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Abstract: In this paper, kinematic modeling and singularity analysis of a three DOF redundant parallel manipulator 
has been elaborated in detail. It is known, that on the contrary to series manipulators, the forward kinematic 
map of parallel manipulators involves highly coupled nonlinear equations, whose closed-form solution 
derivation is a real challenge. This issue is of great importance noting that the forward kinematics solution is 
a key element in closed loop position control of parallel manipulators. Using the novel idea of kinematic 
chains recently developed for parallel manipulators, both inverse and forward kinematics of our parallel 
manipulator are fully developed, and a closed-form solution for the forward kinematic map of the parallel 
manipulator is derived. The closed form solution is also obtained in detail for the Jacobian of the 
mechanism and singularity analysis of the manipulator is performed based on the computed Jacobian. 

1 INTRODUCTION 

Over the last two decades, parallel manipulators 
have been among the most considerable research 
topics in the field of robotics. A parallel manipulator 
typically consists of a moving platform that is 
connected to a fixed base by several legs. The 
number of legs is at least equal to the number of 
degrees of freedom (DOF) of the moving platform 
so that each leg is driven by no more than one 
actuator, and all actuators can be mounted on or near 
the fixed base. These robots are now used in real-life 
applications such as force sensing robots, fine 
positioning devices, and medical applications 
(Merlet, 2002). 
 In the literature, mostly 6 DOF parallel mechanisms 
based on the Stewart-Gough platform are analyzed 
(Joshi et al., 2003). However, parallel manipulators 
with 3 DOF have been also implemented for 
applications where 6 DOF are not required, such as 
high-speed machine tools. Recently, 3 DOF parallel 
manipulators with more than three legs have been 
investigated, in which the additional legs separate 
the function of actuation from that of constraints at 

the cost of increased mechanical complexity (Joshi 
et al., 2003). Complete kinematic modeling and 
Jacobian analysis of such mechanisms have not 
received much attention so far and is still regarded 
as an interesting problem in parallel robotics 
research. It is known that unlike serial manipulators, 
inverse position kinematics for parallel robots is 
usually simple and straight-forward. In most cases 
joint variables may be computed independently 
using the given pose of the moving platform. The 
solution to this problem is in most cases uniquely 
determined. But forward kinematics of parallel 
manipulators is generally very complicated. Its 
solution usually involves systems of nonlinear 
equations which are highly coupled and in general 
have no closed form and unique solution. Different 
approaches are provided in literature to solve this 
problem either in general or in special cases. There 
are also several cases in which the solution to this 
problem is obtained for a special or novel 
architecture (Baron et al., 2000, Merlet, 96, Song et 
al., 2001, Bonev et al., 2001). Two such special 3 
DOF constrained mechanisms have been studied in 
(Siciliano, 99, Fattah et al., 2000), where kinematics, 
Jacobian and dynamics have been considered for 
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such manipulators. Joshi and Tsai (Joshi et al., 2003) 
performed a detailed comparison between a 3-UPU 
and the so called Tricept manipulator regarding the 
kinematic, workspace and stiffness properties of the 
mechanisms.  In general, different solutions to the 
forward kinematics problem of parallel manipulators 
can be found using numerical or analytical 
approaches, or closed form solution for special 
architectures (Didrit et al., 98, Dasgupta et al., 
2000).  
In this paper, complete kinematic modeling has been 
performed and a closed-form forward kinematics 
solution is obtained for a three DOF actuator 
redundant hydraulic parallel manipulator. The 
mechanism is designed by Hayward (Hayward, 94), 
borrowing design ideas from biological manipulators 
particularly the biological shoulder. The interesting 
features of this mechanism and its similarity to 
human shoulder have made its design unique, which 
can serve as a basis for a good experimental setup 
for parallel robot research.  
In a former study by the authors, different numerical 
approaches have been used to solve the forward 
kinematic map of this manipulator (Sadjadian et al., 
2004). The numerical approaches are an alternative 
to estimate the forward kinematic solution, in case 
such solutions cannot be obtained in closed form. In 
this paper, however, the novel idea of kinematic 
chains developed for parallel manipulators structures 
(Siciliano, 99, Fattah et al., 2000), is applied for our 
manipulator, and it is observed that in a systematic 
manner the closed form solution for this manipulator 
can also be obtained in detail. 
 The paper is organized as following: Section 2 
contains the mechanism description. Kinematic 
modeling of the manipulator is discussed in section 
3, where inverse and forward kinematics is studied 
and the need for appropriate method to solve the 
forward kinematics is justified. In section 4, The 
Jacobian matrix of the manipulator is derived 
through a complete velocity analysis of the 
mechanism, and finally, in section 5, singularity 
analysis is performed using the configuration-
dependent Jacobian. 

