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Abstract: This paper addresses the problem of motion planning in dynamic environments. As dynamic environments
impose a real-time constraint, the planner has a limited time only to compute a motion. Given the intrinsic
complexity of motion planning, computing a complete motion to the goal within the time available is, in many
real-life situations, impossible to achieve. Partial Motion Planning (PMP) is the answer proposed in this paper
to this problem. PMP calculates a motion until the time available is over. At each iteration step, PMP returns
the best partial motion to the goal computed so far. Like reactive decision scheme, PMP faces a safety issue:
what guarantee is there that the system will never end up in a critical situations yielding an inevitable collision?
In this paper the safety issue relies upon the concept of Inevitable Collision States that account for both the
system dynamics and the moving obstacles. By computing ICS-free partial motion, the system safety can be
guaranteed. Application of PMP to the case of a car-like system in a dynamic environment is presented.

1 INTRODUCTION

Motion autonomy has attracted an increasing interest
in past years for various robotic systems. Complex
systems however exhibit several constraints (kine-
matic, dynamic, actuators constraints) that restrict
their motion capability. These constraints must be ac-
counted for at the motion planning stage in order for
the robot to properly execute this plan.
In this paper, we address the problem of robots navi-
gation within dynamic environments through the par-
adigm of deliberative approaches which consists in
planning a priori a trajectory within high dimensional
spaces for which it is assumed a model exists. The
choice of the state-time space framework is the only
suitable to properly express the constraints of the sys-
tem that can be modelled by a differential equation
adding the time dimension to express the moving ob-
stacles present within the environment (Fraichard and
Laugier, 1992). Despite the exponentially increas-
ing complexity of motion planning in the dimension
space (Canny, 1988), probabilistic planners brought
in the mid 90’s a new powerful tool for rapid explo-
ration of high dimensional state-time space (Kavraki
et al., 1996), (LaValle and Kuffner, 1999). As for
the model, the exploration in the time dimension re-

quires a model of the future to be provided. This is
admittedly a strong assumption, yet realistic consid-
ering latest results on model’s prediction (Wang et al.,
2003), (Vasquez and Fraichard, 2004).
Further, there arereal time constraintsstemming from
a changing environment that have to be considered.
At first, the system has the obligation to make a deci-
sion within a bounded time, otherwise it might be in
danger by the sole fact of being passive. This limited
available time for the system to make a decision,ie.
plan a motion (decision time constraint), depends on
the nature and dynamicity of the environment. Then,
even though a model of the workspace in time is pro-
vided, it has a limited time validity only, estimated by
the prediction algorithm of these schemes. Thisva-
lidity duration constraintrequires the motion planner
to periodically update its model and calculate a new
plan. Even though some work addresses real time mo-
tion planning (Brock and Khatib, 2000) a few only
consider highly changing environment, performing
fast replanning using probabilistic techniques, though
for simple systems (Hsu et al., 2002), (Bruce and
Veloso, 2002). In our work, we believe that when
more complex systems or environments are consid-
ered, the real time constraints have to be explicitly
considered. In such a case a complete trajectory to the
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goal cannot be computed in general and partial plans
only can be found. In our work we do not assume an
estimate of the world’s model can realistically be pro-
vided over the complete navigation planning time as
assumed in (Feron et al., 2000), but only over limited
time period, requiring the planner to periodically cal-
culate completely new plans. The idea of partial plan-
ning has already been scarcely mentioned in past and
we intend in this paper to settle partial motion plan-
ning as a new efficient framework for planning under
real time constraints.
Then, when dealing with partial plans, it becomes
of the utmost importance to consider the behaviour
of the system at the end of the trajectory. What if
a car ends its trajectory in front of a wall at high
speed? It becomes clear that strong guarantees should
be given to this trajectory in order to handle thesafety
issues raised by such apartial planning. We use the
Inevitable Collision States(ICS) formalism recently
presented in (Fraichard and Asama, 2004) suitable to
establish the relation of the collision states and the
dynamic constraints of a system and for which we
present the first practical implementation within a mo-
tion planning scheme in a dynamic environment.
After briefly presenting past related work in§2, we
introduce the notations in§3 that we will carry out for
the presentation of the partial motion planner in§4
and the discussion on safety issues in§5. We finally
provide in§6 simulation results of an effective navi-
gation within different highly dynamic environments
for a car-like robot. We draw our conclusions in§7
over the results and the extensions to be given to this
work.

