
A NEW MECHANISM FOR OS SECURITY
Selective Checking of Shared Library Calls for Security

Dae-won Kim, Geun-tae Bae
Electronics and Telecommunications Research Institute in Korea

Yang-woo Roh, Dae-yeon Park
Department of Electrical Engineering and Computer Science

Korea Advanced Institute of Science and Technology

Keywords: Security attacks, OS security, Dynamic program loader, Software vulnerabilities, Kernel 2.6, Global Offset
Table, Procedure Linkage Table

Abstract: This paper presents a systematic solution to the serious problem of GOT/PLT exploitation attacks. A large
class of security mechanisms has been defeated by those attacks. While some security mechanisms are
concerned with preventing GOT/PLT exploitation attacks, however, they are not complete against
GOT/PLT exploitation attacks or the considerable performance decline occurs. We describe the selective
checking of shared library calls, called SCC. The SCC dynamically relocates a program’s Global Offset
Table (GOT) and checks whether the accesses via Procedure Linkage Table (PLT) are legal. The SCC is
implemented by modifying only the Linux dynamic loader, hence it is transparent to applications and easily
deployable. In experiment results, we show that the SCC is effective in defeating against GOT/PLT
exploitation attacks and is the mechanism with the very low runtime overhead.

1 INTRODUCTION

The C and C++ languages are popular primarily be-
cause of the sensitive control they provide over
system resources including memory. This control is
more than most programmers can handle, as
appeared by the memory-related programming errors
which torment programs written in these languages.
Attacks which exploit memory errors such as buffer
overflows constitute over the 60 percentage of
serious attacks reported by organizations such as the
CERT Coordination Center, and are concerned with
important threats to the computing environment.
A number of attacks which exploit memory
vulnerabilities have been developed. The earliest of
these to achieve widespread popularity was the stack
smashing attacks (Aleph One 2000, Mudge 1997), in
which a stack buffer is overflowed so that a return
address stored in the stack is overwritten with the
starting address of injected shellcode. (See Figure 1).
To avoid such attacks, several approaches were
developed, which, in one way or another, prevent
undetected modifications to a function’s return
address. They include the StackGuard (Crispin

1998) of putting canary values around the return
address, so that the stack smashing can be detected
when the canary value is contaminated; and others
(Arash 2000, Tzi-cker 2001). Despite numerous
technologies designed to prevent buffer overflow
vulnerabilities, the problem persists, and the buffer
overflows remain the dominant attacks of software
security vulnerabilities.
Attacks have moved from stack smashes (Aleph One
2000) to heap overflows (Michel 2001), format
string vulnerabilities (Crispin 2001), multiple free
errors (Anonymous 2001), return-into-library (Rafal
2001), etc. which bypass existing buffer overflow
defences such as StackGuard (Crispin 1998),
LibSafe (Arash 2000) and non-executable memory
segments (Solar Designer). While mechanisms to
collapse these attacks are effective in protecting a
system against the specific attack they focus on,
incorporating many individual techniques to defend
against a wide range of attacks is nontrivial and
often requires resolving conflicting requirements
imposed by the different techniques. Many new
defence mechanisms to prevent new attacks lead us
to conclude that additional ways to exploit the

381
Kim D., Bae G., Roh Y. and Park D. (2005).
A NEW MECHANISM FOR OS SECURITY - Selective Checking of Shared Library Calls for Security.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 381-388
DOI: 10.5220/0001226503810388
Copyright c© SciTePress

