). if u is an ancestor of v, then 
v’s trail is either equal to u’s or has u’s mark as its 
prefix – either way Mark(u)≤’Mark(v). The 
implication holds also in the opposite direction, 
since if Mark(u) ≤’ Mark(v) it means that either v’s 
trail is equal to u’s and v’s depth is greater then u’s 
or v’s trail has u’s mark as its prefix. €  
From the A(k)-Index and the false drops removal 
properties we get the following: 

Corollary. When using false drops removal, 
A(k)-Simplified is accurate for short relevant 
queries, and A(k)-Relevant has less false drops for 
l>k relevant end queries. 

5.3 Querying the Indexes 

Without false drops treatment, the way to compute a 
query is equal to the one described in (Kaushik, R. 
et al.). In Figure 6a we can see an example of an 
index (it can be Relevant or Simplified), a DFA that 
matches the query *.A.B (Figure 6b), and the results 
of the index scan (Figure 6c) without taking the 
marks into consideration. The returned set is the 
extent of the index nodes that get an accepting state 
(state 3, marked with an arrow). In order to take 
advantage of the false drops removal's markings 
added to the index, the scanning must consider two 
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Figure 4: false drops in A(k)-Simplified and A(k)-Relevant: (a) Original data graph (which is equal to A(3)-Index). L={A}. (b) 
The appropriate A(3)-Simplified. The dotted line represents a path which does not exist in A(3)-Index (c) Original data graph 
(which is equal to A(4)-Index), L={R,A}. The dotted line represents the results of the query R.A.*.B (d) The appropriate A(4)-
Relevant. The dotted line represents the result of the same query on the index (the left B node is a false drop) 
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factors: the edges marking and the self edges. In 
Figure 6d we can see the results of the same query 
evaluated with marks. In Figure 4c when the nodes 
C6, C7, C1 were translated to “other” nodes, they 
got the marking: ;1, ;1;1;2 and ;1;2;2 respectively, 
so in Figure 4d the edge between A and O has a 
destination mark 1;1;2 , the edge from O  to C2  has  
an  origin mark 1;1;2  and  the  edge from O to C8 
an origin mark 1;2;2. Now, since 1;1;2 has no ≤’ 
relation with 1;2;2 when we process the query 
R.A.*.B and enter the “other” node from A, we will 
not be able to go to C8 and the false drop will be 
removed.  
 
 
 
 
 
 
 
 
 
 
 
 
 

6 EXPERIMENTAL STUDY 

In this section we present the results of the 
conducted experiments. This section layout is as 
follows: first we give some background regarding 
queries, the cost model, the selection of the relevant 
set L and the databases used in the experiments, next 
we examine the indexes size and the increase of size 
due to false drops removal, afterwards we compare 
the time needed to scan the indexes when processing 
queries and in the last section we examine the 
number of false drops. 

6.1 Experimental Framework 

Query classification 
In our experiments we use a slightly different 
classification than the one presented in (Kaushik, R. 
et al.). We split the queries into 3 groups: 
• Short queries which are queries built on labels 

only – for example L1.L2.L3. It is clear that for 
short and - relevant or relevant end query - 
A(k)-Simplified with false drops removal and 
A(k)-Relevant (respectively) are accurate.  

• Simple queries which are queries that have 
only one “*” located at the beginning of the 

queries – for example *.L1.L2. although when 
processing these queries we use paths longer 
then k, it can be easily shown that the indexes 
are still accurate. 

• Complex queries which have more then one 
“*” or only one “*” but not as the query’s 
starting label. When processing these queries 
all of the indexes (including A(k)-Index) may 
return false drops, so verification might be 
needed. 

The experiments results include false drops 
verification (whenever it is need). As expected, 
verification is needed for complex queries, or when 
k is very small. 
The cost model 
We will use the cost model offered in (Kaushik, R. 
et al.). The cost of evaluating a query is the number 
of nodes visited in the index during automaton 
execution plus the number of nodes visited in the 
DB during false drops verification. Note that for 
precise queries no verification is needed. The graph 
size is calculated as the sum of the graph nodes and 
edges. 
Selecting the relevant set L 
In our experiments, we randomly selected various 
sets of relevant labels. There are two ways to 
examine the relevant set: the percent of nodes out of 
all the data graph nodes which have the relevant tags 
or, the percent of the relevant tags out of all the tags 
in the database. Our experiments show that the 
former is a better measure to predict the indexes size 
and accuracy. We also randomly selected the 
relevant set, so usually the nodes will be spread all 
over the graph, however, in some cases the nodes 
will not be spread homogenously so the results can 
have some variation, but the experiments always 
show a tendency. 
The Databases 
In the experiments described, two XML databases 
were used. The first source is the Internet Movie 
Database (IMDB) (The Internet Movie Database 
Ltd, “Internet Movie Database”, Available:  
http://www.imdb.com) and the second is a synthetic 
database generated for performing our experiments. 
IMDB was selected because it represents a real life 
database with many cycles (Goldman, R. and 
Widom, J., 1997). The portion of the database 
selected is organized around movie. The synthetic 
database is a highly complex database with a lot of 
irregularity that allows examining the indexes in 
highly irregular conditions, where the index size is 
usually very large.  

