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Abstract. In this paper, we generalize the notion of persistence, which has been
originally introduced for two-dimensional formations, % for d > 3, seeking

to provide a theoretical framework for real world applications, which often are
in three-dimensional space as opposed to the plane. We verify that many of the
properties of rigid and/or persistent formations establish&tfiare also valid for
higher dimensions. Analysing the closed subgraphs and directed paths in persis-
tent graphs, we derive some further properties of persistent formations. We also
provide an easily checkable necessary condition for persistence.

1 Introduction

Multi-agent systems have attracted considerable attention recently as witnessed by ex-
plosion of papers in the area (see for example [1-4]). Agents, abstracted as vertices
of graphs in this paper (following [5, 6]), can be thought as any autonomous agents
including combat robots, underwater vehicles, unmanned aerial vehicles, and ground
vehicles.
Many control tasks for point-agent systems involve maintaining of the distance be-

tween nominated pairs of agents. For such tasks, a graph can naturally be used to depict
the control architecture as follows: To each agent corresponds a vertex, and for each
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agent (vertex) pait, j there is a directed edg{?j)’ from i to j if < has a constraint on
the distance it must actively maintain from

In the recent control literature, the characterization efstem of the above type has
started to be attempted using the notiormrigfdity of a directed graph1, 5], which is
calledpersistencef a directed graph [6] as well. In this paper, we prefer tothederm
persistencen order to distinguish it from the undirected notion of diy. In Section
2, formal definition ofpersistencejiven in [6] is generalized t&? for d > 3, seeking
to provide a theoretical framework for real world applicas, which often are in 3-
dimensional space as opposed to the plane. This definitishieafollowing intuitive
meaning: a graph is persistent if, provided that all the &mgare trying to satisfy their
distance constraints, the global structure of the fornmaisopreserved, i.e. when the
formation moves, it necessarily moves as a cohesive whobewilV see thatrigidity
of the underlying undirected graph is a necessary but ndicseit condition This
will lead us to the notion of constraint consistence of graphich is the additional
condition for a rigid graph to be persistent. Intuitivelygi@ph isconstraint consistent
if every agent is able to satisfy all its distance consteaprovided that all the others
are trying to do so. We will then show that a graph is persistemd only if it is rigid
and constraint consistent.

In Section 3, we generalize some of the main properties dfigtent graphs to 3-
or high dimensional graphs, drawing on established resuls.

In Section 4, we reason about the persistenceleded subgraphsf persistent
graphs and use this reasoning to analyze the directed patharsistent graphs. As
results of this analysis, we present some further propediigersistent graphs and an
easily checkable necessary condition for persistence.

The paper is ended with the concluding remarks in Sectiondie that all the
proofs in the paper are omitted because of space limitatidowever, a full version
of this work together with the companion paper [7] is avd#éain preprint from the
authors.

2 Rigidity and Persistence

In [6], rigidity, persistence, and some other related mtibave been defined for di-
rected graphs iR2. In this section, we generalize these definitions to be aaple
for any spacér?, d € {1,2,3,...}. Some of the terms we use such as “rigidity” are
undirected notions, i.e., notions that are defined for wutérd graphs. These notions,
however, apply to directed graphs as well, e.g., we callectid graph rigid iff its un-
derlying undirected graph is rigid. Note that, in directedphs, rigidity and the other
undirected notions are not affected by modification of thgeedirections.

InR? (d € {1,2,3,...}), arepresentatiorof an undirected grapfy = (V, E) with
vector setl” and edge sek is a functionp : V' — R¢. We say thap(i) € R? is the
positionof the vertexi, and define the distance between two representatipasdp,
of the same graph by

d(p1,p2) = I{gl\pl(i) —p2(i)]].



A distance setl for G is a set of distances;; > 0, defined for all edgesi, j) € E.

A distance set isealizableif there exists a representatignof the graph for which
llp(i) — p(4)|| = d;; for all (i,7) € E. Such a representation is then callegkaliza-
tion. Note that each representatipnf a graph induces a realizable distance set (defined
by d,;; = ||p(i) — p(7)|| for all (¢, j) € E), of which itis a realization.

A representatiomn is rigid if there existse > 0 such that for all realizationg’ of
the distance set induced pyand satisfyingl(p, p’) < ¢, there holds|p’ (i) — p’(j)|| =
llp(é) — p(4)]| for all 4,7 € V. (We say in this case thatandp’ arecongruen}. A
graph is said to bgenerically rigidif almost all its representations are rigid. Note that
the reasons for which we only require almost all represemstto be rigid instead of
all of them will be detailed in Remark 1.

