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Abstract: In this paper a general ILC algorithm is examined and it is found that the filters involved can be selected to
satisfy frequency-wise uncertainty limits on the plant model. The probability of the plant model being at a
given point in the uncertainty space is specified, and the filters are then chosen to maximise the convergence
rate that can be expected in practice. The magnitude of the change in input over successive trials and the
residual error have also been incorporated into the cost function. Experimental results are presented using a
non-minimum phase test facility to show the effectiveness of the design method.

1 INTRODUCTION

Iterative Learning Control (ILC) is a control method
that is applicable to systems which perform the same
action repeatedly. Operating in this way it is able to
use past control information such as input signals and
tracking errors in the construction of the present con-
trol action. This sets ILC apart from most other con-
trol techniques and has allowed it to provide improved
performance with reduced knowledge of the plant
when compared with other control approaches. A lit-
erature survey of ILC can be found in (Moore, 1998)
and there exist textbooks on the subject (Moore, 1993;
Bien and Xu, 1998). One such ILC update law is
given by

uk+1 = F (z)uk + S(z)ek (1)

whereek = yd − yk andF (z) andS(z) are filters
which may be non-causal. This has been analysed in
the frequency-domain in, for example, (Norrlöf and
Gunnarsson, 1999) and (Norrlöf, 2000). Conversion
of (1) to the frequency-domain using the sampling pe-
riod, Ts, gives

Uk+1 = F (ejωTs)Uk + S(ejωTs)Ek (2)

Let the uncertain plant be described byG(ejωTs) =
G0(e

jωTs)U(ejωTs) whereU(ejωTs) is a multiplica-
tive uncertainty andG0 the nominal plant model. In

this case the error evolution is
Ek+1 =

�
F (ejωTs)− S(ejωTs)G0(e

jωTs)U(ejωTs)
�
Ek

+
�
1− F (ejωTs)

�
Yd

(3)
so that

∣

∣F (ejωTs) − S(ejωTs)G0(e
jωTs)U(ejωTs)

∣

∣ < 1
(4)

is a necessary condition for stability since, for each
frequency, (3) represents a state-space system in the
iteration domain having a state transition matrix with
eigenvalues less than 1. In particular, ifF (ejωTs) =
1 this becomes a necessary condition for monotonic
convergence which can be shown to be essentially a
sufficient condition as well (Longman, 2000). More
generally, the same argument means

∣

∣F (ejωTs) − S(ejωTs)G0(e
jωTs)U(ejωTs)

∣

∣ < l
(5)

is a sufficient condition for the eigenvalues of the state
transition matrix to be less thanl, or a reduction of1

l
in the magnitude of the error over consecutive cycles
if F (ejωTs) = 1. To accommodate both these cases,
satisfying (5) will be said to produce a convergence
rate of 1

l
.

Remark 1 Adding a filter,T (z), on the(k + 1)th cy-
cle error to the algorithm given in (1) produces

uk+1 = F (z)uk + S(z)ek + T (z)ek+1 (6)
and we can then write
yk+1 = G(z)T (z)

1+G(z)T (z)
yd + G(z)

1+G(z)T (z)
(F (z)uk + S(z)ek)

(7)
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to give

uk+1 = T (z)
1+G(z)T (z)

yd + 1
1+G(z)T (z)

(F (z)uk + S(z)ek)

(8)

The substitutionŝyd =
(

T (z)
S(z) + 1

)

yd and Ĝ(z) =

G(z)
1+G(z)T (z) , or alternativelyŷd =

(

1
S(z) + 1

T (z)

)

yd

and Ĝ(z) = G(z)T (z)
1+G(z)T (z) , allow this to be written as

(1). Any design method forS(z) andF (z) can there-
fore be implemented as (6) using these substitutions.
Any robustness properties, however, will only apply to
Ĝ(z) instead ofG(z).

2 DFT

An alternative expression for (2) is found by taking
the Discrete Fourier Transform (DFT) of both sides
of the update law (1) which results in

ûk+1 = F̂ ⊙ ûk + Ŝ ⊙ êk (9)

which is possible sinceek anduk are known prior to
the k + 1th trial. Here⊙ denotes component-wise
multiplication andû is the DFT ofu. Similarly, the
DFT of (3) results in an alternative description

êk+1 = (F̂ − Ĝ0⊙ Û ⊙ Ŝ)⊙ êk +(I− F̂ )⊙ ŷd (10)

Note that now the design is conducted in the
frequency-domain, the designer can select each ele-
ment Ŝi and F̂i individually and build the new in-
putuk+1 using (9) combined with expressions for the
DFT and IDFT of a signal. Similar transparency can-
not be found in the time domain. Since (4) is a steady-
state requirement which assumes a reasonable tran-
sient response, the use of a steady-state update of the
input is not disadvantageous. It just remains to choose
the value of the filtersS andF at every frequency.