     
 
 
 
 
 
 
 

Figure 5: Marking the nodes in the “other” trees, and 
the appropriate edges after replacing the trees with 
one node 
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6.2 Index Size 

The size of A(k)-Simplified and  A(k)-Relevant 
increases as k increases but it remains stable 
compared to the A(k)-Index’s size. High variation of 
the database increases the size of A(k)-Simplified 
and A(k)-Relevant (compared to A(k)-Index). The 
size of the indexes w.r.t. A(k)-Index is displayed in 
Figure 7. The size is calculated for different values 
of k, the A(k)-Simplified and A(k)-Relevant are 
calculated for different L sets. The size shown in the 
graph is the indexes average size over different L 
sets, and as we can see A(k)-Simplified is 40%-52% 
of A(k)-Index, and A(k)-Relevant is 55%-69% of 
A(k)-Index. The increase of size due to false drops 
removal (because of self edges addition) is displayed 
in the lower figure. As expected, the increase of 
A(k)-Relevant’s size is almost zero for small k 
values and zero for large k values – since we 
preserve the tags of incoming paths with length 
smaller or equal to k, the size and complexity of the 
“other” paths is reduced and therefore the number of 
self edges is also reduced. In A(k)-Simplified the 
size increases for larger k, because in the second 
step of the building algorithm (A(k)-Index) fewer 
“other” nodes merge into one index node, and so in 
the fourth step (replacing the “other” trees) more 
nodes are replaced and so more self edges are 
formed. This trend stops at a certain k value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.3 Query Cost 

Figure 8 shows the cost of evaluating various 
queries. As expected, the queries evaluation cost for 
A(k)-Simplified and A(k)-Relevant with or without 

false drops removal is much smaller then evaluating 
the query on A(k)-Index. Also as k reaches a certain 
value, the evaluation cost stops growing, since the 
indexes reach their stable state. As mentioned 
earlier, the result here are the index scanning cost 
plus verification cost (when needed). For complex 
queries, there is always a need to verify the query 
results (for all the queries). Since complex queries, 
like simple queries, contain “*” (one or more) the 
proportion between the A(k)-Index scanning time to 
the A(k)-Simplified and A(k)-Relevant scanning 
time remains quite similar to those of the simple 
queries evaluation. The important factor here is the 
number of false drops which causes costly 
verification. Figure 9 displays the percent of false 
drops for complex queries. It is clear that A(k)-
Simplified without false drops removal has more 
false drops (and therefore has a costly evaluation 
time). With false drops removal the number of false 
drops in A(k)-Simplified is reduced by an order of 
tens of percents. As expected, for A(k)-Relevant the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
increase of  false drops number (w.r.t. A(k)-Index) is 
very small – less then 0.3% in average (actually it is 
0% most of the time) – here the false drops removal 
is less effective though we can still see a small 
improvement in the synthetic database. We can also 
see that for relevant end queries, A(k)-Relevant has 
much less false drops than A(k)-Simplified, which 
explains A(k)-Relevant's better results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Evaluating query on an index. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: The indexes size. In the upper figure - A 
comparison between the indexes and A(k)-Index. In the 
lower figure - the size increase due to false drops 
removal (self edges increase). 
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7 CONCLUSION AND FUTURE 
RESEARCH 

A(k)-Simplified and A(k)-Relevant are small, 
efficient indexes evolved from A(k)-Index. The 
indexes offer a way to reduce index size 
significantly when prior knowledge of the relevant 
tags exists. Though based on A(k)-Index, A(k)-
Simplified and A(k)-Relevant are flexible, and can 
be modified to be based on other structured indexes, 
such as 1-Index and D(k)-Index. A(k)-Simplified is 
very efficient when queries are known to be based 
on relevant tags only, while A(k)-Relevant gives 
good results when only the ending tags are known. 
Performance examination shows that the indexes 
give good results while increasing the number of 
false drops by a very small proportion (and usually 
do not increase false drops at all). We also offered a 
method, based on partial order relation, to eliminate 
false drops created by nodes removal, while 
increasing the size of the index by no more then 
1.5%. 

More work is needed to modify existing indexes 
for supporting irrelevant node’s removal. It seems 
appropriate to adjust bisimulation based indexes to 
support exploiting relevant set declaration, and 
removing irrelevant nodes. Further work is needed 
to make A(k)-Simplified and A(k)-Relevant support 
DB functionality such as update, insert and delete. 
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Figure 9: False drops in complex queries (on IMDB). The left figure – Relevant End queries. The right figure 
– Relevant queries. 
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