memory vulnerabilities of C and C++ will continue
to be emerged in the future. As a first step towards
developing more general solutions against memory
exploits, we observe that an attacker must correctly
determine the runtime address values of the control
information position such as the return address and
the address where the malicious code is located.
This paper proposes, the Selective Checking of
shared library Calls (SCC), a generalized approach
to protect systems against GOT/PLT exploitation
attacks that exploit memory vulnerabilities. The
Linux Kernel 2.6 dynamically and randomly
relocates a program’s stack, heap, shared libraries,
and makes the stack and heap non-executable. (See
Figure 2). To totally overcome a number of
software vulnerabilities, these security mechanisms
will be adapted. The SCC mechanism can support
memory layout randomization mechanisms such as
the Linux Kernel 2.6. In addition to the Linux
Kernel 2.6 security mechanisms, the SCC
dynamically relocates a program’s Global Offset
Table (GOT) and checks whether the accesses via
Procedure Linkage Table (PLT) are legal. Making a
program’s GOT position different each time it
obfuscates the attacker’s assumptions about the
addresses of GOT entries of the vulnerable program
and makes the determination of critical address
values difficult if not impossible. Checking the
accesses via PLT frustrates the trial of attacker to
illegally call shared libraries such as system with
malicious argument ("/bin/bash").

In this paper, the PLT checking is the main
contribution of SCC. The SCC is implemented by
modifying the dynamic program loader compatible
with Linux Kernel 2.6.x, therefore, it is transparent
to the application programs, i.e., existing
applications run without any modification or
recompilation. To date, the SCC has been
implemented on Linux Kernel 2.6.x/IA-32

Figure 1: The stack smashing attack.

void authenticate (char *argv)
{

char buf[128];

strcpy (buf, argv);
printf (“* %s key is authenticated.\n”, buf);

return;
}

buf[128]

prev. frame ptr. (=k)
return address

prev. frame ptr.
return address

s
s
s

shellcode
shellcode
shellcode

s
s

s

prev. frame ptr.
return address

k

s

*argv

au
th

en
tic

at
e(

)
st

ac
k

fr
am

e
of

 p
re

v.
 f
un

ct
io

n

st
ac

k
gr

ow
in

g

ad
dr

es
s

in
cr

ea
si

ng

s

re
tu

rn

void authenticate (char *argv)
{

char buf[128];

strcpy (buf, argv);
printf (“* %s key is authenticated.\n”, buf);

return;
}

buf[128]

prev. frame ptr. (=k)
return address

prev. frame ptr.
return address

s
s
s

shellcode
shellcode
shellcode

s
s

s

prev. frame ptr.
return address

k

s

*argv

au
th

en
tic

at
e(

)
st

ac
k

fr
am

e
of

 p
re

v.
 f
un

ct
io

n

st
ac

k
gr

ow
in

g

ad
dr

es
s

in
cr

ea
si

ng

s

re
tu

rn

0xC0000000

CODE
DATA

Heap

0x08000000

Shared Libraries

Stack

0xFFFFFFFF

0x00000000

Non-executable

Non-executable

0xC0000000

CODE
DATA

Heap

0x08000000

Shared Libraries

Stack

0xFFFFFFFF

0x00000000

Non-executable

Non-executable

Figure 2: The linux kernel 2.6 address space.

WEBIST 2005 - WEB SECURITY

382

platforms. It is shown to be effective against
GOT/PLT exploitation attacks, and has the low
runtime overhead.
The rest of this paper is organized as follows. In
Section 2, we describe several related works, and
Section 3 introduces the motivation and detailed
mechanisms of our idea, followed by the analysis of
experiments in Section 4. Finally, Section 5 provides
conclusion.

2 RELATED WORKS

Address randomizing is an instance of the broader
idea of introducing diversity in nonfunctional
aspects of software, and idea suggested by Forrest,
Somayaji, and Ackley (1997). Their implementation
model was called a randomizing compiler, which
can introduce randomness in several non-functional
aspects of the compiled code without affecting the
language semantics. As a proof of concept, they
developed a modification to the gcc compiler to add
a random amount of padding to each stack allocation
request. This transformation defeats most stack
smashing attacks prevalent today, but does not work
against the overflow attacks with a large amount of
NOPs.