3 APPROACH TO FILTER
DESIGN

By introducing the variablev = U(ejωTs) it is possi-
ble to write (5) as

sup
ω∈[0,2π]

|f(v)| < l (11)

where

f(v) = F (ejωTs) − S(ejωTs)G0(e
jωTs)v v ∈ C

(12)
Let the open disc of radiusl centred at the origin,

and its boundary be defined as

D = {rejθ | θ ∈ [−π π), r ∈ [0 l)},
δD = {lejθ | θ ∈ [−π π)}

(13)

so that the inverse function

f−1(v) =
F (ejωTs) + v

S(ejωTs)G0(ejωTs)
v ∈ C (14)

applied to D gives the range of values taken by
U(ejωTs) for (5) to be satisfied.

The domain and co-domain can be enlarged to
equal the extended complex planêC (Jones and
Singerman, 2004) which is the union ofC and the
point at infinity; thusĈ = C ∪ {∞}. In this case
f−1(v) is an extended Möbius transformation when
ω andTs are fixed, and maps

• Ĉ one-one ontôC

• generalised circles onto generalised circles

A generalised circle is defined as either a circle or an
extended line (see (Jones and Singerman, 2004) for
details).

It is therefore possible to applyf−1(v) to δD and
find the boundary of the regionU(ejωTs) must oc-
cupy to ensure a convergence rate of1

l
, or monotonic

convergence ifl ≤ 1. The image of a Möbius trans-
formation can be found by simply applyingf−1(v) to
three points ofδD and finding the unique generalised
circle which passes through the resulting points (see
(Jones and Singerman, 2004)). Since{±l, lj} ∈ δD,

f−1(+l) = F (ejωTs )+l

S(ejωTs )G0(ejωTs )

f−1(−l) = F (ejωTs )−l

S(ejωTs )G0(ejωTs )

f−1(lj) = F (ejωTs )+lj

S(ejωTs )G0(ejωTs )

(15)

belong to this extended circle. However a simpler
method involves noting that the inverse points ofδD
are0 and∞ so that the inverse points of the image are
given by

f−1(0) =
F (ejωTs)

S(ejωTs)G0(ejωTs)
, f−1(∞) = ∞

(16)
and the mapping has the form

∣

∣

∣

∣

z −
F (ejωTs)

S(ejωTs)G0(ejωTs)

∣

∣

∣

∣

= k(ejωTs) (17)

Sincef−1(l) = F (ejωTs )+l

S(ejωTs )G0(ejωTs )
∈ δD then

∣

∣

∣

∣

F (ejωTs) + l

S(ejωTs)G0(ejωTs)
−

F (ejωTs)

S(ejωTs)G0(ejωTs)

∣

∣

∣

∣

= k(ejωTs) =
l

|S(ejωTs)G0(ejωTs)|
(18)

which is the equation for a circle with centre,λ, and
radius,r, where

λ =
F (ejωTs)

S(ejωTs)G0(ejωTs)
, r =

l

|S(ejωTs)G0(ejωTs)|
(19)
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This circle can then be drawn for every frequency of
interest and hence the regionU(ejωTs) must occupy
in order to guarantee monotonic convergence. Note
that a Möbius transformation,t(z), maps a regionR
in its domain to a regiont(R), and the boundary of
R to the boundary oft(R). Figure 1 shows the ac-
tion of f−1(v) on δD and the regionU(ejωTs) must
occupy for a convergence rate of1

l
. Any uncertainty

F
SG

Re

Im

1

Uncertainty space

SG

Re

Im

f (v)
-1

l

l

Figure 1: Geometry of uncertainty space

that is contained within the right-hand circle for all
frequencies will satisfy (5). At a general point,p, in
the uncertainty space we can equate the distance from
p to λ with r

∣

∣

∣

∣

p −
F (ejωTs)

S(ejωTs)G0(ejωTs)

∣

∣

∣

∣

=
l

|S(ejωTs)G0(ejωTs)|
(20)

in order to find the convergence rate at that frequency

1

l
=

1
∣

∣

∣
p − F (ejωTs )

S(ejωTs )G0(ejωTs )

∣

∣

∣
|S(ejωTs)G0(ejωTs)|

=
1

|S(ejωTs)G0(ejωTs)p − F (ejωTs)|
(21)

