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Abstract. The field of multi agents and multi robotics has become increasingly
popular during the last two decades. The motivation behind multi agents based
systems is that many tasks can be much efficiently completed by using multiple
simple autonomous agents (robots, software agents, etc.) instead of a single so-
phisticated one. However, when examining such systems, one may be concerned
of the price-tag attached to the decentralized nature of swarm based approaches.
Meaning, while we simplify designs and control mechanisms in order to save
costs and computation resources, how far do our systems drift from optimal-
ity ? This work examines this issue by constructing an optimal algorithm for
theDynamic Cooperative Cleanepsoblem (presented and analyzed in [2]). The
performance of th&WEEP algorithm of [2] is compared to this of an optimal
algorithm. The results of this comparison show that not only that the swarm al-
gorithm produces close results to the optimal solution, but also as the problem
gets harder, the performance of the two converge. In addition, insightful results
concerning optimal swarms in symmetric environments are presented.

1 Introduction

The fields of multi agents and multi robotics have become increasingly popular during
the last two decades. A multi agents system, swarm, can generally be defined as a
decentralized group of multiple autonomous units, either homogenous or heterogenous,
such that those units are simple and possess limited capabilities. Many research efforts
have been invested examining distributed systems models inspired by biology (behav-
ior based control model — [16, 13], flocking and dispersing models — [22, 18, 19] and
predator-prey approach — [14, 21]), physics [12], and economics [7—11]. The motiva-
tion behind multi agents and multi robotics systems is that by using multiple simple
autonomous agents instead of a single sophisticated one, many tasks can be performed
cheaply and easily, while the performance of those system remains satisfactory. In addi-
tion, such systems have several other advantages such as high scalability and adaptivity.
Application for which multi robotics systems fit successfully include covering, explo-
ration and patrolling [1], construction of complex structures and self-assembly [17, 15,
26], mapping and localizing [20, 27] and transportation [23, 25, 24].
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However, when designing such systems, one must take inbuatthe decrease in
performance which is inherent in such approaches, in casgato an optimal central-
ized system (albeit much more complex and expensive).

In this work we examine this issue by constructing a cemealioptimal algorithm
for the Dynamic Cooperative Cleanepsoblem (presented and analyzed in [2]. Similar
works appear in [4—6]). This problem assumes a grid, parti¢hvis “dirty”, when the
“dirty” part is a connected region of the grid. On this dirggion several agents move,
each having the ability to “clean” the place it is locatedArdeterministic evolution of
the environment is assumed, simulating a spreadamgaminationor fire.

A cleaning algorithm designed to be used by a swarm of clgaagents is pre-
sented and discussed in [2]. In addition, a lower bound dwecteaning time of agents
employingany algorithm (i.e. a lower bound over an optimal algorithm foe prob-
lem) is presented. The performance of the optimal algorilescribed in section 4 is
compared to those of the sub-optin®WEEP algorithm (described in section 3) and
the generic lower bound for the problem of [2].

The results of this comparison surprisingly show that altffotheSWEEP algo-
rithm is fully decentralized and extremely simple, assugniompletely autonomous
agents and using no explicit form of communication, the imwpments which can be
achieved by using an optimal algorithm is in no way signiftcamough to justify the
immense costs and complexity of such an algorithm.

In addition, several insightful and counter-intuitiveuks concerning optimal clean
strategies for symmetric environments are presented tioses.

2 TheDynamic Cooper ative Cleaners Problem

Let us assume that the time is discrete. GGéte a two dimensional grid, whose vertices
have a binary property otbntamination Let cont;(v) state the contamination state
of the vertexv in time ¢, taking either the valuedh’” or “ off”. Let F; be the dirty sub-
graph ofG attimet, i.e. F; = {v € G | cont:(v) = on}. We assume thdf is a single
connected component. Let a groupkcdgents that can move across the @ri¢moving
from a vertex to its neighbor in one time step) be placed irtigron Fp.