The PaX project has developed an approach for
randomizing the memory regions occupied by a
program code and data, called Address Space
Layout Randomization (ASLR). It have modified the
Linux Kernel so that it randomizes the base address
of different segments of memory, such as the stack,
heap, code, and mapped shared library segments.
There are, however, several weak features to ASLR.
ASLR requires changes to the Linux Kernel. Kernel-
level implementation requires re-installation or even
reboot of the operating system. While the GOT is a
frequent target of many attacks, ASLR doesn't
randomize the location of GOT in the SEGMEXEC
mechanism on i386. The performance impact of
ASLR about the PAGEEXEC based on the fault
mechanism is not yet to be officially evaluated.
Finally, the implementation and detailed
mechanisms are seriously architecture-dependent.

Xu, Kalbarczyk, and Iyer developed transparent
runtime randomization (TRR) (Jun 2003), in which
the dynamic loader is modified to randomize the
base address of stack, heap, dynamically loaded
libraries, and GOT. This mechanism, however,
doesn't consider return-into-PLT (Nergal 2001)
attacks. To allow return-into-PLT attacks can't be
concerned with the complete mechanism for
preventing the illegal operations of shared libraries.

3 SELECTIVE CHECKING OF
SHARED LIBRARY CALLS
(SCC)

3.1 Motivation

While TRR (Jun 2003) has the low initialization
overhead and no runtime overhead, it is imperfect
against return-into-PLT (Nergal 2001) attacks. The
PaX project doesn't randomize the location of GOT
or may allow many fault handling overheads due to
the CODE region relocation to prevent return-into-
PLT attacks. We observe that there are a common
characteristic of return-into-PLT attacks. That is the
fact that the number of libraries selected by attackers
to get the critical authorities (root or administrator)
of target system is a few of hundreds and thousands
of shared libraries. The shared libraries they require
to attack are system calls such as execve, system,
setuid32, chmod, etc. Other shared libraries are not
appropriate to accomplish the purposes of attackers,
root shell acquisition and so on.

To exploit critical system calls, attackers can call
normal libraries that include these system calls.
While return-into-PLT can be exploited by attackers
if there are buffer overflow vulnerabilities in
program code, the way to detour normal libraries is
very difficult to find some libraries satisfying some
attack requirements (e.g. system (“/bin/bash”)
included in normal libraries.) and to manipulate
some arguments of critical system calls in memory
layout randomization mechanisms.

In environments of the stack and heap non-
executable such as Linux Kernel 2.6, if attackers
can't run the inserted shellcode to acquire root
authority through overflowing buffers, those
overflows don't mean serious attacks. We arrived in
one conclusion by the facts that to relocate the
CODE region to prevent return-into-PLT generates
continuously some fault handling overheads and the
number of shared libraries required to succeed
return-into-PLT attacks is within the limit of a few
libraries.

The SCC, our mechanism, is designed through
these facts. The SCC relocates Global Offset Table
(GOT) through a similar idea to TRR (Jun 2003) and
checks whether the accesses via Procedure Linkage
Table (PLT) to call shared libraries such as above
system calls are legal. The 'legal' means that the
shared libraries are called from the call instruction
of CODE region. All PLT accesses except for those
are ‘illegal’.

A NEW MECHANISM FOR OS SECURITY: Selective Checking of Shared Library Calls for Security

383

3.2 The Operations of SCC

The objectives of SCC are to randomize the GOT
location and check whether the accesses via the
specified PLT entries are legal. The GOT relocation
is similar to TRR (Jun 2003), and the PLT checking
can be achieved using PLT rewritings and inserting
the Checking Code in a random memory space. Both
the GOT relocation and the PLT checking
mechanisms are only dynamic loader modification
approach, not Kernel.

