# OPTIMAL CONTROL APPLIED TO OPTIMIZATION OF MOBILE SWITCHING SURFACES PART I: ALGORITHM 

Jean-Claude Jolly, Céline Quémard, Jean-Louis Ferrier<br>LISA - FRE 2656 CNRS, Université d'Angers, 62, avenue Notre-Dame du Lac, 49000 Angers, France

Keywords: Hybrid Dynamical System, Optimization, Optimal Control, Mobile Switching Surface.


#### Abstract

Following (Boccadoro et al., 2004) and (Wardi et al., 2004), we consider hybrid dynamical systems with parameterized switching surfaces. The goal is to optimize the choice of parameters in relation with a criterion. In an optimal control framework we deepen and generalize results of these authors. We get that thanks a known algorithm, usually not totally explicit, that can be here specified up to obtain an efficient one. Ideas of some new or classical applications are given. They will be developped in a second paper, enforcing the theoric results expanded here.


## 1 INTRODUCTION

Authors of (Boccadoro et al., 2004, 2005) and (Wardi et al., 2004), have pointed out and studied an optimization problem of switching surfaces in hybrid dynamical systems (h.d.s. - for general notions see, for example, (Bensoussan et al., 1997), (Van Der Schaft and Schumacher, 1999), (Zaytoon et al., 2001)). Here, drawing our inspiration from the classical reference book (Bryson and Ho, 1969), we get the results of (Boccadoro et al., 2004) and (Wardi et al., 2004), by another method. This one uses the variational calculus with an augmented criterion. It readily gives the searched relations. As opposed to the more technical method used by the previous authors, here the meaning of the costate in the framework of optimal control becomes clear. Moreover, our results are more general, including mobility of switching surfaces and specific terms in the criterion at switching instants. An important result is the determination of the optimal switching instants.

First, the problem is stated. Varitional calculus is then applied to an augmented criterion. This supplies a method for the criterion gradient calculus which reduces the optimization problem to the use of a classical steepest descent algorithm. In our conclusion we give ideas of classical or new applications. They are developped in a second paper
(Quémard et al., 2005d), enforcing the theoric results expanded here.

## 2 PRESENTATION OF THE OPTIMIZATION PROBLEM

Let $t_{0}, x_{0}=x\left(t_{0}\right) \in \mathbb{R}^{n}$ be a given initial instant and a given initial state. At the beginning the considered h.d.s. follows a given (classical) dynamical system $\dot{x}=f_{1}(x, t)$ up to a switching instant $t_{1}$. This one corresponds to the first instant at which the trajectory hits a given mobile (or fixed) switching surface of equation $\psi_{1}\left(x_{1}, t_{1}, a_{1}\right)=0$ for state $x_{1}=x\left(t_{1}\right)$. This surface depends on a parameter $a_{1} \in \mathbb{R}^{r_{1}}$. Then the h.d.s. follows $\dot{x}=f_{2}(x, t)$ up to $t_{2}$ such that $\psi_{2}\left(x_{2}, t_{2}, a_{2}\right)=0$ for $x_{2}=x\left(t_{2}\right)$ and $a_{2} \in \mathbb{R}^{r_{2}}$. By induction, this defines $t_{1}, \ldots, t_{N}, t_{N+1}$ an increasing sequence of switching instants linked to some given switching surfaces of equations

$$
\begin{equation*}
\psi_{i}\left(x_{i}, t_{i}, a_{i}\right)=0, \quad i=1, \ldots, N+1, \tag{1}
\end{equation*}
$$

for states $x_{i}=x\left(t_{i}\right)$ and some parameters $a_{i} \in \mathbb{R}^{r_{i}}$. In $\left[t_{0}, t_{N+1}\right]$ state $x(t)$ is supposed to be continuous,
and in $\left[t_{i-1}, t_{i}\right], i=1, \ldots, N+1$ state $x(t)$ complies with some given dynamical systems

$$
\begin{equation*}
\dot{x}=f_{i}(x, t) . \tag{2}
\end{equation*}
$$

Functions $\psi_{i}$ and $f_{i}$ are from $C^{1}$ class with values in $\mathbb{R}$ and $\mathbb{R}^{n}$ respectively. Instant $t_{N+1}$ is interpreted as a final instant and $\psi_{N+1}$ as a final constraint.