This provides a useful means of selectingS andF :
Let us choose to maximize the convergence rate that
can be expected given that the probability that the
plant is at the pointp at a given frequency is known
or can be estimated. It will be assumed that this prob-
ability is symmetrical about the nominal value, that
is +1 in the uncertainty space. This is a situation
which is realistic given the methods of obtaining a
plant model commonly used in practice. In this case it
will be a function of the distance to the nominal plant
model which equals 1

|p−1| in the uncertainty space.
The optimisation will therefore take the form

max
S,F

J(S, F ) (22)

with the cost function

J(S, F ) =

∫

A

1
∣

∣

∣
p − F

SG0

∣

∣

∣
|SG0|

P

(

1

|p − 1|

)

δp

=
1

|SG0|

∫

A

1
∣

∣

∣
p − F

SG0

∣

∣

∣

P

(

1

|p − 1|

)

δp

(23)

whereP (·) is the probability that the plant is atp,
andA is a region of uncertainty over whichP (·) is
valid. The frequency dependence of the filters has
been dropped for conciseness. Note that a small circle
around the singularity must be removed if the equa-
tion is solved numerically. Figure 2 shows three cases
using the probability functionP (x) = x−α and α
equal to2, 1 and0.5. The probability function is able
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Figure 2: Examples ofP (x)

to shift focus between robustness and convergence
speed by varying the weighting of the optimisation.
In the first caseP (x) is only large forx ≈ 0 so the
maximisation will lead to a solution which is tailored
to only values close to the nominal plant model. Asα
is reduced it becomes more important to chooseS so
that the whole ofA has a value ofl < 1. These cases
are shown in Figure 3. In a)1

SG
≈ 1 to give a high

convergence rate for the nominal plant, whilst in b) it
is smaller but most of the regionA has the property of
satisfying (5). This choice ofP (x) produces the cost

Re

Im

1

1

SG

Re

Im

1

1

SG

a) b)

f (1)
-1

A A

f (1)
-1

Figure 3: Optimal solutions for a)α > 1 and b)α < 1

J(S, F ) =
1

|SG0|

∫

A

|p − 1|
α

∣

∣

∣
p − F

SG0

∣

∣

∣

δp (24)
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and the values ofS andF are found by solving

∂

∂S
J(S, F ) = 0 and

∂

∂F
J(S, F ) = 0 (25)

at each frequency and ensuring that it is a global max-
imum. If F is fixed at1 then any solution,S∗ which
solves (25), so that

dJ(S∗, 1)

dS
= 0 (26)

will also solve the optimisation using

J

(

S

F

)

=
|F |

|S||G0|

∫

A

|p − 1|
α

∣

∣

∣
p − F

SG0

∣

∣

∣

δp (27)

since only a substitution of variables has been applied.
S andF can assume any values as long asS

F
= S∗.

If F is now fixed atF̂ , the corresponding value of̂S
is F̂S∗. This must also solve the optimisation using
(24) as this is simply (27) multiplied by a constant.
Therefore it is enough to solve the optimisation using
(24) with F = 1 and simply substitutêS = F̂S∗

to obtain the solution for every other value ofF . The
resulting cost iŝJ = |F̂ |J∗ whereJ∗ is the cost using
F = 1. In order to incorporate other considerations in
the cost, let us consider the change in input from one
trial to the next. Since this is given by

uk+1 − uk = (F − 1)uk + Sek (28)

which, with the repeated application of (3), becomes

uk+1 − uk = S (F − SG0U)
k
e0+

S(1 − F )

k−1
∑

i=0

(F − SG0U)
i
yd + (F − 1)uk (29)

and the residual error is given by

ek = (F − SG0U)
k
e0+(1−F )

k−1
∑

i=0

(F − SG0U)
i
yd

(30)
It can be seen that reducingF from 1 therefore has
the effect of reducing the cost (24) with the compro-
mise of a likelihood of increased residual error and
input change. To tackle these effects directly for an
arbitrary e0 and yd, it is required that each term in
(29) and (30) has a small modulus for each frequency
considered. Assuming that (4) is satisfied it remains
to reduce|S| and also the bound,λ, on the remaining
term which is given by

(1 − F )
∑k−1

i=0 (F − SG0U)
i
yd < 1−F

1−(F−SG0U)

= λ
(31)

This can be achieved using the mapping technique
that has already been described. Using this, we find

that at a point in the uncertainty space,p, the boundλ
equals

1 − F

SG0

∣

∣

∣
p + 1−F

SG0

∣

∣

∣

=
1

∣

∣

∣

SG0

1−F
p + 1

∣

∣

∣

(32)

Therefore the functions Q(|S|−1) and

R
(∣

∣

∣

SG0

1−F
p + 1

∣

∣

∣

)

can be incorporated into the

cost to limit the upper bound of the residual error
and change in successive inputs. Since these are
dependent on the plant and choice ofyd, they will be
neglected in order to maintain focus on the general
case.