Figure 3 shows the typical sequence of steps
required to launch an application, using ‘vim’ as an
example. In this example, a user types ‘vim’ at the
shell prompt, and the shell creates a child process
using the fork system call. The new child process
uses the execve system call to load and initialize
‘vim’. Inside the execve system call, the operating
system kernel maps the executable into memory,
sets up its CODE/DATA segments, stack, heap and
dynamic program loader, and then transfers the
program control, which is the program counter
(%eip), to the dynamic program loader. The
dynamic program loader maps the shared libraries
required by ‘vim’ into memory. Finally, the dynamic
program loader hands over the program control to
the entry point of ‘vim’, and ‘vim’ begins to execute.
The SCC operations are shown in 2, 3 and 4 of
‘Dynamic program loader’.

3.3 The Overview of SCC

It is assume that the GOT is already randomized by
the dynamic program loader through a similar

mechanism of TRR (Jun 2003). The PLT, therefore,
must be rewritten to correctly refer to new GOT.

In Figure 4, the PLT can be accessed by the
return of current function when the return address in
stack is overwritten by a attacker (ATTACK), or can
be accessed by the legal call due to the operation of
call instructions in the CODE region. As mentioned
earlier, attackers are primarily concerned with a few
of critical system calls.

We modify the PLT entries (in Figure 4, PLT2)
which a attacker requires to get root shell. The each
entries of PLT are related with each shared library
functions, and when a PLT entry (PLT2) modified
for security is accessed, a changed jmp instruction in
the PLT entry (PLT2) passes the program control to
the Checking Code. The Checking Code checks
whether this PLT access is legal, and if 'legal', the
Checking Code passes the program control to the
related shared library with the reference of address
value in the GOT. In the case of other PLT entries,
only one of three instructions in each original PLT
entries is modified. The accesses to other PLT
entries, therefore, are operated like as no SCC.

3.4 The Checking Code

Figure 5 shows the stack status when the PLT entry
is just accessed by the legal call in the CODE region
and the illegal return in the stack. The PLT2 entry of
Figure 4 assumes the entry related with a critical
library function such as system and the entry that
instructions have been modified by our dynamic
program loader. The main idea of Checking Code is
that the return address value is still remained in the
stack after returning due to the return address
overflowed by a attacker. If the return value in stack
is equal to the accessed PLT entry address, this PLT
access can be determined as the attack trial. In
Figure 5, SP is the stack pointer and the things that
two thunder marks are pointing present the contents
in (SP-4) address. The Checking Code is mapped to
the random position in the shared library region by
the dynamic program loader.

Figure 4: The overview of SCC.

User runs ‘vim’.

Shell creates new process using fork().

Load & init ‘vim’.

execve() system call

1. Maps ‘vim’ to memory.
2. Sets up stack, heap, and dynamic program

loader.
3. Transfers control to dynamic program loader.

Dynamic program loader

1. Maps shared libs. to memory.
2. SCC randomly relocates the GOT.
3. SCC randomly inserts the Checking Code.
4. SCC rewrites the PLT entries.

‘vim’ begins to execute.

User runs ‘vim’.

Shell creates new process using fork().

Load & init ‘vim’.

execve() system call

1. Maps ‘vim’ to memory.
2. Sets up stack, heap, and dynamic program

loader.
3. Transfers control to dynamic program loader.

Dynamic program loader

1. Maps shared libs. to memory.
2. SCC randomly relocates the GOT.
3. SCC randomly inserts the Checking Code.
4. SCC rewrites the PLT entries.

‘vim’ begins to execute.

Figure 3: The SCC operations.

RET in Stack

Call in TEXT

Legal call?

Checking Code

PLT

Attack
GOT

PLT1
PLT2
PLT3

Jump

Reference
RET in Stack

Call in TEXT

Legal call?

Checking Code

PLT

Attack
GOT

PLT1
PLT2
PLT3

Jump

Reference

WEBIST 2005 - WEB SECURITY

384

The Checking Code requires two values to check
whether the critical PLT entry is accessed by attacks
or not. The first value is the content of (SP-4)
address when the PLT entry is just accessed. In
Figure 5, that is the content of a thunder-marked
word, and if this value is related with the accessed
PLT address, the PLT entry access is determined as
the attack trial. If legal call, this value is not related
with the accessed PLT entry. The second value
required for the Checking Code is the address of
accessed PLT entry. It is used to compare with the
content of (SP-4) address.

