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Abstract: In this work, A time varying control law is proposed for linear continuous-time systems with non 
Symmetrical constrained control. Necessary and sufficient conditions allowing us to obtain the largest non-
symmetrical positively invariant polyhedral set with respect to (w.r.t) the system in the closed loop are 
given. The asymptotic stability of the origin is also guaranteed. The case of symmetrical constrained control 
is obtained as a particular case. The performances of our regulator with respect to the results of (Benzaouia 
and Baddou, 1999) are shown with the help of an example. 

1 INTRODUCTION 

This paper is devoted to the study of linear 
continuous-time systems described by (1): 

n
x      ),t(Bu)t(Ax)t(x ℜ∈+=�                        (1) 

x is the state vector and u is the constrained control, 
that is: 

nm ,u
m

≤ℜ⊂Ω∈                                           (2) 
Matrices A and B are constant and satisfy 
assumption (3): 

)B,A(  Controllable                                             (3) 

Ω is the set of admissible controls defined by (4): 

⎭
⎬
⎫

⎩
⎨
⎧ ℜ∈≤≤−ℜ∈=Ω +

m

2112

m
intq,q ;quq/u  (4) 

This is a non-symmetrical polyhedral set, as is 
generally the case in practical situation. 
Practical control systems are often subject to 
technological and safety constraints, which are 
translated as bounds on the constraint and state 
variables. The respect of this constraint can be 
accomplished by designing suitable feedback law.  
In many cases, this can be done by constructing 
positively invariant domains inside the set of the 
constraints. The purpose of a regulation law is to 
stabilise the system while maintaining its state 
vector in a positively invariant set (Benzaouia and 
Hmamed, 1993) (Benzaouia and Burgat, 1989). 
Many approaches have been derived from this 

concept. Particularly, one which consists on both, 
using large initialisation domain and respecting the 
constrained control, (Benzaouia and Baddou, 1999) 
(Benzaouia and Burgat, 1989) (Benzaoiua, 1988) 
(Bistoris, 1991) (Wredenhagen and Bélanger, 1994). 
Recently, a piecewise linear control law has been 
derived for linear continuous time systems, leading 
to the use of non-symmetrical Lyapunov functions 
(Benzaouia and Baddou, 1999). These functions 
were introduced in (Benzaouia and Burgat, 1989), 
and are also used in (Benzaouia and Hmamed, 
1993). Otherwise, the proposed technique seems to 
be very long and the problem appears between the 
size of the initialisation do main and the dynamic of 
the closed loop system. This justifies the 
development of this technique by using a time 
varying regulator. The choose of such regulator has 
been the subject of many works from which we cite, 
(Makoudi and Radouane, 1992) (Makoudi and 
Radouane, 1991) (Anderson and Moore, 1981) in the 
decentralized control case. Inspired by the work in 
(Benzaouia and Baddou, 1999), our contribution in 
the present paper is intended to improve the speed of 
regulation by setting the modified control law as 
follows: 

)t(x)t(F)t(xF)t()t(u 0 =φ= , mxn
0F ℜ∈              (5) 

m)F(rang 0 = with 0)t( >φ , 0t ≥∀ . 

Taking into account (5), system (1) becomes a non-
stationary system in the following form: 
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)t(x)BF)t(A()t(x
0

φ+=� , 0t ≥∀                       (6) 

Generally )t(φ  and matrix 
0

F  must be found that 

makes the system (6) asymptotically stable and 
inside the constraints. It is well known that a linear 
time invariant system is stable if and only if ail 
eigenvalues of the system matrix have negative real 
parts (Hahn, 1967). However, this is no longer true 
for linear time-varying systems. Under the 
assumption of the non-stationary systems, the 
eigenvalues method for proving the asymptotic 
stability is not adequate. An alternative method is 
the use of matrix measure that means: 

ξ−≤φ+µ )BF)t(A(
0

, 0t ≥∀ , 0≤ξ                (7) 

We will show latter in this work, how to choose the 
function )t(φ . 

Remark: Note that m))t(F(rang = , because 

m)F(rang
0

=  and 0)t( ≠φ , 0t ≥∀ . 