3.1 Experimental Test Facility

The experimental non-minimum phase test-bed has
previously been used to evaluate a number of Repet-
itive Control and ILC schemes (see (Freeman et al.,
2005) for details) and consists of a rotary mechanical
system of inertias, dampers, torsional springs, a tim-
ing belt, pulleys and gears. An encoder records the
ouput shaft position and a standard squirrel cage in-
duction motor drives the load. The system has been
modelled using a LMS algorithm to fit a linear model
to a great number of frequency response test results.
The resulting continuous time plant transfer function
has thus been established as

G0(s) =
1.202(4 − s)

s(s + 9)(s2 + 12s + 56.25)
(33)

A PID loop around the plant is used in order to act as
a pre-stabiliser and provide greater stability. The PID
gains used areKp = 137, Ki = 5 andKd = 3. The
resulting closed-loop system constitutes the system to
be controlled.

4 EXPERIMENTAL RESULTS

In polar co-ordinates let us define the region

A = {rejθ | θ ∈ [θm θM ], r ∈ [rm rM ]} (34)

in the uncertainty space over which the probabil-
ity function is valid. The parametersT = 6 and
n = 1024 are chosen for convenience to givefs =
1024/6. Let us solve the optimisation using (24) with
F = 1 andα = 0.2. Figure 4 shows a Bode plot of the
resultingS vectors when usingθm = −π

6 , θM = π
6 ,

rm = 0 and rM =
1+ T ω

2πλ

|G0|2
with λ = 4, 6, 8, 10.

These have been chosen using previous experience of
the plant uncertainty. Asλ increases,rM decreases,
which, in turn, increases the magnitude ofS at each
frequency as the plant effectively becomes less un-
certain asA diminishes in size. Sinceθm = −θM ,
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Figure 4: Bode plot using variousrM functions andα =
0.2

A is symmetrical about the real axis which results in
∠S = −∠G0. Figure 5 shows error results using the
sinewave demand (shown in figure 11). The normal-
ized error ‘NE’ is the cumulative error incurred over
an iteration divided by the integral of the reference de-
mand. Data has been recorded over the course of 200
iterations. It can be seen that smallerλ values lead to
reduced fluctuations in the cycle error. Figure 6 shows
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λ = 6
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Figure 5: Cycle error for sinewave demand

error results using the sinewave demand (shown in
figure 7). Due to the higher frequencies present in
the demand, the convergence is slower and the resid-
ual error greater. Higher frequency properties of the
optimisation play a greater role and so the effect of
λ on the learning transients is more pronounced than
previously. The convergence of the output to the de-
mand is shown in figure 7 usingλ = 6. The repeating
sequence demand is also drawn.

To investigate the effect of variation inα, the op-
timisation using (24) withF = 1 has again been
solved but usingα = 0.1, 0.3, 0.5, 0.7. Figure 8
shows a Bode plot of the resultingS vectors when
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Figure 6: Cycle error for repeating sequence demand

Figure 7: Output tracking using repeating sequence demand
andλ = 6

usingθm = −π
6 , θM = π

6 , rm = 0 andrM =
1+ T ω

2πλ

|G0|2

with λ = 6. As α increases in magnitude more em-
phasis is put on fast convergence for the nominal plant
and the gain is larger for a greater range of frequen-
cies. Figure 9 shows error results using the sinewave
demand and it can be seen that higherα values pro-
duce greater learning transients, and, ultimately, di-
vergence. They do, however, produce faster initial
convergence. Figure 10 shows error results using the
repeating sequence demand which confirm the previ-
ous findings. The convergence of the output to the
demand is shown in figure 11 usingα = −0.5 and
the sinewave demand which is also shown.

5 FUTURE WORK

Since the uncertainty probability function can only be
an approximation, an obvious method to increase al-
gorithm robustness is to use additional plant data and
attempt to locate the plant model with greater accu-
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Figure 9: Cycle error for sinewave demand

racy as the iterations progress. At the same time, the
added confidence in the nominal plant value could al-
low the focus of the optimisation to be shifted from
robustness to convergence speed. This would be
achieved by adaptively varying the probability func-
tion from trial to trial and seeking to reduce the radii
of circles corresponding to convergence rates for each
frequency around the nominal plant model. This use
of adaptive parameter tuning will be investigated in
conjunction with different plant models to confirm its
effectiveness.

The terms that have been derived in order to tackle
the magnitude of the residual error and the change in
input over successive cycles must be added to the cost
function and experiments conducted to examine their
performance in practice.
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