2 MECHANISM ESCRIPTION 

A schematic of the mechanism, which is currently 
under experimental studies in ARAS Robotics Lab, 
is shown in Fig. 1. The mobile platform is 
constrained to spherical motions. Four high 
performance hydraulic piston actuators are used to 
give three degrees of freedom in the mobile 
platform. Each actuator includes a position sensor of 
LVDT type and an embedded Hall Effect force 

sensor. The four limbs share an identical kinematic 
structure. A passive leg connects the fixed base to 
the moving platform by a spherical joint, which 
suppresses the pure translations of the moving 
platform. Simple elements like spherical and 
universal joints are used in the structure. A complete 
analysis of such a careful design will provide us with 
required characteristics regarding the structure itself, 
its performance, and the control algorithms.  
From the structural point of view, the shoulder 
mechanism which, from now on, we call it "the 
Hydraulic Shoulder" falls into an important class of 
robotic mechanisms called parallel robots. In these 
robots, the end effector is connected to the base 
through several closed kinematic chains. The 
motivation behind using these types of robot 
manipulators was to compensate for the 
shortcomings of the conventional serial manipulators 
such as low precision, stiffness and load carrying 
capability. However, they have their own 
disadvantages, which are mainly smaller workspace 
and many singular configurations. The hydraulic 
shoulder, having a parallel structure, has the general 
features of these structures. It can be considered as a 
shoulder for a light weighed seven DOF robotic arm, 
which can carry loads several times, its own weight. 
Simple elements, used in this design, add to its 
lightness and simplicity. The workspace of such a 
mechanism can be considered as part of a spherical 
surface. The orientation angles are limited to vary 
between -π/6 and π/6. No sensors are available for 
measuring the orientation angles of the moving 
platform which justifies the importance of the 
forward kinematic map as a key element in feedback 
position control of the shoulder with the LVDT 
position sensors used as the output of such a control 
scheme. 

3 KINEMATICS 

Fig. 2 depicts a geometric model for the hydraulic 
shoulder manipulator which will be used for its 
kinematics derivation. 
The parameters used in kinematics can be defined 
as:  
 

ib CAl = , CPlp =      
4y

id PPl =   
4z

ik PPl =  
 

:α The angle between 4CA  and 0y  
:C Center of the reference frame 
:P Center of the moving plate 
:il Actuator lengths i=1, 2, 3, 4 
:Pi Moving endpoints of the actuators   
:Ai Fixed endpoints of the actuators 
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Figure 1: The hydraulic shoulder in movement 
 
Two coordinate frames are defined for the purpose 
of analysis. The base coordinate frame {A}: 000 zyx is 
attached to the fixed base at point C (rotation center) 
with its 0z -axis perpendicular to the plane defined 
by the actuator base points 4321 AAAA and an 0x -axis 
parallel to the bisector of angle ∠A1CA4. The 
second coordinate frame {B}: 444 zyx  is attached to 
the center of the moving platform P with its z-axis 
perpendicular to the line defined by the actuators 
moving end points (P1P2) along the passive leg. Note 
that we have assumed that the actuator fixed 
endpoints lie on the same plane as the rotation center 
C. The position of the moving platform center P is 
defined by: 

T
zyx

A pppp ],,[=  (1) 
Also, a rotation matrix B

AR is used to define the 
orientation of the moving platform with respect to 
the base frame:  
 

)(θ)R(θ)R(θR xxyyzz=B
AR  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+
+−

=

xyxyy

xzxyzxzxyzyz

xzxyzxzxyzyz

ccscs
sccssccssscs
sscsccsssccc

θθθθθ
θθθθθθθθθθθθ
θθθθθθθθθθθθ

 
(2) 

 
where zyx θθθ ,, are the orientation angles of the 
moving platform denoting rotations of the moving 
frame about the fixed ,, yx and z axes respectively. 
Also θc and θs  denote )cos(θ and )sin(θ  
respectively. 
With the above definitions, the 44× transformation 
matrix B

AT  is easily found to be: 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
pR

T
A

B
A

B
A  (3) 

Hence, the position and orientation of the moving 
platform are completely defined by six variables, 
from which, only three orientation angles zyx θθθ ,, are 
independently specified as the task space variables 
of the hydraulic shoulder. 
 

