
Linear continuous time systems with nonsymmetrical 
constrained control using non-symmetrical Lyapunov 
function," In Proc.3th CDC IEEE-Arizona, 1992; (b 
)"Regu1ator problem for continuous time systems with 
nonsymmetrica1 constrained control, "IEEE 
Trans.Aut. Control. vol.38, no10, pp 1556-1560, 
October 1993. 
Benzaouia A. and C. Burgat, (a)" Regu1ator problem for 
linear discrete-time systems with nonsymmetrica1 
constrained control", Int.J.cont, vo1.48, n06,pp.244-
245, 1988; (b)" Existence of nonsymmetrica1 
Lyapunov functions for systems," Int.syst.Sci., 
vo120,pp 597-607, 1989; (c)" Existence of non-
symmetrical stable domains for linear systems," Linear 
A1gebra Appl., vo1.l21,pp.217-231,1989. 
Benzaouia A. and A. Baddou," Piecewise linear 
constrained contro1 for continuous-time systems," 
IEEE Trans. Aut. Control, Vol. 44, no. 7, pp. 1477, 
July, 1999. 
Benzaoiua A.," Application du concept d'invariance 
positive à l'étude des problèmes de commande des 
systèmes dynamiques discrets avec contraintes sur la 
commande". Thesis of UPS LAAS, No 88322, 1988. 
Bistoris G.,"Existence of positively invariant polyhedral 
sets for continuous time linear systems" Control theory 
and advanced technology. voI.7,no3,ppA07-427, 
September 1991. 
Wredenhagen G.F. and P. R. Bélanger," Piecewise linear 
LQ control for systems with input constraints," 
Automatica, vol.30, no3,pp. 403-416,1994. 
Benzaouia A., "The resolution of equation XA+XBX=HX 
and the pole assignment problem" IEEE. Trans.on 
aut.Cont. vo1.39, nol0, pp2091-2094 ,October 1994. 
B. Porter, "Eigenvalue assignment in linear multivariable 
systems by output feedback," InU.contr.,voI.25, no.3, 
ppA83-490, 1977. 
W. Hahn, Stabilty of Motion, Berlin: Springer-Verlag, 
1967. 
P.O. Gutman and P.A. Hagander, "New design of 
constrained controllers for liner systems," IEEE Trans. 
Automat. Contr., vol. AC-30, pp. 22_23, 
1985. 
M. Vassilaki and G. Bistoris, "Constrained regulation of 
linear continuous-time dynamical systems," Syst. 
Contr. Lett., vol. 13, pp. 247-252, 1989. 
C.A., Desoer and M. Vidyasagar, "Feedback Systems: 
Input-Output Properties (New York: Academic Press), 
1975. 
Min-Yen Wu, " On stability of linear time-varying 
systems", CDC-IEEE, pp. 1211-1214, 1982. 
Makoudi M and Radouane L. (1992). On decentralized 
discrete time varying feedback control. Advances in 
modelling and analysis C, vol.33, NA, pp.29-38. 
Makoudi M and Radouane L. (1991). On decentralized 
time varying feedback control of linear continuous 
systems. Troisième colloque magrébin sur les modèles 
numériques de l'ingénieur. November, 26-29, Tunis. 
Anderson B.O.D., Moore LB., 1981, "Time-varying 
feedback laws for decentralised control", IEEE. Trans. 
Autom. Control, vo1.26, N5, 11
33. 
APPENDIX I 
Matrix norm 
∞
M
 
The matrix norm given by the vector norm: 
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
=
−+
∞
i
2
i
i
1
i
i
q
z
,
q
z
maxmaxz 
is giving by 
∞
=
∞
∞
= Mz M
max
1z
 
then : 
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
=
−+
∞
i
2
i
i
1
i
i
q
)Mz(
,
q
)Mz(
maxmaxMz  
For this, we use the result of (Benzaouia and Burgat, 
1989 – b, c) 
∞
+−−+
∞
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
++
= z
q
)qM()qM(
,
q
)qM()qM(
maxmaxMz
i
2
i2i1
i
1
i2i1
i
Thus, =
∞
M
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
++
+−
∑
=
−+
∑
=
iji
2
j
2
ij
m
1j
i
2
j
1
iji
1
j
2
ij
m
1j
i
1
j
1
i
m
q
q
m
q
q
;m
q
q
m
q
q
maxmax
 
APPENDIX II 
NOTATIONS: If x is a vector of 
n
ℜ  then: 
)0,xsup(  xand  )0,xsup(x
i
-
iii
−==
+
,  n,,1i …=   
We will further note the following: for two vectors x, y of 
n
ℜ : 
yx ≤
 (Respectively, 
< ) if 
ii
yx ≤  (respectively, 
ii
yx < )  n,,1i …= . 
n
I  is the identity matrix of 
nxn
ℜ ; 
)A(σ
 denotes the spectrum 
of matrix A; 
)Re(λ
 the real part of the eigenvalue  λ  and 
)A(
i
λ  the ith eigenvalue of A. 
)A(
 the measure of A , 
)(Int
m
+
ℜ  is the interior of 
m
+
ℜ , whereas  D∂  denotes 
the boundary of D. 
F Ker  is the null space of matrix F. 
ICINCO 2005 - ROBOTICS AND AUTOMATION
224