In the case of real SCC's mechanism, the
accessed PLT entry inserts the XORed offset, (it is
exclusive OR of original offset in the PLT entry and
a random-generated value during the initial phase of
dynamic loader.), value in the stack to help the
Checking Code to identify the accessed PLT entry
address and to defend possibly the other types of
return-into-PLT attacks. There are two types of
return-into-PLT attacks. In the case of first attack
type, the program control is directly changed to the
PLT entry (PLT2) by using the overflowed return
address from the stack. The second attack type
overflows the stack with the offset of critical PLT
entry and returns to the PLT_init. (See Figure 8). To
prevent this second attack type, XORing the offset is
required.

Figure 6 shows the stack status including a
XORed offset inserted by the modified PLT entry
when the Checking Code is just accessed. The
Checking Code can use the values required to check
attacks because the overflowed return address and
the accessed PLT entry address (be calculated by
XORed offset) are in the stack.

Figure 7 shows the operations of Checking Code.
In (1), the original offset is calculated by XOR (the
XORed offset). We can calculate the GOT entry
address related with the original offset because there
are a regular rule between the original offset and
GOT entry address. In (2), the GOT entries related
with the critical PLT entries are initialized as zero

when mapping the new GOT. In the case of lazy-
loading, if a shared library is first called, the
dynamic program loader resolves a called library
address and writes the address to the desired GOT
entry. If the value in the GOT entry is zero, the
Checking Code transfers the program control to the
dynamic program loader to resolve the address of a
desired shared library. If not, the Checking Code
passes the program control to the related shared
library with the reference of address value in the
GOT.

3.5 The PLT Entry Modification

We explain how the selected PLT entries are
modified. Figure 8(a) shows the original PLT entries
in the CODE region. Each PLT entry consists of
three instructions and the PLT entries (In Figure 8,
PLT2) to be selected for security are the entries
jumping to the critical shared libraries such as
system. In Figure 8(b), the dynamic program loader
rewrites PLT entries for pointing at new GOT
entries and jumping to the Checking Code when the
critical PLT entries (PLT2) are accessed. The
dynamic program loader sets the writable flag of
CODE region and rewrites the PLT entries from
PLT_init to the end of PLT. The all GOT_entry

Figure 5: The stack status when the critical PLT entries
are just accessed.

Figure 6: The stack status when the checking code is
just accessed.

Figure 7: The operations of checking code.

Legal call

Illegal return

return addr.

SP

STACK growing

STACK growing

arg1 arg2

overflowed
return addr.

SP
overflowed

4 bytes
overfloweda

rgs

XORed
offset

XORed
offset

Legal call

Illegal return

return addr.

SP

STACK growing

STACK growing

arg1 arg2

overflowed
return addr.

SP
overflowed

4 bytes
overfloweda

rgs

XORed
offset

XORed
offset

Calculates the accessed PLT entry
address by the XORed offset.

Compares the accessed PLT entry
address with the overflowed return
address.

equal
System HALT.

not equal

Calculates the GOT entry address
from original offset.

The value in the GOT entry is
zero Pushes the second GOT entry

address, increase SP as 8, and
jumps to the dl-resolve().

Jump to the address in the GOT entry.

not zero

(1)

(2)

Calculates the accessed PLT entry
address by the XORed offset.

Compares the accessed PLT entry
address with the overflowed return
address.

equal
System HALT.

not equal

Calculates the GOT entry address
from original offset.

The value in the GOT entry is
zero Pushes the second GOT entry

address, increase SP as 8, and
jumps to the dl-resolve().