Notations - For a composed function as $u(v(\alpha), \alpha)$ we can note more simply $\left.u\right|_{\alpha}$. For example, $f_{i}(x(t), t)$ and $\psi_{i}\left(x\left(t_{i}\right), t_{i}, a_{i}\right)$ can be noted $\left.f_{i}\right|_{t}$ and $\left.\psi_{i}\right|_{t_{i}}$.

We make the following assumptions:
Assumption A1 (consistency) - For $i=1, \ldots, N+1$, if parameters $a_{1}, \ldots, a_{i-1}$ are given, then $t_{i}$ is the smallest instant $t, t>t_{i-1}$ such that $\dot{x}(t)=f_{i}(x(t), t) \quad$ and $\quad \psi_{i}\left(x(t), t, a_{i}\right)=0$. This defines $t_{i}$ as a function of $a_{1}, \ldots, a_{i}$. Moreover, we assume that such a sequence $t_{1}, \ldots, t_{N+1}$ exists for all $\left(a_{1}, \ldots, a_{N+1}\right)$ belonging to an open set of $\mathbb{R}^{r_{1}} \times \cdots \times \mathbb{R}^{r_{N+1}}$.

Assumption A2 (transversality) - For $i=1, \ldots, N+1$, if parameters $a_{1}, \ldots, a_{i-1}$ are given, then $t_{i}$ as partial function of $a_{i}$ is one from $C^{1}$ class obtained by application of the implicit theorem to constraints $\dot{x}\left(t_{i}\right)=f_{i}\left(x\left(t_{i}\right), t_{i}\right), \psi_{i}\left(x\left(t_{i}\right), t_{i}, a_{i}\right)$ $=0$. In particular, we have (3)
$\left.\frac{\partial \psi_{i}}{\partial x_{i}} f_{i}\right|_{t_{i}}+\frac{\partial \psi_{i}}{\partial t_{i}} \neq 0, \frac{\partial t_{i}}{\partial a_{i}}=-\left(\frac{\partial \psi_{i}}{\partial x_{i}} f_{i}+\frac{\partial \psi_{i}}{\partial t_{i}}\right)_{t_{i}}^{-1} \frac{\partial \psi_{i}}{\partial a_{i}}$

Remark - For Al as for A2, case where $t_{i}$ is specified, i.e. $\psi_{i}=t_{i}-c s t$, is possible.

Relation (3) comes from $0=d \psi_{i}=\frac{\partial \psi_{i}}{\partial x_{i}} d x_{i}$ $+\frac{\partial \psi_{i}}{\partial t_{i}} d t_{i}+\frac{\partial \psi_{i}}{\partial a_{i}} d a_{i}, \quad d x_{i}=\left.f_{i}\right|_{t_{i}} d t_{i} \quad$ and $\quad$ given assumptions.

Criterion - Let $J^{0}$ be a criterion, to minimize or maximize, in the form

$$
\begin{equation*}
J^{0}=\sum_{i=1}^{N+1} J_{i}^{0} \tag{4}
\end{equation*}
$$

where $\quad J_{i}^{0}=\phi_{i}\left(x_{i}, t_{i}, a_{i}\right)+\int_{t_{i-1}}^{t_{i}} L_{i}(x, t) d t$
with $\phi_{i}$ and $L_{i}$ from $C^{1}$ class.

Optimization problem - Assuming A1, A2, we consider $t_{i}$ as a function of $a_{1}, \ldots, a_{i}, i=1, \ldots, N+1$. We search values for $a_{1}, \ldots, a_{N+1}$ which optimize criterion $J^{0}$ under constraints (1) and (2).

In this paper, we limit ourselves to the search of a calculus method for the variation $d J^{0}=\sum_{i=1}^{N+1} \frac{d J^{0}}{d a_{i}} d a_{i}$. Here, notation $\frac{d J^{0}}{d a_{i}}$ means that the variation of $J^{0}$ according to $a_{i}$ is to be considered both directly through $a_{i}$, namely $\frac{\partial J^{0}}{\partial a_{i}}$, and indirectly through all $t_{j}$ and $x_{j}=x\left(t_{j}\right), j=i, \ldots, N+1$. The use of a classical steepest descent algorithm (Polak, 1997) permits then pursuing the resolution.