Each agent is equipped with a sensor capable of telling theitton of the square it
is currently located in, as well as the condition of the sgaam the8—Neighbors group
of the this square. An agent is also aware of other agentdwelelocated in its square,
and all the agents agree on a common “north”. Each squareargnic any number
of agents simultaneously. When an agent moves to a vertéxhas the possibility
of causingcont(v) to becomeoff. The agents do not have any prior knowledge of the
shape or size of the sub-graph except that it is a single connected component. Every
d time steps the contamination spreads. That is=f nd for some positive integet,
then(Yv € F; , Yu € 4— Neighbors(v) : conti11(u) = on). The agents’ goal is to
cleanG by eliminating the contamination entirely, so tats,ccess : Fi = 0).
In addition, it is desired that this,cccss Will be minimal.

success



3 TheSWEEP Cleaning Algorithm

For solving theDynamic Cooperative Cleanemoblem theSWEEP algorithm was
suggested in [2]. The algorithm can be described as foll@Gesieralizing an idea from
computer graphics (which is presented in [3]), the conmiégtdf the contaminatede-
gion is preserved by preventing the agents from cleaning ishzalledcritical points
— points which disconnect the graph of contaminated gridi{goiThis ensures that the
agents stop only upon completing their mission. At each titep, each agent cleans
its current location (assuming this is not a critical pairad moves to itsightmost
neighbor — a local movement rule, creating the effect of &lchise traversal of the
contaminated shape. As a result, the agents “peel” layens the shape, while preserv-
ing its connectivity, until the shape is cleaned entirely.

4 An Optimal Cleaning Algorithm

In order to find the minimal cleaning time possible for a givemtaminated shap#,,
we have designed a system in which all the cleaning agentateolled by a central
unit (referred to as thegueen. Upon initialization, the queen is given the complete
information regarding the contaminated shape. While thatagee traveling along the
grid, the queen is immediately aware of any new informatigealered by the agents.
The queen’s orders as to the next desired movements of thésaage also immediately
transferred to the agents, which carry them out autométical

Since the agents are completely bound to the desires of thenguacking even
the slightest amount of autonomy, this mechanism can begtitaf as one big robot,
equipped with numerous long “cleaning hands”. Implemengach mechanism will
of course be very complicated and there is no doubt that sudbat will be very
expensive (remembering that the “cleaning hands” are dadilmmoving to very large
distances from one another). However, since we are inggtéstthe optimality issue,
costs and complexity aspects are not of interest to us, ahtimeent.

For calculating the optimal solution to the problem, theaquases the well known
A* algorithm [28]. Upon initialization, the queen exhaustjveearches for the shortest
path within the states space, where the initial state casfaj and the initial locations
of the agents. Every state can be developed2fitstates (since every agents can make
a single move clockwise or counterclockwise). Since theegugossesses complete
information regardingf, and knows exactly what the agents are doing, there is no
need for the agents twot clean certain contaminated squares (note that ilStHEEP
algorithm for example, sometimes the agents do not cleataoonated squares in order
to preserve the connectivity of the contaminated shapeyryal transitions between
states, the queen simulates a contamination spread. Toessustate is a state in which
there are no longer contaminated squares.

Once finding the shortest path within the states space frarinitial state to a
success state, the queen starts moving the agents acctwdimg path.

The optimality of this algorithm is immediately derived fincthe optimality of the
A* algorithm in finding shortest paths in states spaces.



5 Experimental Results

A computer simulation of both the optimal algorithm desedhkin section 4 and of
the SWEEP algorithm of [2] was constructed. Note that the size of tleest spaces
covered by the optimal algorithm was at least :

ok-f(Fo) (1)

wherek is the number of agent$y is the initial contaminated shape, afig is the
lower bound over the cleaning time of [2], defined as :

where :

Spva>S —d-k+ (/8 (S —d-k)—4+2) (3)

d is the number of time steps between contamination spreati$ais the initial
area ofFy, namely —Sg = |Ep|.
Three types of shapes were examined, varying in their caiyvge. the|rc—§ value,

wherec, is the initial circumference of the shape). Shapes Wh;%(;sealue is high are
referred to agonvexshapes. Similarlysemi-conveandconcaveshapes are defined.