 

Figure 2: A geometric model for the hydraulic shoulder 
manipulator 

3.1 Inverse Kinematics  

In modeling the inverse kinematics of the hydraulic 
shoulder we must determine actuator lengths ( il ) as 
the actuator space variables given the task space 
variables zyx θθθ ,, as the orientation angles of the 
moving platform. First, note that the passive leg 
connecting the center of the rotation to the moving 
platform can be viewed as a 3-DOF open-loop chain 
by defining three joint variables ,, 21 θθ and 3θ as the 
joint space variables of the hydraulic shoulder. 
Hence, applying the Denavit-Hartenberg (D-H) 
convention, the transformation B

AT  can also be 
written as: 

B
A

B
A TTTTT 3

33
2

22
1

11 ).().().( θθθ=  (4) 
The D-H transformation matrices j

iT  are computed 
using the coordinate systems for the passive leg in 
Fig. 3, according to the D-H convention. As shown 
in Fig. 3, the 0x axis of frame {A} points along the 
first joint axis of the passive leg; the first link frame 
is attached to the first moving link with its 1x  axis 
pointing along the second joint axis of the passive 
leg; the second link frame is attached to the second 
moving link with its 2x axis pointing along the third 
joint axis of the passive leg; and the third link frame 
is attached to the moving platform in accordance 
with the D-H convention. Using the above frames, 
the D-H parameters of the passive leg are found as 
in Table (1). 

 
Table 1: D-H Parameters for the passive supporting leg 

i 1−iα  1−ia  id  iθ  
1 °90  0 0 1θ  
2 °90  0 0 2θ  
3 °90  0 0 3θ  
B 0 0 pl  0 
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Figure 3: D-H Frame attachments for the passive 
supporting leg 

 
Using the D-H parameters in Table (1), the D-H 
transformation matrices in (4) can be found as:  
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 Substituting (5) into (4) yields: 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
pR

T
A

B
A

B
A  (6) 

Where: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−

+−+
=

213132131321

23232
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θθθθθθθθθθθθ
θθθθθ
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csscs
sccssccssccc
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A

 

(7)  

and: 
[ ]Tppp

A sslclsclp 21221 θθθθθ=  (8) 
For the inverse kinematics, the three independent 
orientation angles in (2) are given. Hence, equating 
(2) to (7) yields: 

)(cos)(cos 1
)3,2(

1
2 xzxyzB

A sccssR θθθθθθ −== −−

 
(9) 

Once 2θ is known, we can solve for 1θ and 3θ as: 

),(2tan
2

)3,1(

2

)3,3(
1

θθ
θ

s
R

s
RA B

A
B

A

=  (10) 

And 

),(2tan
2

)1,2(

2

)2,2(
3

θθ
θ

s
R

s
RA B

A
B

A −
=  (11) 

Provided that 02 ≠θs .Having the joint space 
variables ,, 21 θθ and 3θ in hand, we can easily solve 
for the position of the moving platform using (8). 

Now, in order to find the actuator lengths, we write a 
kinematic vector-loop equation for each actuated leg 
as: 

ii
B

B
AA

iii apRpslL −+== .  (12) 
where il is the length of the thi actuated leg and is  is 
a unit vector pointing along the direction of the 

thi actuated leg. Also, pA is the position vector of the 
moving platform and B

AR is its rotation matrix. 
Vectors ia  and i

B p  denote the fixed end points of 
the actuators (Ai) in the base frame and the moving 
end points of the actuators respectively, written as: 

( )TAAa 0cosαlsinαl bb11 −== , 

( )TAAa 0cosαlsinαl bb22 −−== , 

( )TAAa 0cosαlsinαl bb33 −== , 

( )TAAa 0cosαlsinαl bb44 == , 
and 

 
(13) 

( )TB p ll0 kd1 −−= , 

( )TB p ll0 kd2 −= , 
 

(14)  

Hence, the actuator lengths il  can be easily 
computed by dot-multiplying (12) with itself to 
yield: 

][][. 2
ii

B
B

AAT
ii

B
B

AA
ii

T
i apRpapRplLL −+−+==  (15) 

Writing (15) four times with the corresponding 
parameters given in (7),(8),(13) and (14), and 
simplifying the results yields: 

 
 325321314213221

2
1 )( θθθθθθθθθθ sskscccsksckckkl +−+++=  

 
(16-a) 

 325321314213221
2
2 )( θθθθθθθθθθ sskscccsksckckkl +−−−+= (16-b) 

325321314213221
2
3 )( θθθθθθθθθθ sskscccsksckckkl +−+−−= (16-c) 

325321314213221
2
4 )( θθθθθθθθθθ sskscccsksckckkl +−−+−= (16-d) 

where: 
222

1 )( kpdb llllk −++=  
)cos()(22 αkpb lllk −=  
)sin()(23 αkpb lllk −−=  

)sin(24 αdbllk =  
)cos(25 αdbllk −=  

(17) 

Finally, the actuator lengths are given by the square 
roots of (16), yielding actuator space variables as the 
unknowns of the inverse kinematics problem.  