2 RELATED WORK

Previous work on motion autonomy largely rely on
reactive approaches that explore locally the veloc-
ity space of the system from which one admissible
control is selected at a time. Motivated first, by a
low computational cost and second, by the realis-
tic difficulty to observe and model the environment,
these schemes (Borenstein and Koren, 1991), (Khatib,
1996) or (Fiorini and Shiller, 1998) however have two
strong limitations : a lack of lookahead, conducting
the robot to be trapped in local minima during its
trip, and a weak goal directedness keeping the ro-
bot from reaching the objective. Furthermore, kine-
matic or dynamic constraints inherent to car-like ro-
bots, addressed by a few specific schemes (Simmons,
1996), (Minguez et al., 2002) or (Fox et al., 1995) re-
main complex to handle in a general way. Global mo-
tion planning schemes have been modified as well in
order to gain some reactivity toward changes within
the environment. Beside early work based on dy-

namic programming (Stentz, 1995), the approach of
motion planning has mainly benefited from the prob-
abilistic techniques. Only latest work on this issue,
recognises the possibility of complete trajectory plan-
ning failure and attempts to provide safety guaran-
tee. However the guarantees ofτ -safety (Feron et al.,
2000) or escape plans (Hsu et al., 2002) do not relate
the collision constraint with the dynamics of the sys-
tem and do not provide necessary guarantees required
for safe navigation within highly changing environ-
ments.

3 NOTATIONS AND DEFINITION

Let A denote a robotic system placed in a workspace
W. The motion model ofA is described by a differen-
tial equation of the forṁs = f(s, u) wheres ∈ S is
the state of the system,ṡ its time derivative andu ∈ U
a control.S is the state space andU the control space
of A. A(s) is the subset ofW occupied byA at a
states. Let φ ∈ Φ: [t0, tf ] 7−→ U denote a control
input, ie. a time-sequence of controls. Starting from
an initial states0, at timet0, and under the action of
a control inputφ, the state of the systemA at timet
is denoted bys(t) = φ(s0, t). An initial state and a
control input define a trajectory forA, ie. a time se-
quence of states. The environment is cluttered with a
set of obstaclesB, closed subset ofW. A moving ob-
stacle is time-dependent and denoted byB(t) and its
prediction from timet0 to∞ denoted byB(t0,∞). A
states is a collision stateat timet if and only if ∃B
such thatA(s) ∩ B(t) 6= ∅.

Using these notations and definitions, the next sec-
tion details the Partial Motion Planning (PMP) archi-
tecture.

4 PARTIAL MOTION PLANNING
(PMP) ARCHITECTURE

Planning in a changing environment implies to plan
under real time constraints. At first, a robotic sys-
tem cannot safely remain passive in a dynamic en-
vironment as it might be collided by a moving ob-
stacle (decision constraint). This decision timeδd is
function of the environment’s dynamicity and could
be defined as the minimum time to collision with the
obstacles of the environment. Secondly, in a real en-
vironment, the model of the future can be predicted
over a limited time onlyδv. The planning time (or
calculation timeδc) is hence strictly limited to the
minimum of these two bounds. After completion of
a planning cycle, it is most likely the planned trajec-
tory of time horizonδh is partial. Thus, the PMP al-

ICINCO 2005 - ROBOTICS AND AUTOMATION

200



gorithm iterates over a cycle of durationδc. We con-
sider in this paper a constant cycleδc in order to be
able to regularly get an update of the model, though
we can note that in fact, the duration of each cycle
does not have to be periodic and should be however
of a lengthδc with δc = min(δd, δv) for the first cy-
cle andδc = min(δh, δv) for the remaining cycles.
Let us focus on the planning iteration starting at time
ti:

1. An updated model of the future is acquired,ie.
B(ti, ti + δv) for each moving obstacles.

2. The state-time space ofA is searched using an
incremental exploration method that builds a tree
rooted at the states(ti+1) with ti+1 = ti + δc.