## 3 VARIATIONAL CALCULUS

For $i=1, \ldots, N+1$, we introduce a costate variable $\lambda_{i}=\lambda_{i}(t)$ from $C^{1}$ class in $\left[t_{i-1}, t_{i}\right]$ and a control parameter $\quad v_{i} \in \mathbb{R}$ that define an augmented criterion $J_{i}$ by $J_{i}=J_{i}^{0}+J_{i}^{1}$ with $J_{i}^{0}$ like in (4) and

$$
J_{i}^{1}=v_{i} \psi_{i}\left(x_{i}, t_{i}, a_{i}\right)+\int_{t_{i-1}}^{t_{i}} \lambda_{i}\left(f_{i}(x, t)-\dot{x}\right) d t .
$$

We define a global augmented criterion $J$ by $J=\sum_{i=1}^{N+1} J_{i}$. In accordance with paragraph 2 , we have also $J^{0}=\sum_{i=1}^{N+1} J_{i}^{0}$. Defining $J^{1}=\sum_{i=1}^{N+1} J_{i}^{1}$, we have therefore $J=J^{0}+J^{1}$.

Let $\quad F_{i}(x, t, \dot{x})=f_{i}(x, t)-\dot{x}$. Constraints (1), (2) give $\psi_{i}=0, d \psi_{i}=0, F_{i}=0, d F_{i}=0$. We can deduce that $J_{i}^{1}=v_{i} \psi_{i}+\int_{t_{i-1}}^{t_{i}} \lambda_{i}^{T} F_{i} d t$ satisfies:

$$
\begin{aligned}
& d J_{i}^{1}=d v_{i} \cdot \psi_{i}+v_{i} \cdot d \psi_{i}+\left.\lambda_{i}^{T} F_{i}\right|_{t_{i}} d t_{i} \\
& -\left.\lambda_{i}^{T} F_{i}\right|_{t_{i-1}} d t_{i-1}+\int_{t_{i-1}}^{t_{i}}\left\{d \lambda_{i}^{T} \cdot F_{i}-\lambda_{i}^{T} \cdot d F_{i}\right\} d t=0
\end{aligned}
$$

Hence, we have $d J_{i}^{0}=d J_{i}-d J_{i}^{1}=d J_{i}$ and therefore $d J^{0}=d J$. In the sequel we will enforce conditions on $\lambda_{i}(t)$ and $v_{i}$ in order to obtain an expression for $d J=\sum_{i=1}^{N+1} \frac{d J}{d a_{i}} d a_{i}$ as explicit as possible.

With $\Phi_{i}=\phi_{i}+v_{i} \psi_{i}$, we have

$$
J_{i}=\Phi_{i}+\int_{t_{i-1}}^{t_{i}}\left(H_{i}-\lambda_{i}^{T} \dot{x}\right) d t
$$

For variations $\delta x, \delta \dot{x}, d x_{i-1}, d x_{i}, d t_{i-1}, d t_{i}$ satisfying $\delta \dot{x}=\dot{\overline{\delta x}} \quad$ and $\quad \delta x_{i-1}=d x_{i-1}-\dot{x}\left(t_{i-1}\right) d t_{i-1}$, $\delta x_{i}=d x_{i}-\dot{x}\left(t_{i}\right) d t_{i}$ (see Bryson and Ho, 1969, fig.
2.7.1) we calculate variation $d J$ under constraints
(1) and (2): $\quad d J=\sum_{i=1}^{N+1} d J_{i}$,
$d J_{i}=\frac{\partial \Phi_{i}}{\partial x_{i}} d x_{i}+\frac{\partial \Phi_{i}}{\partial t_{i}} d t_{i}+\frac{\partial \Phi_{i}}{\partial a_{i}} d a_{i}$
$+\left.L_{i}\right|_{t_{i}} d t_{i}-\left.L_{i}\right|_{t_{i-1}} d t_{i-1}+\int_{t_{i-1}}^{t_{i}}\left(\frac{\partial H_{i}}{\partial x} \delta x-\lambda_{i}^{T} \delta \dot{x}\right) d t$.
Integrating by parts yields

