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Abstract. The heart rate signal contains useful information about the condition
of the human heart which cannot be extracted without the use of an information
processing system. Various techniques for the analysis of the heart rate variability
(HRV) have been proposed, derived from diverse scientific fields. In this paper we
examine theoretically and experimentally the most commonly used algorithms
as well as some other interesting approaches for the computation of heart rate
variability from the point of view of the embedded software development. The
selected algorithms are compared for their efficiency, the complexity, the size of
the object code, the memory requirements, the power consumption, the real time
response and the simplicity of their interfaces. Figures giving a rough image of
the capability of each algorithm to classify the subjects into two distinct groups
presenting high and low heart rate variability are also presented, using data ac-
quired from young and elderly subjects.

1 Introduction

Heart rate variability is a research topic which constitutes the interest of many re-
searchers causing the number of publications in the field to increase day by day and
different algorithms and application methods to be examined. Heart rate variability
refers to the beat-to-beat alterations in heart rate. Various analysis methods have been
proposed which can be categorized as statistical, geometrical, frequency and time de-
composition analysis methods as well as non-linear ones. Guidelines for standards and
measurement are summarized in [1]. A summary of measures and models is presented
in [2]. A review article examining the physiological origins and mechanisms of heart
rate can be found in [3].

Embedded systems are small computing components designed to constitute part of
other, larger systems, e.g. electrical appliances, medical devices, etc. They consist of
software modules usually running on low-cost processors dedicated to perform specific
tasks; for example the task which controls the anti-block system of a car can be as-
signed to a specific processor. Algorithms developed for such systems have different
philosophy than those designed for general purpose computing systems, where power-
ful processors and almost unlimited resources have been assumed. The design of light-
weight embedded software algorithms for the computation of HRV is an interesting
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problem and to the best of the author's knowledge no preweark has been done
towards this direction.

In this paper we study the most widely used algorithms for HiRMlysis. As a
basis the guidelines suggested in [1] are used. All methoetsepted there for the com-
putation of HRV are examined. Some alternative approacteeslso investigated. The
intention is not to construct an embedded system which ksithe variability of the
heart rate signal but study algorithms for this purpose.sTine work only in software
level and take into consideration the effect of the softviavel in the system hardware.

2 Requirementsand Design Choices

The design philosophy of an embedded system is very diffdrem that of a con-
ventional software application. In the latter the applmatdevelopers take only very
primitive decisions about the hardware or the operatintgsysthey select the underly-
ing architecture based on commercial criteria (hnumber aflalle machines, possible
customers, etc.).

Things are very different when designing an embedded sydtemey still makes
the world go round, but the target now is a very specific task feery specific architec-
ture. Decisions should be made in both hardware and softeeets, the one affecting
the other in a remarkably high degree. We isolate the fatihatsaffect those decisions
and are related to our problem.

It is not a new or surprising request that every informatioocpssing system has
to produce accurate and reliable results. The accuracyeafdmputation is connected
with the capability of the algorithm to classify the subgecorrectly. It should be noted
that the problem of selecting the best algorithm with undiadassification is still open,
lot of research has been done and is still to be done. In tipisrpae present the results
of our experiments to give an indication of the ability of kanethod to classify the
subjects. We used three different sets of data but only ottese sets is presented here
since all results were similar.

An important factor which is of special interest and showddépt as low as possible
is the financial cost. Suppose an embedded architecturdnighjart of a widely used
electrical appliance. A small reduction in the cost may lteisiio a huge amount of
money if multiplied with the number of appliances producElde cost of the hardware
is mainly affected by the selection of the processor, andtbeory capacity and speed.

The cost of the processor as well as the memory requiremeptnd on the com-
plexity of the algorithm, the size of the code, the necesspage for storing data and the
required system performance. We are interested in what wd@&om the algorithmic
point of view in order to reduce these requirements as mugossible. Thus, we re-
design the algorithms and implement them in ANSI C. We uskertiggies like integer
arithmetic, shifting instead of divisions where possiltd®p unrolling, replacement of
library function calls etc. and investigate all known teicjues for code optimization.
We evaluate the produced algorithms for accuracy agaireffmiency, for the size of
the code and the memory requirements. The results are us@brftparative study.
In order to calculate the above characteristics for eaabrigtgn we use the JouleTrack
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tool [4]. Experiments were performed for StrongARM SA-1106cessor for operating
frequency oR06M H z.