3. At time ti+1, the current iteration is over, the best
partial trajectoryφi in the tree is selected accord-
ing to given criteria (safety, metric) and is fed to
the robot that will execute it from now on.φi is de-
fined over[ti+1, ti+1 + δhi

] with δpi
the trajectory

duration.

The algorithm operates until the last state of the
planned trajectory reaches a neighbourhood of the
goal state. In case the planned trajectory has a dura-
tion δh < δc, the cycle of PMP can be set to this new
lower bound or the navigation (safely) stopped. In
practice however, the magnitude ofδh is much higher
thanδc.

5 SAFETY ISSUES

5.1 Definition

Like every method that computes partial motion only
(uncompleteness), PMP has to face a safety issue:
since PMP has no control over the duration of the par-
tial trajectory that is computed, what guarantee do we
have thatA will never end up in a critical situations
yielding an inevitable collision? We need however to
define the safety we consider.

In Fig. 1 we consider a selected milestone of a point
mass robot with non zero velocity moving to the right
(a state of P is therefore characterised by its posi-
tion (x, y) and its speedv). Depending upon its state
there is a region of states (in grey) for which P, even
though it is not in collision, will not have the time to
brake and avoid the collision with the obstacle. As
per (Fraichard and Asama, 2004), it is an Inevitable
Collision State (ICS), formally defined as follows:

DEFINITION 1 (INEVITABLE COLLISION STATE)
A states is an Inevitable Collision State (ICS) if and
only if ∀φ, ∃tc (for a givenφ) such thatφ(s, tc) is a
collision state.

P(t1)
v

d(v)
(braking distance) obstacle

Inevitable Collision States

P(t2)
v

ICS
ICS-free

Figure 1: Inevitable Collision State vs. Safe State

In this paper, we refer to a safe state as an ICS-free
state.

5.2 Safe State Calculation

In general, computing the ICS for a given system is
an intricate problem since it requires to consider the
set of all the possible future trajectories. To compute
in practice the ICS for a system such asA, it is taken
advantage of the approximation property established
in (Fraichard and Asama, 2004). This property shows
that a conservative approximation of the ICS can be
obtained by considering only a finite subsetI of the
whole set of possible future trajectories. Figure 2 il-
lustrates this property. In Fig. 2(a), a safe trajectory
is easily found within an expansive free space, there-
fore the state checked is safe. In Fig. 2(b), the space is
obstructed and a safe trajectory cannot be found. The
state is thus considered as not sage. In Fig. 2(c) an
admissible safe trajectory certainly exists but is not
found over the given set of three trajectories within
such a space with low expansiveness. The state is then
conservatively considered as not safe. In an extremely
dynamic environment it would be similar, thus there
are no necessary bounds on the environment dynam-
ics, as long as it is fully observable and that a model
of the future is provided. In the PMP algorithm, every
new state is similarly checked to be an ICS or not over
I. In case all trajectories appear to be in collision in
the future, this state is an ICS and is not selected.