As mentioned above, rigidity is an undirected notion, artiésefore insufficient to
characterize persistence. As noted in [6], rigidity of arespntation only means that if
an external observer (or some physical properties) makegisat the distance between
the positions of any pair of vertices connected by an edgairesitonstant, then all the
sufficiently close realizations of the induced distanceasetcongruent to each other.
But, in a typical system of autonomous agents, there is nio external observer. Each
agent is only aware of its own distance constraints, and caové freely” as long
as these particular constraints are satisfied. For exaragknts that have only one
constraint can move along a hyper-sphere centered on tligoposf the only other
agent of which they are aware. So, it could happen that becanes agent is moving
on such a hyper-sphere, it becomes impossible for anothatago satisfy all its
constraints, especially if hasd + 1 or more constraints. So, in order to have a more
formal definition of persistence, we first need to charazéetiie fact that each agent is
trying to keep the distances from its neighbors constant.

Let us thus fix a directed graphl = (V, F) depicting a point-agent system archi-
tecture, where each agent corresponds to a vertex and for each agent (vertex) pair
i,j there is a directed edgi?jj € E fromi to j if ¢ has a constraint on the distance
it must actively maintain fronj. Let us also fix desired distancég > 0, V(US €k
and a representatign We say that the edg{?jj € Eisactiveif ||p(i) — p(j)|| = di;.
We also say that the position of the vertex V is fitting for the distance set if it is
not possible to increase the set of active edges leavingmodifying the position of
+ while keeping the positions of the other vertices unchanytate formally, given a
representatiop, the position of vertex is fitting if there is nop* € R? for which the
following strict inclusion holds:

{0.4) € E - 1p(i) — p(i)ll = dig} < {0, J) € E - [Ip" — p(j)l| = di} ()

This condition intuitively means that the agertannot satisfy additional distance con-
straints without breaking some that it already satisfieshasvn in the two-dimensional
example in Figure 2, which is drawn from [6]. A representatad a graph is ditting
representation for a certain distance &étall the vertices are at fitting positions far
Note that any realization is a fitting representation fodigtance set.

We can now give a formal definition of persistence: A represt@mn p is persistent
if there exists > 0 such that every representatiphfitting for the distance set induced
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Fig. 1. Suppose thats1 = ds2 = das = c. The position of 4 in (a) is not fitting because it only
makes(4, 1) active while there exists a position that would make ldth ) and(4, 3) active. On
the other hand, its position in (b) is fitting because no point can be at thetsamat a distance
cfrom1,2and 3.

by p and satisfyingi(p, p’) < € is congruent te. A graph is thergenerically persistent
if almost all its representations are persistent.

One can show that a generically persistent graph is alwaysrgally rigid. A suf-
ficient condition for a generically rigid graph to be genaliig persistence is the generic
constraint consistence. A representatias constraint consisterif there exists > 0
such that any representatiphfitting for the distance set induced byp and satisfying
d(p,p’) < eis arealization ofl. Intuitively, the constraint consistence of a representa-
tion means that if each agent tries to satisfy its distanosteaints (i.e., is at a fitting
position), then all the distance constraints will be safior equivalently, no agent
will be in a situation where it cannot satisfy some constrdihe illustration of such a
situation init? can be found in [6]. Again, we say that a graplgéherically constraint
consistentf almost all its representations are constraint consisten

We have the following useful equivalences for directed bsap anyd-dimensional
spaceir? (d € {1,2,3,...}), which have already been established®3rin [6].

Theorem 1 A representation irR? (d € {1,2,3,...}) is persisteniff it is rigid and
constraint consistenf graph inR? (d € {1,2,3,...}) is generically persisteriff it is
generically rigidand generically constraint consistent

Remark 1 In our definitions of generic rigidity, persistence and doaisit consistence,
a graph has a generic property if almost all its represertas have the property. Some
discussions on using “generic” and “almost all” can be foutl [6, 8]. One reason
for using these terms, iR? (d € {1,2,3,...}), is to avoid the problems arising from
havingd+1 or more vertices lying on d,; -dimensional hyper-surface whefe < d—1.

In the sequel, we avoid the use of “generic”.