$$
\begin{aligned}
& \int_{t_{i-1}}^{t_{i}}\left(\frac{\partial H_{i}}{\partial x} \delta x-\lambda_{i}^{T} \delta \dot{x}\right) d t \\
& =\int_{t_{i-1}}^{t_{i}}\left(\frac{\partial H_{i}}{\partial x}+\dot{\lambda}_{i}^{T}\right) \delta x d t-\left[\lambda_{i}^{T} \delta x\right]_{t_{i-1}}^{t_{i}}
\end{aligned}
$$

and therefore
$d J_{i}=\left(\frac{\partial \Phi_{i}}{\partial x_{i}}-\lambda_{i}^{T}\right)_{t_{i}} d x_{i}+\left(\frac{\partial \Phi_{i}}{\partial t_{i}}+L_{i}+\lambda_{i}^{T} f_{i}\right)_{t_{i}} d t_{i}$
$+\frac{\partial \Phi_{i}}{\partial a_{i}} d a_{i}+\lambda_{i}^{T}\left(t_{i-1}\right) d x_{i-1}-\left(L_{i}+\lambda_{i}^{T} f_{i}\right)_{t_{i-1}} d t_{i-1}$
$+\int_{t_{i-1}}^{t_{i}}\left(\frac{\partial H_{i}}{\partial x}+\dot{\lambda}_{i}^{T}\right) \delta x d t$.
We can deduce
$d J=\sum_{i=1}^{N+1} d J_{i}=\sum_{i=1}^{N+1}\left\{\left(\frac{\partial \Phi_{i}}{\partial x_{i}}-\lambda_{i}^{T}\right)_{t_{i}} d x_{i}+\left(\frac{\partial \Phi_{i}}{\partial t_{i}}+H_{i}\right)_{t_{i}} d t_{i}\right.$
$+\frac{\partial \Phi_{i}}{\partial a_{i}} d a_{i}+\lambda_{i}^{T}\left(t_{i-1}\right) d x_{i-1}-\left.H_{i}\right|_{t_{i-1}} d t_{i-1}$
$\left.+\int_{t_{i-1}}^{t_{i}}\left(\frac{\partial H_{i}}{\partial x}+\dot{\lambda}_{i}^{T}\right) \delta x d t\right\}$

$$
\begin{align*}
& =\sum_{i=1}^{N+1}\left\{\left(\frac{\partial \Phi_{i}}{\partial x_{i}}-\lambda_{i}^{T}\right)_{t_{i}} d x_{i}+\left(\frac{\partial \Phi_{i}}{\partial t_{i}}+H_{i}\right)_{t_{i}} d t_{i}+\frac{\partial \Phi_{i}}{\partial a_{i}} d a_{i}\right. \\
& \left.+\int_{t_{i-1}}^{t_{i}}\left(\frac{\partial H_{i}}{\partial x}+\dot{\lambda}_{i}^{T}\right) \delta x d t\right\}+\sum_{i=0}^{N}\left\{\lambda_{i+1}^{T}\left(t_{i}\right) d x_{i}-\left.H_{i+1}\right|_{t_{i}} d t_{i}\right\} \\
& =\lambda_{1}^{T}\left(t_{0}\right) d x_{0}-\left.H_{1}\right|_{t_{0}} d t_{0}+\left(\frac{\partial \Phi_{N+1}}{\partial x_{N+1}}-\lambda_{N+1}^{T}\right)_{t_{N+1}} d x_{N+1} \\
& +\left(\frac{\partial \Phi_{N+1}}{\partial t_{N+1}}+H_{N+1}\right)_{t_{N+1}} d t_{N+1}+\sum_{i=1}^{N}\left\{\left(\lambda_{i+1}^{T}-\lambda_{i}^{T}+\frac{\partial \Phi_{i}}{\partial x_{i}}\right)_{t_{i}} d x_{i}\right. \\
& \left.+\left(-H_{i+1}+H_{i}+\frac{\partial \Phi_{i}}{\partial t_{i}}\right)_{t_{i}} d t_{i}+\frac{\partial \Phi_{i}}{\partial a_{i}} d a_{i}\right\} . \tag{5}
\end{align*}
$$