Another interesting issue in the embedded system desidreialility to produce
results in real time. We break this requirement into two $ena(i) the time interval
between two successive sets of input data should be enoughtsall necessary calcu-
lations are completed and (ii) the system should produgeubin a constant rate and
for every set of input data. The second requirement is naydvpossible, necessary or
it can be very expensive.

In a HRV system the actual input is in general the ECG sigmamfwhich the se-
quence of beats are constructed by proper algorithms fectlet of individual heart-
beats. The rate of the heartbeats is approximately, onequend. Thus, necessary
calculations for each beat should be completed in one se@dewty of time for both
simple and complex algorithms. When for coherence and rexhaydof results the
HRV index is computed with more than one algorithm in patattee one second time
interval may not be enough. In this case a more powerful gsmreand/or faster mem-
ory units might be necessary. The ability to produce redaitevery input beat instead
of only producing the final result at the end is desirable lmitnecessary. The physi-
cian needs only the final value of the index after all compomathave been completed.
However, the capability of the algorithm to produce intediage results is an interest-
ing feature. As an example consider the case of 24 hoursdiegs;, where an early
approximation of the final result might be useful.

The growing importance of power consumption minimizatiéfiacs drastically the
design of the embedded systems, since they are often parbloardevices which
obtain energy through their batteries. The autonomy ofetldevices as well as the life
of the battery depend on the power consumption. Power captsomis mainly affected
by the selection of the processor and the memory system.

In order to have an estimation for the energy requirementsal@ilate the power
consumption for each algorithm. Each machine code instnructonsumes a different
amount of power: indexed access to memory is more experivehe direct one, mul-
tiplications are mode expensive than additions etc. Weutatke the power consumption
of each algorithm using again the JouleTrack tool [4].

Another factor that affects the financial cost and the powasamption is the inter-
face of the software with the rest of the embedded systemd@&hiee that the physician
will use must provide the maximum information, however, stimes it is possible to
simplify the application interface without affecting sificantly the functionality, for
example a numerical display can sometimes substitute aigadscreen. The commu-
nication of an embedded software with the rest of the systensually done through
specific hardware. Generally this is not expensive, howisrould be kept to mini-
mal. In the HRV computation problem some algorithms produdg a single number
as an output while some other require a high definition giglinterface.

Finally, embedded systems are of low weight and small sizihild telephones are
typical examples where size and weight seems to be a chelkmg) affect drastically
the commercial value of the product. Small program size, doemory requirements,
low power consumption and simple application interfaceltéato smaller and lighter
chips and batteries.
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Day by day, the cost of the hardware is significantly redupeatessors are becom-
ing more and more powerful and memory capacities largedewddtteries are getting
smaller and smaller and much lighter. However, the needficrent, lightweight, cost-
effective algorithms producing accurate and reliableltesamains and will always be
interesting. Especially in problems like the HRV analysifich finds application in
the development of wearable devices as well, the cost, Heeasid weight will always
be a challenge.

3 Methods

In [1] the most common methods for HRV analysis are presefbeamined here are the
standard deviation of RR intervals (SDNN), the standardadien of the average RR
interval calculated in over short (usually 5 min) period®A8IN), the square root of
the mean squared differences of successive RR intervalSE, the number succes-
sive RR intervals greater than(usually 50ms) divided by the total number of intervals
(PNNXx), the standard deviation of differences betweencajaintervals (SDSD), the
total number of all RR intervals divided by the height of thetbgram of all NN inter-
vals (TI), the baseline width of the minimum square diffexetriangular interpolation
of the highest peak of the histogram of the intervals (TINNY &he power spectrum
density (PSD). We also examine the local linear predictidrP) and least squared ap-
proximation (LSA) which calculate the average predictiod approximation errors of
the timeseries [5] and the local fast approximation (LFA)ahrapproximates the signal
with less accuracy but faster than LSA. Discrete Wavelenhdi@m (DWT) analyzes
the signal using wavelets and calculates the standardtitevia every scale of analysis

[2].

4 Implementation | ssues

Several techniques for reducing the requirements of theedddd software develop-
ment were used in implementation level. The most intergstires will be discussed in
this section trying to show how important the implementativel is and how much it
affects the system performance and the design choices hatte/are level.

We used integer arithmetic instead of a floating point onéthAretic operations
are much less expensive when operands are integer numlersize of an integer
in a typical processor is equal to the size of a word, usuallgtimlonger but never
smaller than two bytes even in low-performance cost-affegrocessors. An accuracy
of at leas®'6 levels for representing data has been proved more thantabteor our
problem and does not affect the final results.