3 Characterization of Persistent Graphs

In this section, we examine the properties of persisterlggan three and higher di-
mensions, and present the fundamental results relatedssi@mce. These results are
comparable to the properties of two-dimensional persiggephs presented in [6], and



hence the corresponding propositions and lemmas are gs/grergeric ones that are
applicable tar? as well.

We begin the characterization of persistent graphs by gigitower bound on the
number of active edges, and a sufficient condition for a gtajple constraint consistent.
In the sequeld—(i) andd™ (i) designate respectively the in- and out-degree of the
vertexs.

Lemmal Let: be a vertex of a grapltz = (V, E). For almost all representations
p of G, there exists > 0 such that in every representatign € B(p,¢) (i.e., such
thatd(p, p’) < e) fitting for the distance set induced bythe number of active edges
leavingi is at leastmin (d, d* (z)). Consequently, a graph in which all the vertices have
an out-degree smaller than or equaldads always constraint consistent.

The next proposition which is the generalization of Profioss 1 and 2 in [6] for
any arbitrary dimensiod € {1,2,3,...}, allows us to delete edges in a persistent
(constraint consistent) graph and maintain persisterargs{raint consistence).

Proposition 1 A persistent graph ilR? (d € {1,2,3,...}) remains persistent after
—

deletion of any edgéi, j) for whichd* (i) > d + 1. Similarly, a constraint consistent

graph in®? (d € {1,2,3,...}) remains constraint consistent after deletion of any edge

(i, 7) for whichd* (i) > d + 1.

An interesting corollary of Proposition 1 concerns the ltotamber of degrees of
freedom. Thenumber of degrees of freedom (DOF couat)a vertex is the maximal
dimension, over all representations of the graph, of thekpossible fitting positions
for this vertex. For example, i#t3, the DOF counts of the vertices with zero, one, and
two out-degrees are respectively 3, 2, and 1; all the othetices have zero DOF. The
following result provides a natural bound on the total DOkmpi.e., the sum of the
vertex DOF counts of a persistent graph.

Corollary 1 The total DOF count of a persistent graph®f (d € {1,2,3,...}) can
at most bel(d +1)/2.

Remark 2 There ared-dimensional persistent graphs having a total DOF couns les
thand(d + 1)/2. Figure 2 shows a three-dimensional persistent graph eactex of
which has 1-DOF. The total DOF count for this examplé,ige., less thars(3 + 1) /2.

As stated in Proposition 1, a persistent graph remainsgtergiafter deletion of any
edgem for which d* (i) > d + 1. After successive deletions, we can thus reach in
this way a persistent graph whose vertices all have an awgiegree that is smaller
than or equal tal. In the next theorem, which is analogous to Theorem 3 in kst
for 2, we see that a graph is persistent if and only if all the grayitained in this way
are rigid. This criterion allows us to note that a graph aidiby adding an edge to a
persistent graph is not necessarily persistent, as showulmeaxample in Figure 3.

Theorem 2 A d-dimensional graph is persistent if and only if all those guatphs are
rigid which are obtained by successively removing outg@dges from vertices with
out-degree larger thad until all such vertices have an out-degree equadto



Fig. 2. A persistent graph ift® with all the vertices having out-degree 2 and hence 1-DOF.

Theorem 2 provides a non-polynomial time algorithm to chéek persistence of
anyd-dimensional graph faf € {1,2,3,...}: Itis sufficient to check the rigidity of all
subgraphs obtained by deleting the edges leaving vertitbout-degree larger than or
equal tod + 1 until all the vertices have an out-degree less or equdl fn algorithm
with a smaller complexity would be useful in the case of lagggphs, especially if there
is a high number of vertices with high out-degrees, but ndsigorithm is currently
available. More discussions on determining the persistehtwo-dimensional directed
graphs in polynomial time can be found in [6]. Moreover, [Tégents results leading
to a quadratic time algorithm for the cage= 3 for cycle-free graphs, which can be
generalized easily to anye {1,2,3,...}.

(@) (b) ()

Fig. 3. The two-dimensional graph represented in (a) can be obtained bygaadiadge to the
persistent graph (b). However, by Theorem 2, it is not persiste@ise the subgraph represented
in (c) is not rigid. In the corresponding multi-agent system, this couleédresm a combination
of unfortunate information architecture selections for the three agette afycle.