5.3 Safe Partial Trajectories

A safe trajectory consists of safe states. However,
a practical problem appears when safety has to be
checked for the continuous sequence of states defin-
ing the trajectory. In order to solve this problem and
further reduce the complexity of the PMP algorithm,
we present a property that simplifies the safety check-
ing for a trajectory. To begin with, we demonstrate
a property that states that for a given control input,
all the states between an ICS and the corresponding
collision state, are ICS.
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Figure 2: Inevitable Collision State calculation over a subset of trajectoriesI = {φ1, φ2, φ3} for A

PROPERTY1
Let s be an ICS at timet0. For a given control input
φ, let tc denote the time at which a collision occurs.
Then∀t ∈ [t0, tc], s(t) = φ(s, t) is also an ICS.

Proof: suppose that a statesi = φ(s, ti), with ti ∈
[0, tc], is not an ICS. By definition,∃φj that yields no
collision when applied tosi. Letφi denote the part of
φ defined over[t0, ti]. Clearly, the combination ofφi

andφj also yields no collision when applied tos  
contradiction.⋄

We can now provide a sufficient safety condition
for a partial trajectory that states that provided a tra-
jectory is collision free, if the last state of the trajec-
tory is not an inevitable collision state then none of the
states of the trajectory are inevitable collision states.

PROPERTY2 (SUFFICIENT SAFETY CONDITION)
Given a trajectory defined over[t0, tf ], if
(H1) the trajectory is collision-free and
(H2) s(tf ) is not an ICS
then∀t ∈ [t0, tf ], s(t) is not an ICS.

Proof: Suppose that∃ti ∈ [t0, tf ] such thatsi =
s(ti) is an ICS. Then, by definition,∀φ,∃tc such that
φ(si, tc) is a collision state. Ift0 ≤ tc ≤ tf then
collision occurs beforetf  contradiction with H1.
Now, iftc > tf then by previous property P1, we must
haves(tf ) is an ICS contradiction with H2.⋄

This property is important since first, it proves a
trajectory is continuously safe while the states safety
is verified discretely only, and second it permits a
practical computation of safe trajectories by integrat-
ing a dynamic collision detection module within ex-
isting incremental exploration algorithms, like A* or
Rapidly-Exploring Random Tree (RRT) (LaValle and
Kuffner, 1999).

x

y

θ

ξ

L

Figure 3: The car-like vehicleA (bicycle model).

6 CASE STUDY: NAVIGATION OF
A CAR-LIKE ROBOT

6.1 Vehicle Model

We consider the dynamic system of a car-like ro-
bot A. A state ofA is defined by the 5-tuples =
(x, y, θ, v, ξ) where(x, y) are the coordinates of the
rear wheel,θ is the main orientation ofA, v is the
linear velocity of the rear wheel, andξ is the orien-
tation of the front wheels (Fig. 3). A control ofA is
defined by the couple(α, γ) whereα is the rear wheel
linear acceleration. andγ the steering velocity. The
motion ofA is governed by the following differential
equations:
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with α ∈ [αmin, αmax] (acceleration bounds),
γ ∈ [γmin, γmax] (velocity steering bounds), and
|ξ| ≤ ξmax (steering angle bounds).L is the wheel-
base ofA.
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Figure 5: Tree contruction over a PMP cycle

6.2 ICS Calculation

For our application we consider the subsetI of
braking trajectories obtained by applying respec-
tively constant controls(αmin, ξ̇max), (αmin, 0),
(αmin, ξ̇min) until the system has stopped. Once the
system is still, it is checked to be collision free (ie.
over a trajectory obtained by applying constant (0,0)
controls) until the end of the PMP cycle. With this
respect, aτ safe state as introduced in (Feron et al.,
2000) can be considered as an ICS-free state duringτ
seconds over this latter subset. Fig. 4 illustrates how
a state of the partial trajectory is checked to be an ICS
or not. The collision states pointed by the arrows rep-
resent the collision that will occur in the future from
this state for all braking trajectories ofI. In this case,
since all trajectories collide in the future, this state is
an ICS.