Next, we eliminated expensive operations and/or libratg chibrary calls are usu-
ally expensive parts of computation, since most of the titheg perform complicated
operations. Moreover, the calling mechanism increasedatia¢ execution time, the
memory requirements, the size of the object code and thermaasumption. Although
this overhead is not always significant, it should not be igdoWe eliminated function
calls by modifying the algorithms where possible, or by aepig the call with other
operations more lightweight and faster.
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Heuristic code optimization was also done depended on thesplecial charac-
teristics of each algorithms. Techniques like loop unngllireduction of the number
of memory accesses, or code size minimization can be clesized as heuristic ap-
proaches. We used the trial and error approach in the progiagrianguage level and
studied the effects in the assembly level. Some optimimatied to very good results.

5 Experimental Results

In this section we will present our experimental results.Wilepresent graphs giving

indications about the capability of each method to classifigjects and tables with the
comparative experimental results for each algorithm idiclg complexity, object code

size, memory and energy requirements and execution time.

Table 1. Comparative experimental for various HRV measures

SDNN|SDANN|RMSSDSDNNi| SDSD |[pNN50 Tl |TINN
Obj. code before linking (KB)| 1 1 0.9 1.1 1.3 1 09| 0.7
Obj. code after linking (KB) 27 27 27 27 27 25 19 | 19
Obj. code linked & optim. (KB) 18 18 18 18 18 18 19 | 19

Memory requirements Oo(n) | O(n/k) | O(1) | O(k) |O(k+n/k)] O(1) | O(h)| O(h)
Complexity O()| O(n) | O(n) | O(n) | O(n) | O) | O)|O(n)
Average complexity Oo(n)| O(n) | O(m) | O() | O(n) | O(n) | O(n)| O(n)

Exec. time before optimy{s) |33381 8823 | 25541 | 33834| 48269 | 17481|7738| 7767
Exec. time after optim.(s) 33381 2597 | 2319 | 3246 | 3154 | 2756 | 7738|7767
Power cons. before optimu{) [11887 3142 | 9095 | 12048| 17189 | 6225 | 2756|2775
Power cons. after optimu(/) |11887 925 826 | 1156 | 1123 | 981 |2756|2775
Interface scalan scalar| scalar | scalar| scalar | scalar|scalarscalar
Real time response no yes yes yes no yes | yes | yes

As mentioned in a previous section, the selection of therétgua that categorizes
the subjects in an unbiased way is still open and is out of thpes of this paper. We
just present the results of our experiments to give a rougtgérof the classification
capabilities of each algorithm.

We used three different sets of data and the results werdasifhe first set con-
sisted by 24 hours long signals from subjects with unrentdekaedical histories and
normal physical examinations and subjects with angiogcalif confirmed coronary
disease. Recordings were acquired using a Holter deviees@tond set consisted again
of control and patient subjects with coronary artery dise&ach recording was ap-
proximately 2 hours long and acquired using a digital eteardiograph in a hospital.
The experiments presented here used a third data set d=boriff]. Five young (21 -
34 years old) and five elderly (68 - 81 years old) rigorouslseened healthy subjects
underwent 120 minutes of continuous supine resting whilginoous electrocardio-
graphic (ECG) signals were collected. All subjects prodigeitten informed consent
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Fig. 1. Categorization results for SDNN, SDANN, RMSSD, SDNNi, SDSD, pNN5Dand
TINN. Circles (“o”) are for younger subjects and crosses () for elderly ones

and underwent a screening history, physical examinatartje blood count and bio-

chemical analysis, electrocardiogram, and exerciseaoter test. Only healthy, non-
smoking subjects with normal exercise tolerance test, ndicakproblems and taking

no medication were admitted to the study. All subjects reain a resting state in si-
nus rhythm while watching a movie to help maintain wakefagi@ he continuous ECG

was digitized at 250 Hz. Each heartbeat was annotated usiagtamated arrhythmia

detection algorithm, and each beat annotation was verifieisial inspection. The RR

interval time series for each subject was then computedwr&gyl, 2 and 3 present the
classification of subjects for all investigated algorithms

Table 2. Comparative experimental for various HRV measures

LLP | LSA |LFA PSD DWT

Object code before linking (KB) 0.9 11 1.6 2.2 1.4
Object code after linking (KB) 25 27 26 28 27
Obj. code linked & optimized (KB)| 18 19 19

Memory requirements Ok) | Ok) |Ok) O(n) O(n)
Complexity O®?) | O(n) | O(n) |O(nlogen) | O(N)
Average complexity O(nk) | O(n) | O(n) [O(nlogzan) | O(N))
Exec. time before optimizus) 65014 [132981|50384 | 489748 |477908
Exec. time after optimizi(s) 2994 | 5292 | 3575