Jump to the address in the GOT entry.

not zero

(1)

(2)

Legal call

Illegal return

return addr.

SP

STACK growing

STACK growing

arg1 arg2

overflowed
return addr.

SP
overflowed

4 bytes
overflowed

args.

Legal call

Illegal return

return addr.

SP

STACK growing

STACK growing

arg1 arg2

overflowed
return addr.

SP
overflowed

4 bytes
overflowed

args.

A NEW MECHANISM FOR OS SECURITY: Selective Checking of Shared Library Calls for Security

385

values of Figure 8(b) are new GOT_entry values.
The dynamic program loader can find out the real
names of shared libraries by using fixup function of
dynamic program loader referring to each offset

values, $0x0 and so on, and can search what are the
critical PLT entries. We assume the PLT2 entry is a
critical PLT entry. The information required for the
Checking Code is a return address in the stack and
the accessed PLT address. The purpose of PLT
modification is to give this information to the
Checking Code.

In the PLT2 entry of Figure 8(b), the first
instruct-ion inserts the XORed_offset value in (SP-
8) address to maintain the malicious return address
of attacker. The accessed PLT address can be
calculated from the XORed_offset value. The
second instruction passes the program control to the
Checking Code.

4 EFFECTIVENESS AND
PERFORMANCE EVALUATION

This section describes the experimental evaluation
of SCC. Subsection 4.1 describes the SCC's
effectiveness against the attacks related with the
GOT and PLT. Subsection 4.2 describes the
performance cost of SCC through various types of
programs. In this experiments, execve(), execl(),
execlp(), execle(), execv(), execvp(), chmod(),
setuid32(), chown32(), setresuid32(), fchown32(),
fchmod(), setpgid() and system(), these 14 system
calls are checked from the PLT entry accesses due to
attacks. The measurement is taken on a PC with
Kore Linux 2004 (Kernel 2.6.7), Pentium III
800MHz processor, 256MB memory and dynamic
program loader ld-2.3.3.so we modified.

4.1 Effectiveness Evaluation

Here we illustrate the SCC's effectiveness in
thwarting attacks related with the GOT and PLT.
The effectiveness of SCC was tested using publicly
available vulnerable programs and attacks against
them. The programs listed in Table 1 are
conventionally installed as SetUID root. If the
attacker can get on of these programs to start a shell,
then the attacker gets a root shell. The vulnerabilities
and the attacks we used are presented below.

Table 1: Evaluation against security attacks.

Program Description No SCC SCC

plt-exploit1 stack overflow
/PLT

local root
shell

detected

plt-exploit2 stack overflow
/PLT

local root
shell

crash

null httpd heap overflow
/GOT

remote root
shell

crash

sendmail integer overflow
/GOT

local root
shell

crash

 We made a simple stack overflow program, plt-

exploit1.c, related with the return-into-PLT
attack. plt-exploit1.c is the attack directly
returning to the critical PLT entry. When a
large number of strings are supplied to the
program by a attacker, the stack buffer is
overflowed, and when the vulnerable function
is returned, the program control is moved to the
critical PLT entry, and a root shell is created.

 We made second simple stack overflow
program, plt-exploit2.c, related with the return-
into-PLT attack. When the vulnerable function
is returned, the program control is returned to
the start address of PLT_init, and a root shell is
created. The details of mechanism are described
to the Phrack document (Nergal 2001).

 null httpd is a web server for Linux. A heap
overflow vulnerability exists in its handling of
the POST request. The attack passes a negative
content length to start a heap overflow,
overwrite a function pointer in the GOT, and
create a remote root shell.

 sendmail is the email agent that sends messages
to remote hosts. An integer overflow
vulnerability exists in sendmail's function when
it uses user-supplied signed integer to address
an array. The attack uses a large number to
overwrite a function pointer in the GOT to
create a local root shell.