Let us choose to compel $\lambda_{i}(t), v_{i}$ to comply with

$$
\begin{align*}
\frac{\partial H_{i}}{\partial x}+\dot{\lambda}_{i}^{T} & =0 \text { in } t_{i-1} \leq t \leq t_{i}  \tag{6}\\
\lambda_{i}^{T}\left(t_{i}\right) & =\lambda_{i+1}^{T}\left(t_{i}\right)+\frac{\partial \Phi_{i}}{\partial x_{i}}  \tag{7}\\
\left.H_{i}\right|_{t_{i}} & =\left.H_{i+1}\right|_{t_{i}}-\frac{\partial \Phi_{i}}{\partial t_{i}} \tag{8}
\end{align*}
$$

Those relations are given for $i=N+1, \ldots, 1$ and with the definition for notation convenience that

$$
\begin{equation*}
\lambda_{N+2}\left(t_{N+1}\right)=0,\left.L_{N+2}\right|_{t_{N+1}}=0,\left.H_{N+2}\right|_{t_{N+1}}=0 . \tag{9}
\end{equation*}
$$

One can find jump relations (7), (8) in (Bryson and Ho, 1969), or (El Bagdouri et al., 2005). Combination (8) - (7). $f_{i}$ gives

$$
\begin{aligned}
& \left(H_{i}-\lambda_{i}^{T} f_{i}\right)_{t_{i}}=\left(H_{i+1}-\lambda_{i+1}^{T} f_{i}-\frac{\partial \Phi_{i}}{\partial t_{i}}-\frac{\partial \Phi_{i}}{\partial x_{i}} f_{i}\right)_{t_{i}} \\
& \left.L_{i}\right|_{t_{i}}=\left(L_{i+1}+\lambda_{i+1}^{T}\left(f_{i+1}-f_{i}\right)-\left(\frac{\partial \phi_{i}}{\partial t_{i}}+\frac{\partial \phi_{i}}{\partial x_{i}} f_{i}\right)\right)_{t_{i}} \\
& -v_{i}\left(\frac{\partial \psi_{i}}{\partial t_{i}}+\frac{\partial \psi_{i}}{\partial x_{i}} f_{i}\right)_{t_{i}} .
\end{aligned}
$$

We can deduce
$v_{i}=\left(L_{i+1}-L_{i}+\lambda_{i+1}^{T}\left(f_{i+1}-f_{i}\right)-\left(\frac{\partial \phi_{i}}{\partial t_{i}}+\frac{\partial \phi_{i}}{\partial x_{i}} f_{i}\right)\right)_{t_{i}}$ .$\left(\frac{\partial \psi_{i}}{\partial t_{i}}+\frac{\partial \psi_{i}}{\partial x_{i}} f_{i}\right)_{t_{i}}^{-1}$.
Thus $v_{i}$ is explicitly determined as a function of $\lambda_{i+1}\left(t_{i}\right)$. According to $\Phi_{i}=\phi_{i}+v_{i} \psi_{i}$, substituting
this expression of $v_{i}$ in (7) gives explicitely $\lambda_{i}\left(t_{i}\right)$ as a function of $\lambda_{i+1}\left(t_{i}\right)$ :

$$
\begin{equation*}
\lambda_{i}^{T}\left(t_{i}\right)=\lambda_{i+1}^{T}\left(t_{i}\right)+\frac{\partial \phi_{i}}{\partial x_{i}}+v_{i} \frac{\partial \psi_{i}}{\partial x_{i}} \tag{11}
\end{equation*}
$$

By this way system (6) with limit condition (9) or (11) can be solved backwards starting from $i=N+1$ up to $i=1$. This resolution is efficient because condition

$$
\left(\frac{\partial \psi_{i}}{\partial t_{i}}+\frac{\partial \psi_{i}}{\partial x_{i}} f_{i}\right)_{t_{i}} \neq 0
$$

that ensure existence of $v_{i}$ given by (10) follows from (3) of our assumption A2.