For each type of shape, three values fgrwere chosen. For each value 84,
three values fok were selected. For each set of values, six random simutatiemne
performed, in order to achieve statistical significance.

Figure 1 presents the results of the simulations, includirggpredictions of the
lower bound presented in equation 2. Note that althoughubeogtimal cleaning al-
gorithm achieves results which are roughl§0% slower than the estimations of the
lower bound, the optimal algorithm achieves results whighaso relatively far from
the lower bound’s estimations. This demonstrates the fattthe sub-optimal algo-
rithm’s performance are in fact, much closer to the optineafgrmances than expected
initially in [2].

After analyzing the results and trying to find a correlati@ivieen the number of
agents to thepef]‘i’;f gfb’;fl‘zzcebf*;”ial ratio, it seems that such correlation does not exist.

However, when focusing on the largest number of agents eah{B agents), it can
be seen that as the size Bf gets bigger, thepefj}f)’: Zﬁichbf’;“;al ratio gets smaller.
This holds for all three types of shapes. The meaning of thiervation is that as the
problem is getting harder (larger initial shapes and moentsg), the benefit from using
an optimal algorithm reduces (meaning, the sub-optimairitym achieves better and
better results). This is demonstrated in figure 2.

6 Symmetric Environments

In this section we shall present several comparisons oSt&EP sub-optimal al-
gorithm and our optimal algorithm, in geometrical symnegnvironments. Figure 3
presents the symmetric initial shapes chosen for this casgra Four agents were
placed in symmetric places along the shapes, and both tigmriwere tested.
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Fig. 1. Comparison of sub optimal and optimal algorithms. The lower and thickee tines rep-
resent the cleaning time of the optimal algorithm whereas the upper linesezp theSWEEP
cleaning algorithm’s performance. In the right chart on the bottom, therlthree lines represent
the lower bound of the optimal solution, as appears in equation 2.

Fig.2. Comparison of sub optimal and optimal algorithms.
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Fig. 3. Symmetric initial shapes referred to as Shape-l, Shape-Il and Shapspectively (left
shape is Shape-I).
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Fig. 4. Comparison of sub optimal and optimal algorithms. As can be seen gaie, she per-
formance of the sub-optimal algorithm are only roughy?s worse than those of the optimal
algorithm.

The comparison between the cleaning time of the optimal abdoptimal algo-
rithms are presented in figure 4.

It is interesting to state that although t8&/EEP algorithm, according to its defin-
ition, generates a symmetric behavior of the agents (mgattie agents are traversing
the shape in the same manner, creating symmetric effectstptés is not the case for
the optimal algorithm. Counter-intuitively, the optimdgarithm generates a remark-
ably non-symmetric behavior. The agents are divided inteidentical and non-stable
groups, while the effects the activities of the agents havehe shape transform it
quickly into a truly non-symmetric shape. Interestinglyegh, this behavior occurs in
all three shapes (as well as in other symmetric shapes).

This insightful observation may lead to a change in the cptscevhich shape the
design of swarm algorithms in the future. Hitherto, it se¢had most such works tend
to be biased by the belief that symmetric behavior generatgsquality results while
being implemented into swarms’ behavior. Neverthelessgbgring this miss-belief,
an improvement in the performance of such algorithms maych&aed.

The reason for this may rely in low robustness of symmetrttav®rs, which are
prone to ‘error resonancg meaning — significantly increasing the effect of a small
error embedded within the swarm'’s algorithm. By intentibnavoiding a symmetric
behavior, such traps may also be avoided, increasing thevssveobustness and sub-
sequently, its performance.

A demonstration of the above appears in figure 5.
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Fig.5. The upper drawings demonstrate the symmetric nature cBWWEEP algorithm, while
the lower drawings demonstrate the non-symmetric behavior that wasmshdoe optimal for
Shape-lI.
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