3.2 Forward Kinematics 

Forward kinematics is undoubtedly a basic element 
in modeling and control of the manipulator. In 
forward kinematic analysis of the hydraulic 
shoulder, we shall find all the possible orientations 
of the moving platform for a given set of actuated 
leg lengths. Equation (16) can also be used for the 
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forward kinematics of the hydraulic shoulder but 
with the actuator lengths as the input variables. In 
fact, we have four nonlinear equations to solve for 
three unknowns. First, we try to express the moving 
platform position and orientation in terms of the 
joint variables ,, 21 θθ and 3θ  using (7)-(8). As it is 
obvious from (16), the only unknowns are the joint 
variables ,, 21 θθ and 3θ , since actuator lengths are 
given and all other parameters are determined by the 
geometry of the manipulator. Hence, we must solve 
the equations for six unknowns from which only 
three are independent. Summing (16-a) and (16-b) 
we get: 

325221
2
2

2
1 222 θθθ sskckkll ++=+  (18) 

Similarly adding (16-c) and (16-d) yields: 
325221

2
4

2
3 222 θθθ sskckkll +−=+  (19) 

Subtracting (19) from (18), we can solve for 2θc  as: 

2

2
4

2
3

2
2

2
1

2
4k

llllc −−+
=θ    (20) 

Substituting (20) into the trigonometric 
identity 12

2
2
2 =+ θθ cs , we get: 

2
22 1 θθ cs −±=  

   
(21) 

Having 2θs and 2θc  in hand, we can solve for 3θs  
from (18) as: 

25

221
2
2

2
1

3
2

22
θ

θθ
sk

ckklls −−+
=     

(22) 
Similarly: 

2
33 1 θθ sc −±=  (23) 

To solve for the remaining unknowns, 1θc and 1θs , 
we sum (16-b) and (16-c) to get: 

3252131
2
3

2
2 222 θθθθ ssksckkll +−=+  (24) 

Having computed 2θs  and 3θs , we obtain: 

23

2
3

2
23251

1
2

22
θ
θθθ

sk
llsskkc −−+

=  (25) 

And finally: 
2

11 1 θθ cs −±=  (26) 
Hence, the joint space variables are given by: 

),(2tan 111 θθθ csa=   
),(2tan 222 θθθ csa=  (27) 
),(2tan 333 θθθ csa=   

Also, the moving platform position pA and 
orientation B

AR  are found using (7)-(8). The final 
step is to solve for the orientation angles θx, θy and θz 
using (3) which completes the solution process to 
the forward kinematics of the hydraulic shoulder. It 
should be noted that there are some additional 
erroneous solutions to the forward kinematics as 
stated above due to several square roots involved in 
the process. These solutions must be identified and 
omitted. Another important assumption made in our 
solution procedure was that all four actuator fixed 

endpoints are coplanar, just as the actuator moving 
endpoints. 

4 JACOBIAN ANALYSIS 

The Jacobian matrix of a 3-DOF parallel 
manipulator relates the task space linear or angular 
velocity to the vector of actuated joint rates in a way 
that it corresponds to the inverse Jacobian of a serial 
manipulator. In this section, we derive the Jacobian 
for the Hydraulic shoulder as a key element in 
singularity analysis and position control of this 
manipulator. For the Jacobian analysis of the 
Hydraulic shoulder, we must find a relationship 
between the angular velocity of the moving 
platform,ω , and the vector of leg rates as the 
actuator space variables, [ ]Tllll 4321=l , so that:  

ωl J= (28) 
From the above definition, it is easily observed that 
the Jacobian for the Hydraulic shoulder will be a 

34×  rectangular matrix as expected, regarding the 
mechanism as an actuator redundant manipulator. 
Using the same idea of mapping between actuator, 
joint and task space, we find that the Jacobian 
depends on the actuated legs as well as the passive 
supporting leg. Therefore, we first derive a 64×  
Jacobian, lJ , relating the six-dimensional velocity 
of the moving platform, v , to the vector of actuated 
leg rates, l . Then, we find the 36× Jacobian of the 
passive supporting leg, pJ  The Jacobian of the 
Hydraulic shoulder will be finally derived as: 

pl JJJ =  (29) 