4 Closed Subgraphsand Directed Paths

In this section, we focus on the directed paths in persigieaqths and analyze some
related properties. As a part of this analysis, we reasontghe persistence afosed
subgraphf persistent graphs. An important outcome of our analydise an easily
checkable necessary condition (Proposition 3) for pemscs. Note that the proofs of
many results concerning closed subgraphs rely on the grepef minimally persistent



graphs, i.e., persistent graphs for which no single edgédeaiemoved without losing
persistence. These properties were omitted here due te §patation, but a extended
studies of minimal persistence and its connections withatiedogous notion of mini-
mal rigidity can be found in [6] or in the full version of thisonk, available in preprint
from the authors.

Consider a directed grapi = (V, E) in R (d € {1,2,3,...}) and a subgraph
G' = (V',F’) of G. G’ is called aclosed subgraplof G if for any vertex: € V7,
m € F impliesj € V’ andm € E’. From the perspective of autonomous agent
formations, the agents corresponding to the verticdg'afre unaware of the existence
of those ofV \ V’. We call thentotal DOF count ofl’’ with respect toaG the sum of
the DOF counts of all the vertices &f'. Using these notions, we reach the following
proposition.

Proposition 2 LetG = (V, E) be a persistent graph iiR? (d € {1,2,3,...}) having
at leastd vertices. If a vertew € V belongs to a closed subgraph &f containing
less thand vertices, the out-degree ofhas to be smaller than or equal tb— 2. For
the setV.. of all such vertices, we havgV,| < d — 1. On the other hand, any vertex
v’ € V that does not belong to any closed subgrapltdiiaving less tharl vertices
is connected by a directed path (leaving to all the vertices of7 with positive DOF
count.

Remark 3 Given a directed graptG = (V,E) in ®¢ (d € {1,2,3,...}), for any
vertexi € V, there exists a certain closed subgraphtotontainingi, which we call
the reachability subgraph af for i. For a giveni € V, thereachability subgraph of
G for i can be formally defined as the subgrafgh = (V’, E’) of G whereV” is the
set of all the vertices that can be reached frofincluding the vertex) by a directed
path inG and E’ C E is the set of all the edgessuch that joins a pair of vertices in
V'. Itis easy to see that the reachability subgraphGofor the vertex is the smallest
closed subgraph aff containingi, and equivalently, the intersection of all the closed
subgraphs of7 containings.

The following corollary, which immediately follows from &position 2, gives a
more explicit criterion to check the existence of a diregath between given two
vertices of a persistent graph#¥, one of which has a positive DOF count.

Corollary 2 LetG = (V, E) be a persistent graph iit? having at least 3 vertices. Any
vertex: is connected by a directed path (leavii)do all the vertices otz with positive
DOF countunless one of the following holds:

1. i is afirst leader, i.e.d " (i) = 0.
—_—
2. i is a first follower, i.e.d™ (i) = 1 and there exists @ € V such that(i, j) € E
andd*(j) = 0.

Using the above propositions about closed subgraphs aecteir paths in persis-
tent graphs, we reach the following easily checkable necgsondition for persis-
tence. The detailed derivation of the criterion can be founthe full version of this
work, which is available in preprint from the authors.



Proposition 3 LetG = (V, E) be a persistent graph iit? (d € {1,2,3,...}) with at
leastd vertices. Then all the closed subgraphgtifiaving more tham — 1 vertices are
persistent.

In 22, Proposition 3 leads to the following corollary.

Corollary 3 LetG be a persistent graph i®? with at least three vertices. Then any
closed subgrapld’ of G is persistent unles§’ consists of two disconnected vertices.
In other words,G has a non-persistent closed subgraph if and only if it corgaiwo
vertices each having 3 DOFs.

5 Concluding Remarks

In this paper, we have generalized the notiopafsistencgiven in [6] for 2-dimensional
directed graphs to dimensions higher than two, seekingaeige a theoretical frame-
work for real world applications, which often are in 3-dins@nal space. We have veri-
fied that many of the properties already established foigters graphs ifR? are valid
for higher dimensions as well. We have also analyzed thetdidepaths in persistent
graphs, exposed some further properties of such graphsde tr higher dimensions,
and given an easily checkable necessary condition (Priigo4) for persistence. In
the companion paper [7], we analyze the “partial equilitoriproblem”, a problem ob-
served in some persistent formations associated withk#igsiof satisfying all the
constraints on all the agents simultaneously. We provideestriteria to check whether
a given persistent graph suffers from the partial equilimriproblem.
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