Let $t_{0}, x_{0}=x\left(t_{0}\right)$ be fixed initial conditions. We have $d t_{0}=0, d x_{0}=0$. According to (5), preceding choices made for $v_{i}, \lambda_{i}(t)$ give

$$
d J=\sum_{i=1}^{N+1} \frac{\partial \Phi_{i}}{\partial a_{i}} d a_{i}
$$

As we have established $d J^{0}=d J$, the searched expression for our gradient calculus is then

$$
\frac{d J^{0}}{d a_{i}}=\frac{d J}{d a_{i}}=\frac{\partial \Phi_{i}}{\partial a_{i}}
$$

Using $\Phi_{i}=f_{i}+v_{i} \psi_{i}$ and constraint (1), we can precise

$$
\begin{align*}
\frac{d J^{0}}{d a_{i}} & =\frac{\partial \phi_{i}}{\partial a_{i}}+v_{i} \frac{\partial \psi_{i}}{\partial a_{i}}+\frac{d v_{i}}{d a_{i}} \psi_{i} \\
& =\frac{\partial \phi_{i}}{\partial a_{i}}+v_{i} \frac{\partial \psi_{i}}{\partial a_{i}}, i=1, \ldots, N+1 \tag{12}
\end{align*}
$$

We have obtained the following algorithm:
Algorithm - Our aim is to compute the gradient linked to the optimization problem set in paragraph 2. Let $a_{1}, \ldots, a_{N+1}$ be fixed parameters and let $t_{0}, x_{0}=x\left(t_{0}\right)$ be specified initial conditions. A calculus algorithm for variation

$$
d J^{0}=\sum_{i=1}^{N+1} \frac{d J^{0}}{d a_{i}} d a_{i}
$$

at $a_{1}, \ldots, a_{N+1}$ is the following one. For given $t_{i-1}, x_{i-1}=x\left(t_{i-1}\right)$, the resolution of forward system (2) with constraint (1) gives $t_{i}, x_{i}=x\left(t_{i}\right)$. Starting from $t_{0}, x_{0}=x\left(t_{0}\right)$ this gives by forward induction sequences $t_{i}, x_{i}=x\left(t_{i}\right), i=1, \ldots, N+1$. For given $\lambda_{i+1}\left(t_{i}\right)$, we get $v_{i}$ and $\lambda_{i}\left(t_{i}\right)$ from (10) and (11). The resolution of backward system (6) with final
condition $\lambda_{i}\left(t_{i}\right)$ gives $\lambda_{i}\left(t_{i-1}\right)$. Starting from $\lambda_{N+2}\left(t_{N+2}\right)=0$ in (9) this gives by backward induction sequence $v_{i}, i=N+1, \ldots, 1$. We get then $\frac{d J^{0}}{d a_{i}}$ from (12). All this is obtained under assumptions A1, A2.

Remark - A special case is the one where $t_{i}$ is not free, that is to say $\psi_{i}=t_{i}-c s t$. We have then $\lambda_{i}^{T}\left(t_{i}\right)=\lambda_{i+1}^{T}\left(t_{i}\right)+\frac{\partial \phi_{i}}{\partial x_{i}}, \quad \frac{d J^{0}}{d a_{i}}=\frac{\partial \Phi_{i}}{\partial a_{i}}=\frac{\partial \phi_{i}}{\partial a_{i}} . \quad$ The value of $v_{i}$ has no effect on the one of $\frac{d J^{0}}{d a_{i}}$. Taking it equal to zero simplifies the calculuses.

This result has been established by authors of (Boccadoro et al., 2004) and (Wardi, Y., 2004), but limited to the case where $\dot{x}=f_{i}(x), \psi_{i}\left(x_{i}, a_{i}\right)=0$, and $J_{i}^{0}=\int_{t_{i-1}}^{t_{i}} L_{i}(x) d t$. Moreover, counter to their demonstration more technical, here we make clear the interpretation of costate $\lambda(t)$ in terms of control (they do not consider an augmented criterion $J$ ). In (Boccadoro, 2004) one can find a nice application to the optimization of switching rules for a fixed obstacle avoidance problem in robotics. Our more general algorithm enables us to extend this application to the case of a mobile obstacle.