4.1 Jacobian of the actuated legs 

The Jacobian of the actuated legs, lJ , relates the six-
dimensional velocity of the moving platform, v , to 
the vector of actuated leg rates, l  , such that: 

vl lJ=  (30) 
We can write the six-dimensional moving platform 
velocity as: 

[ ]Tzyxzyx

A

ppp
p

ωωω=⎥
⎦

⎤
⎢
⎣

⎡
=

ω
v  (31) 

where pA  is the velocity of the moving platform 
center and ω  is the angular velocity of the moving 
platform. Differentiating the kinematic vector-loop 
equation (12) with respect to time we get: 

i
B

B
AA

iiiii pRplssl ×+=×+ ω)(ω  (32) 
where iω is the angular velocity of the ith  leg written 
in the base frame. Dot multiplying (32) by is  we 
have: 

ωT
ii

B
B

AAT
ii spRpsl )( ×+=  (33) 
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writing the above equation four times for each 
actuated leg and comparing the result to (30) gives 
the actuated legs Jacobian as: 

64424
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4.2 Jacobian of the passive leg 

In order to find the manipulator Jacobian, we need to 
find a relationship between the six-dimensional 
velocity vector of the moving platform, v  , and the 
angular velocity of the moving platform, ω . First, 
by differentiating (8) with respect to time we get: 
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(35) 

where [ ]T321 θθθ=θ  is the vector of passive joint 
rates. The angular velocity of the moving platform 
can also be expressed as:  

1−= B
A

B
A RRω     

(36) 
Substituting B

AR from (7) and computing (36), we 
have: 
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Solving (37) for θ and substituting it in (35) yields: 
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Complementing the above equation with the identity 
map ωω 3I= , we finally obtain: 

ω
ω

v p

A

J
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where: 
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Having lJ and pJ  in hand, the Hydraulic shoulder 
Jacobian, 34×J  will be easily found using (29). 

5 SINGULARITY ANALYSIS 

As shown in the previous section, the linear 
velocities of the actuators l  are related to the 
angular velocity of the moving platform ω by (28), 
in which J was the 34× Jacobian matrix of the 
hydraulic shoulder. Singularities will occur if the 
Jacobian rank is lower than three, the number of 
DOF of the moving platform, or equivalently if: 

0)det( =JJ T  (41) 
Such a case occurs only if the determinants of all 

33× minors of J  are identically zero. These square 
minors correspond to the Jacobian matrices of the 
hydraulic shoulder with one of the actuating legs 
removed. Therefore, the redundant manipulator will 
be in a singular configuration only if all the non-
redundant structures resulted by suppressing one of 
the actuating legs are in a singular configuration. 
Such a case will not occur in the workspace of the 
hydraulic shoulder owing to the specific and careful 
design of the mechanism (Hayward, 94). In fact, one 
of the remarkable features of adding the fourth 
actuator is the elimination of the loci of singularities. 
Fig.(5), shows the determinants of the four minor 
Jacobian matrices, computed in the workspace of the 
manipulator where DM1-DM4 denote the non-
redundant minor determinants. This can be of 
interest in cases where one of the actuators 
malfunctions. It can be seen that the possibility of 
getting into a singular configuration is increased 
when either of the redundant actuators are removed.  

Figure 4: Minor Determinants for the non-redundant 
structures 

6 CONCLUSIONS 

In this paper, kinematic modeling and singularity 
analysis of a 3-DOF actuator redundant parallel 
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manipulator has been studied in detail. The closed 
form solution to the forward kinematic is obtained 
using a vector approach by considering the 
individual kinematic chains inherent in such parallel 
mechanisms. It is proposed to consider suitable 
mapping between actuator, joint and task spaces in 
both kinematic and Jacobian modeling of the 
manipulator. The proposed method paves the way 
for the feedback position control of the manipulator, 
using a closed-form solution to the forward 
kinematics and leaving out the approximation errors 
inherent in numerical identification methods. It is 
also shown that the forward kinematics map 
provides us with some extra solutions which should 
be regarded properly. Singularity analysis was also 
performed using the analytic Jacobian obtained for 
the mechanism. The manipulator workspace was 
shown to be free of singularities due to the 
redundancy in actuation. Future work will consider 
Dynamic analysis of the hydraulic shoulder 
manipulator. 
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