Figure 8: The original and modified PLT entries.

jmp *old_GOT_entry4

push $0x0

jmp PLT_init

jmp *old_GOT_entry5

push $0x8

jmp PLT_init

pushl old_GOT_2nd

jmp *old_GOT_entry3

add %al, (%eax)

PLT_init :

PLT0 :

PLT1 :

PLT2 :

(a) Original PLT entries

jmp *GOT_entry4

push $XORed_offset

jmp PLT_init

jmp *GOT_entry5

push $XORed_offset

jmp PLT_init

movl
$XORed_offset,
0x8(%esp)

jmp check_codes

pushl GOT_2nd

jmp *GOT_entry3

add %al, (%eax)

PLT_init :

PLT0 :

PLT1 :

PLT2 :

(b) Modified PLT entries

jmp *old_GOT_entry6

push $0x10

jmp PLT_init

jmp *old_GOT_entry4

push $0x0

jmp PLT_init

jmp *old_GOT_entry5

push $0x8

jmp PLT_init

pushl old_GOT_2nd

jmp *old_GOT_entry3

add %al, (%eax)

PLT_init :

PLT0 :

PLT1 :

PLT2 :

(a) Original PLT entries

jmp *GOT_entry4

push $XORed_offset

jmp PLT_init

jmp *GOT_entry5

push $XORed_offset

jmp PLT_init

movl
$XORed_offset,
0x8(%esp)

jmp check_codes

pushl GOT_2nd

jmp *GOT_entry3

add %al, (%eax)

PLT_init :

PLT0 :

PLT1 :

PLT2 :

(b) Modified PLT entries

jmp *old_GOT_entry6

push $0x10

jmp PLT_init

WEBIST 2005 - WEB SECURITY

386

This is not a comprehensive exploit list, but it
showed that all tests are terminated with the crash or
detection message. They didn't invoke a root shell.

4.2 Runtime Overhead

The runtime overhead occurs when the Checking
Code is accessed, and if the critical PLT entries are
accessed the Checking Code is processed. The
overhead size is, therefore, dependent to the
overhead of Checking Code itself and the accessed
number of modified PLT entries. The Checking
Code may be constructed with 15 line assembly
codes, and the average processing time of Checking
Code is about 0.072us (The avg. of 1000 runs). The
overhead of Checking Code itself is, therefore, very
small because one instruction is processed within
one cycle to the pipelined-architecture.

Table 2: The count of used system calls.

The Count of System Calls
Program

Total Critical Description

traceroute 918 1 setuid32(1)
hanterm 831 4 chown32(1) chmod(1)

setresuid32(2)
passwd 1113 2 fchown32(1) fchmod(1)
emacs 21086 2 chmod(1)

setpgid(1)

vim 689 2 chmod(1)chown32(1)
/bin/bash 928 2 setpgid(2)
mozilla 43088 3 execve(1)

chmod(2)
telnet 514 0

Table 2 shows the count of system calls from the

program start to the program end. The 'strace'
program in Linux can count the number of used
system calls. The above four programs are SetUID
programs and the below four programs are normally
popular programs. In these results, we can know the
accessed number of Checking Code is even smaller
than the accessed number of total system calls.
Although the 'critical' number of some programs
increases according to the running time or other
versions of same program, the increasing number is
relatively very smaller than that of total system calls.

Table 3 shows the elapsed time of pure code
running except for the time waiting for some user
inputs, etc. The evaluation program is supported as
'/usr/bin/time' in Linux. When a specified program
finishes, '/usr/bin/time' writes a message to standard
out giving timing statistics about the program.
Because the resolution of '/usr/bin/time' is
millisecond (ms) unit, we consider the result of '0s

024' as the result of '24000 us'. The 'SCC overhead'
means the total overhead time due to the accessed
Checking Code. We measured the number of clock
cycles and convert them to microseconds using the
processor clock frequency. These experiments show
that the runtime overhead generated by the SCC is
very small. (nearly 0%).

Table 3: The runtime overhead.