Power consumpt. before optimu.{)|23151 | 47355 17942 | 174399 |170183
Power consumpt. after optim.f) | 1066 | 1885 |1273
Interface scalar | scalar |scalar| vector | vector
Real time response yes yes yes no no
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Fig. 2. Left: Categorization results for Haar Wavelets Decomposition, dotted this &ne for
elderly subjects and solid lines for younger ones. Right: Power Sped»emsity of a normal
subject (up) and a subject than presents decreased heart rabélitsai@own), the power in the
case of the elderly subject exhibits a continuous broadband spectrum

In the following, the experimental results presented inesii-2 will be discussed,
taking into consideration the size of the object code, thenorg requirements, the
complexity, the execution time, the power consumption,itierface and the ability to
response in real time. Experiments were performed for §&&M SA-1100 processor
for operating frequency af06 M H = using the JouleTrack tool[4].

The size of the object code is investigated before and aftkinly as well as after
the optimization. The size of the code before linking isiiegting in the case in which
more than one HRV indices are implemented in embedded s&ftWae optimized
code results from the application of the optimization téghas presented in a previ-
ous section. The differences appearing in tables 1-2 varm §.9KB to 2.2KB before
linking and from 18KB to 19KB after linking and optimization

The complexity of the algorithms ©(n) in most of the cases, whereis the size
of the signal. An exception to the rule is thd P algorithm which presents a relatively
high complexityO(n?). However the average complexity is orfy(nk), wherek is
the size of the sliding window and can be reducedta) when the calculation of the
predicted value uses the value of the previously predictéctpThe P.SD calculation
present a complexity aP(nlogn).

The memory requirements have been computed in a similar Weg.algorithms
SDNN, PSD and DW'T need to store the whole signal in an array, thus the spacial
complexity isO(n). The calculation of the indiceSDNNi, LLP, LSA, LF A need
to store only a vector with sizie equal to the size of the sliding window. TR AN N
metric require$)(n/k), since we need to store one value for each sliding window. The
same withSDSD, or more precisely)(k + %), since we also have to keep a vector
with the sliding windowI'I andT'I N N use a vector of length to store the histogram,
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Fig. 3. Categorization results for LLP, LSA and LFA. Circle®} are for younger subjects and
crosses (4") for elderly ones

whereh is the size of the vector that stores the histogram. The mgneguired for the
calculation of theRM SSD andpN Nz indices is constant and independent from the
size of the input or the parameters of the algorithm.

Experimental results for the execution time and the powesomption are also
presented before and after optimizations. The size of {hatiis 8192 samples and the
same input has been used for all algorithms. The differefardsoth execution times
and power consumption presented in tables 1-2 are sometemeskable. As long as
the interface of the system is concerned, all algorithmamned single value as a result
except the time and frequency analysis methods as showbla2awhich produce a
vector of values. For these algorithms a graphical interfaould also be useful. Apart
from the SDNN, PSD and DWT which require that the whole signal is available
before the first output is produced, all other algorithmsloauwconsidered as real time.

References

1. European Society of Cardiology: Heart rate variability, standardseafsurement, physiolog-
ical interpretation and clinical use. European Heart Jout7iél996) 354-381

2. Teich, M., Lowen, S., Vibe-Rheymer, K., Heneghan, C.: Heste variability: Measures and
models. In: Nonlinear Biomedical Signal Processing Vol. Il, Dynami@aksis and Mod-
elling, New York (2001) 159-213

3. Berntson, G., Bigger, J., Eckberg, D., Grossman, P., Kaufin@, Malik, M., Nagaraja, H.,
Porges, S., Saul, J., van der Molen, P.S.M.: Heart rate variabilitigir®@, methods, and
interpretive caveats. Psychophysioldgfly(1997) 623-648

4. Sinha, A., Chandrakasan, A.: Jouletrack - a web based toabfiovare energy profiling. In:
Design Automation Conference. (2001) 220-225

5. Manis, G., Alexandridi, A., Nikolopoulos, S.: Diagnosis of cardiathplogy through predic-
tion and approximation methods. In: Seventh International Symposiuigmal Processing
and its Applications, Paris, France (2003)

6. lyengar, N., Peng, C.K., Morin, R., Goldberger, A., Lipsitz, Age-related alterations in the
fractal scaling of cardiac interbeat interval dynamics. Am J Phy&ibl(1996) 1078-1084