## 4 CONCLUSION

A natural generalization would be to consider the case where there is an additional continuous control term $u(t)$ between switching times. This is studied in (Bryson and Ho, 1969), or (El Bagdouri et al., 2005) but whithout taking into account dependency of switching surfaces on parameters $a_{1}, \ldots, a_{N+1}$. It appears that an explicit determination of $v_{i}, \lambda_{i}\left(t_{i}\right)$ as done in (10), (11) is not always possible. In particular, it is subject to some transversality conditions more difficult to specify (Bryson and Ho, 1969, p. 59, p. 103 and p. 164). We can read p. 102: "However, finding solutions to such problems is, in general, quite involved".

The question of optimization of switching surfaces for a hybrid dynamical system is due to authors of (Boccadoro et al., 2004) and (Wardi et al.,
2004). Our contribution is about deepening, simplification and generalization of their works. It uses the idea of an augmented criterion as in (Bryson and Ho, 1969) or (El Bagdouri et al., 2005). Like in these references, at cost of more complexity and more place, it would be easy to generalize our algorithm to the case of controlled jumps for state variable $x$ at switching instants $t_{i}$ (Bryson and Ho, 1969, p. 106-107).

Diversity of possible applications for our theoretical results motivates a second communication (Quémard, 2005d). Let us mention the applications, classical or new, for which a resolution is performed:

- Optimization of limit cycles. Application to a thermal device with hysteresis phenomenon (Quémard et al., 2005a, 2005b, 2005c).
- Optimization of switching instants for a minimum time problem for a car with two gears
- Optimization of switching rules for a mobile obstacle avoidance problem in robotics.


## REFERENCES

Bensoussan, A. and Menaldi, J.L., 1997. Hybrid Control and Dynamic Programming. In Discrete and Impulsive Systems, 3, p. 395-442.
Boccadoro, M., 2004. Optimal Control of Switched Systems with Applications to Robotics and Manufacturing. Ph. D Thesis, Perugia, Italia.
Boccadoro, M., Egerstedt, M. and Wardi, Y., 2004. Optimal Control of Switching Surfaces in Hybrid Dynamic Systems. IFAC Workshop on Discrete Event Systems. Reims, France, Sept. 2004.
Boccadoro, M., Egerstedt, M. and Wardi, Y., 2005. Obstacle Avoidance for Mobile Robots Using Switching Surface Optimization. IFAC World Congress. Prague, the Czech Republic, July 2005.
Bryson, A.E. and Ho, Y.C., 1969. Applied Optimal Control, Ginn and Company.
El Bagdouri, M., Cébron, B., Sechilariu, M., Burger, M., 2005. Variational Formalism Applied to the Control of Autonomous Switching Systems. In Control \& Cybernetics.
Polak, E., 1997. Optimization. Springer.
Quémard, C., Jolly, J.-C., Ferrier J.-L., 2005a. Search for cycles in piecewise linear hybrid dynamical systems with autonomous switchings. Application to a thermal process. IMACS World Congress. Paris, Jul. 2005.
Quémard, C., Jolly, J.-C., Ferrier, J.-L., 2005b. Mathematical study of a thermal device as an hybrid system. IMACS World Congress. Paris, Jul. 2005.

Quémard, C., Jolly, J.-C., Ferrier, J.-L., 2005 c. Optimisation de cycles limites. Application à un processus thermique. $J D M A C S$. Lyon, Sept. 2005.
Quémard, C., Jolly, J.-C., 2005d. Optimal Control Applied to Optimization of Mobile Switching Surfaces. Part II: Applications. ICINCO. Barcelona, Spain, Sept. 2005.
Van Der Schaft, A. and Schumacher, H., 1999. An Introduction to Hybrid Dynamical Systems. Springer.
Wardi, Y., Egerstedt, M. and Boccadoro, M., Dec. 2004b. Optimal Control of Switching Surfaces. In Conference on Decision and Control CDC. Atlantis, Bahamas, Dec. 2004.
Zaytoon, J., coordonnateur, 2001. Systèmes dynamiques hybrides. Hermès.