The Elapsed Time (usec)

Program
No SCC

SCC
overhead

Overhead (%)

traceroute 24000 0.5821 0.0024
hanterm 308000 1.356 4.403 x 10PP-4PP
passwd 29000 0.662 0.0023
emacs 994000 1.17 1.177 x 10PP-4PP

vim 107000 0.882 8.243 x 10PP-4PP
/bin/bash 128000 0.876 6.800 x 10PP-4PP
mozilla 3169000 1.18 3.724 x 10PP-4PP
telnet 16000 0.312 0.195 x 10PP-4PP

5 CONCLUSION

This paper proposes Selective Checking of shared
library Calls (SCC) against GOT/PLT exploitation
attacks. The underlying principle of SCC follows to
randomize the application memory layout so that it
is virtually impossible to determine locations of
critical program data such as buffers, return
addresses, and pointers of function. New idea
against return-into-PLT attacks is applied to the SCC
because the randomization of CODE region
produces continuously many runtime overheads. The
SCC's mechanism is fully transparent to application
programs because it is implemented by modifying
only the dynamic program loader. The effectiveness
of SCC shows that it can defeat some known
GOT/PLT attacks. Performance measurements show
that the SCC produces very low runtime overhead.

REFERENCES

“Aleph One”, 2000. The Stack for Fun And Profit. Phrack
14(49).

Anonymous, 2001.Once Upon a Free(). Phrack 9(57).
Arash, B., Navjot, S., and Timothy, T., 2000. Transparent

Run-Time Defense Against Stack Smashing Attacks.
In Proceedings of the 2000 USENIX Annual Technical
Conference (USENIX-00), pages 251-262, Berkeley,
CA.

A NEW MECHANISM FOR OS SECURITY: Selective Checking of Shared Library Calls for Security

387

Crispin, C., Calton, P., Dave, M., Jonathan, W., Peat, B.,
Steve B., Aaron, G., Perry W., Qian Z., and Heather
H., 1998. StackGuard: Automatic Adaptive Detection
and Prevention of Buffer Overflow Attacks. In Proc.
7th USENIX Security Conference, pages 63-78, San
Antonio, Texas.

Crispin, C., Matt, B., Steve, B., Greg, K., Mike, F., and
Jamie L., 2001. FormatGuard: Automatic Protection
From printf Format String Vulnerabilities. In USENIX
Security Symposium, Washington, DC.

Jun, X., Zbigniew, K., and Ravishankar, K. I., 2003.
Transparent Runtime Randomization for Security. In
Proceedings of the 22PP

nd
PP International Symposium on

reliable Distributed Systems, pages 260-269, Florence,
Italy.

Michel, K., 2001. Vudo Malloc Tricks. Phrack 8(57).
Mudge, 1997. How to Write Buffer Overflows. Published

on World-Wide Web at URL
TUTUhttp://www.insecure.org/stf/mudge_buffer_overflow_t
utorial.htmlUUTT.

Nergal, 2001. Advanced return-into-lib(c) exploits (PaX
case study). Phrack 4(58).

PaX Team. Homepage of The PaX Team.
http://pax.grsecurity.net.

Rafal ,W., 2001. Defeating Solar Designer Non-
Executable Stack Patch.
http://www.insecure.org/sploits/non-executable.stack.p
roblems.html.

"Solar Designer". Non-Executable User Stack. TUTU

http://www.openwall.com/linux/UUTT.
Stephanie, F., Anil, S., and David H. A., 1997. Building

diverse computer systems. In 6th Workshop on Hot
Topics in Operating Systems, pages 67-72, Los
Alamitos, CA. IEEE Computer Society Press.

Tzi-cker C. and Fu-Hau H., 2001. Rad: A Compile-Time
Solution to Buffer Overflow Attacks. In 21st
International Conference on Distributed Computing,
page 409, Phoenix, Arizona.

WEBIST 2005 - WEB SECURITY

388