6.3 Tree Construction

In our work, we used the efficient RRT method and
replaced the geometric collision checker with our in-
evitable collision state checker. The control space of
our system is reduced to the set of bang bang con-
trols Ũ=(α, ξ̇) with α ∈ [αmin, 0, αmax] and ξ̇ ∈
[

ξ̇max, 0, ξ̇min

]

The exploration of the state-time space consists in
building incrementally a tree as follows (Fig. 5): a
milestonesr is generated withinW with a probability
p to be the goal. The closest statesc to sr is selected.
A control from Ũ is applied to the system during a
fixed time (integration step). In case the new state

sn of the system is not an ICS, this control is valid.
The operation is repeated over all control inputs and
finally the new state, safe and closest tosr, is finally
selected and added to the tree.

6.4 Results

The first implementation of the PMP in various dy-
namic environment proves the efficiency of the ap-
proach as a navigation function for a car-like robot.
The software is implemented in C++ and run on a
Pentium4@1.7GHz. The parameters of the PMP are
a cycleδc of 1s, an integration step of 0.5s and for
the carvmax = 2.0m/s, ξmax = π/3rad, ξ̇max =
0.2rad/s, αmax = 0.1m/s2. The environment is
supposed fully observable with a validity satisfying
the PMP constraints (ie. δv > δc + δb). At the initial
state (left) the car is still and ICS-free, and the goal
state (right) is at still as well. Fig. 6(a) illustrates an
example of a navigation within an environment clut-
tered by moving and static obstacles. One can ob-
serve a result of a the safe partial trajectory (ahead of
the vehicle) during a PMP cycle that avoids the obsta-
cles. Behind the car, the trace is the trajectory, built
from partial trajectories from all previous PMP cy-
cles and (ideally) executed by the robot. We observe
how the car is obliged to slow down at the intersec-
tion of several obstacles, since no other safe trajecto-
ries could be found, before to re-accelerate. Fig. 6(b)
illustrates how the algorithm provides efficient nav-
igation to the car evolving within a highly dynamic
environment (20 circle moving obstacles). Finally,
Fig. 6(c) illustrates a case study of such an imple-
mentation within a city where the vehicle has to avoid
pedestrians (circle obstacles). Videos can be found at
http://emotion.inrialpes.fr/
fraichard/pmp-films.

7 CONCLUSION

In this paper we tackle the problem of navigation for a
car-like robot within a dynamic environment and pro-
pose a Partial Motion Planning scheme (PMP) which
handles thereal-time constraintinherent to such an
environment, while accounting for the kinematic and
dynamic constraints of the system. The PMP algo-
rithm consists in iteratively exploring the state-time
space during a fixed limited time and building a tree
using incremental techniques. During a cycle, a com-
plete trajectory calculation to the goal can not be guar-
anteed in general, which raises the issue of thesafety
of our system. We use the formalism of theInevitable
collision States(ICS) as the theoretical answer to this
safety problem. We demonstrate a property that al-
lows a discrete verification of safe states while guar-

PARTIAL MOTION PLANNING FRAMEWORK FOR REACTIVE PLANNING WITHIN DYNAMIC
ENVIRONMENTS

203



Static

Obstacles


Moving

Obstacles


Trajectory

executed


Goal


Start


Safe Partial

Trajectory Planned


(a) safe Partial Motion Planning (b) Navigation within a highly
dynamic environment

(c) Navigation on a one-way pedestrian-
friendly road

Figure 6: results of safe motion plans

anteeing the safety over the whole trajectory and al-
lows its first practical implementation in a planning
scheme within a dynamic environment. Thus, we
present an original and effective algorithm navigating
safely a car-like robot within highly dynamic environ-
ment. Finally, simulation results prove the overall ef-
fectiveness of the complete PMP algorithm and show
a case-study for a real implementation within a pedes-
trian city area. Future work includes the coupling of
the PMP algorithm with a closed loop control and its
integration on an experimental vehicle. Our goal is to
perform experimentations within a real environment,
for which a model of the future obstacles’ behaviour
will be determined thanks to a prediction technique.
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