
References 
1.  Triñanes J. A.. Sistema de información basado en tededetección para ayuda a la explotación 
operacional de pesquerías de túnidos y otras especies pelágicas. Tesis doctoral. 
Departamento Electrónica e Computación, Universidad de Santiago. (Febrero 1998)   
2.  Iglesias A. Sistema de apoyo a la explotación operacional de pesquerías basado en técnicas 
de inteligencia artificial y teledetección. Departamento de Electrónica y Computación, 
Facultad de Física, Universidad de Santiago de Compostela. (Mayo 2003) 
3.  Cotos J. M. Dinámica y clasificación de estructuras oceánicas para aplicación operacional 
de pesquerías utilizando teledetección e ingeniería de conocimiento. Tesis doctoral. 
Departamento de Física Aplicada, Facultad de Física, Universidad de Santiago de 
Compostela. (Septiembre 1994) 
4.  Wells W. M. Efficient Synthesis of Gaussian Filters by Cascaded  Uniform Filters. IEEE 
Trans. Pattern Analysis and Machine Intelligence-9 No. 2 March 1986. 
5.  Harlow C. A., Trivedi M. M., y Conners R. W. Use of texture operators in segmentation.  
Optical Engineering, vol. 25 , no. 11, pp. 1200-1206, Nov. (1986)  
6.  Komatsu T., Aoki I., Mitani I., y Ishii T. Prediction o the Catch o Japanese Sardine Larvae 
in Sagami Bay Using a Neural Network. Fisheries Science 60(4),385-391 (1994).  
7.  Aurelle D., Lek S., Giraudel J., Berrebi P. Microsatellites and artificial neural networks: 
tools for the discrimination between natural and hatchery brown trout (Salmo trutta, L.) in 
Atlantic populations. Ecological Modelling 120 313-324. (1999) 
8.  Dreyfus-Leon M. J. Individual-based modelling of fishermen search behauviour with neural 
networks and reinforcement learning. Ecological Modelling 120 287-297. (1999) 
9.  Aussem A., Hill D.. 
Neural-network metamodelling for  the prediction of Caulerpa taxifolia 
development in the Mediterranean sea. Neurocomputing 30 ; 71-78 (2000)   
10. Brosse S., Guegan J., Tourenq J., Lek S.. The use of artificial neural network to assess fish 
abundance and spacial occupancy in the litoral zone of a mesotropic lake. Ecological 
Modelling 120:299-311. (1999) 
11. Maas O., Boulanger J., Thiria S.  Use of neural networks for predictions using time series: 
Illustration with the El Niño Southern oscillation phenomenon”. Neurocomputing 30: 53-
58. (2000) 
12. Specht D. F. Probabilistic Neural Networks. Neural Networks, 3,109-118. (1990) 
13. Zhang Q. and Benveniste A. Wavelet Neural Networks. IEEE Transactions on Neural 
Networks, 3, 889-898. 
14. Castillo E.  and Gutiérrez J.M. Nonlinear Time Series Modeling and Prediction Using 
Functional Networks.  Extracting Information Masked by Chaos. Physics Letters A, Vol. 
244, 71-84 (1998).  
15. Castillo E., Cobo A., Gutiérrez J.M., and Pruneda E. Introduction to Functional Networks 
with Applications. A Neural Based Paradigm. Kluwer International Publishers (1999). 
16. Takagi T.  y Sugeno M.. Derivation of fuzzy control rules from human operator`s control 
actions. Proc. Of the IFAC Symp. On Fuzzy Information, Knowledge Representation and 
Decision Analysis, pages 55-60. (July 1983) 
17. Jang  J.-S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., 
Man., Cybern, vol.23, no.5, pp. 665-685. (1993) 
18. Gorman R. P. y Sejnowski, T. J. Learned Classification of Sonar Targets Using a Massively 
Parallel Network. IEEE Transactions on Acoustics, Speech, and Signal Processing. 
36:1135-1140. (1998) 
19. Rumelhart D.E., Hinton, G. E. y Williams, R. J. Learning internal representations by errors 
propagation. In Parallel distributed processing: Explotations in the microstructure of 
cognitron. Vol. 1. D.E. Rumelhart and J.L. Mac Clelland, Cap. 8. MIT Press. (1986) 
20. Iglesias A., B. Arcay, J.M. Cotos. Optimisation of fishing predictions by means of Artificial 
Neural Networks, ANFIS, Functional Networks and Remote Sensing images. Expert 
Systems with Applications. Aceptado y pendiente de publicación. 
121