In the constrained case, we follow the approach 
proposed in (Gutman and Hagander, 1985) and 
further developed in (Benzaouia and Hmamed, 
1993) (Benzaouia and Burgat, 1989) and (Vassilaki 
and Bistoris, 1989) and references therein. This 
approach consists of giving conditions on the 
choice of the stabilizing regulator (5) such that 
model (6) remains valid. This is only possible if the 
state is constrained to evolve in a specified region 
defined by: 

⎭
⎬
⎫

⎩
⎨
⎧ ℜ∈≤≤−ℜ∈= +

m

2112

n

21
intq,q ;q)t(x)t(Fq/x)q,q),t(F(D

(8) 
Note that this domain is unbounded where nm < . 
In this case, if )q,q),t(F(D)t(x

21
∈  we may get 

)q,q),t(F(D)t(x
21

∈λ+ , 0 ≥λ∀ . Note that the 

main property of this set in the stationary case is not 
valid in our case that is the set )q,q),t(F(D)t(x

21
∈ . 

In particular, domain )q,q,I(D
21m

can be described 

with function 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−+

i
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i
i
1

i

i q

z
,

q

z
maxmax)z(v                      (9)  

i.e., 
⎭
⎬
⎫

⎩
⎨
⎧ ≤ℜ∈= 1)z(v/z)q,q,I(D

m

21m
. 

It follows from above that the main result of this 
note is to give the necessary and sufficient 
conditions under which the nonsymmetrical 
polyhedral domain Ω  is positively invariant w.r.t. 
motions of system 6. 

2 PRELIMINARIES 

In this section, we present some definitions and 
useful results for the sequel. Consider a continuous-
time non-linear system 

0)0(f,z   )),t(z(f)t(z
m

=ℜ∈=�                           (10) 

Definitions 2.1: i) Consider a function 
+

ℜ→ℜ
m

:v  with 0)0(v = and assume that v is 

directionally differentiable at each direction and 
define )z(v�  by: 

[ ] [ ]))t(z(f);t(zv))t(z(v
dt
d))t(z(v ∂==

+
�   

ε
−ε+=

+
→ε

)z(v))z(fz(v
lim

0
                           (11) 

)z(v�  is the directional derivative of function v at z 

in the direction f(z) (Hahn, 1967), with 0)0(f =  and 

))t(z(f)t(z =� . ii) If function v is a Lyapunov 

function of system (10) on a set 
m

ℜ⊆ℑ  then 
domain D defined by 

{ }0c,c)z(v/zD >≤ℑ∈=  

is a stability domain of the system. 
Lemma 2.2 (Desoer and Vidyasagar, 1975):  

Let A, 
nxn

CB ∈ , we have: 
a) n,...,1i),A())A(Re(

i
=∀µ≤λ . 

b) 0c),A(c)cA( ≥∀µ=µ  

c) c)A()cIA( +µ=+µ ,  ℜ∈∀c  
d) )B()A()BA( µ+µ≤+µ  

e) ℜ→µ
nxn

C:  is convex on 
nxn

C  

),B()1()A()B)1(A( µλ−+λµ≤λ−+λµ  
]1,0[∈λ∀  

Definition 2.3 (Benzaoiua, 1988): A differentiable 
non-zeros vector e(t) is said to be the extended-
eigenvector (x-eigenpair) of the nxn matrix G(t), 
associated with the extended-eigenvalues )t(λ  (a 

scalar time function) if it satisfies, 
)t(e)t(e)t()t(e)t(G �+λ=     

Consider the following continuous non-stationary 
system, 

)t(z)t(H)t(z =� , 
m

z ℜ⊆ℑ∈  and ℑ∈ Int0     (12) 

The necessary and sufficient condition of function v 
defined by (9) to be a Lyapunov function for system 
(12) is given by the following result. 
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Theorem 2.4 

Function ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−+

i
2

i
i
1

i

i q

z
,

q

z
maxmax)z(v  with 

0q  ,0q
21

>> , which is continuous positive 

definite, is a Lyapunov function of system (12) on 
the set ℑ  and domain: 

ℑ⊆
⎭
⎬
⎫

⎩
⎨
⎧ ≤≤−ℜ∈=

12

m

21m
qzq/z)q,q,I(D  

is a stability domain of the system if and only if : 

 0q)t(H
~ ≤ , 0t ≥∀                                           (13) 

⎥
⎥
⎥

⎦

⎤
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⎢

⎣

⎡
=

)
12
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t()t(

)t()t(
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HH
)t(H

~
,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

2

1

q

q
q , 0t ≥∀  
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ji     (t)h
)t(H

ij

ii

1 ⎪⎩

⎪
⎨
⎧

≠

=
= + , 

⎪⎩

⎪
⎨
⎧

≠

=
= −

ji     (t)h

ji           0
)t(H

ij
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Proof: (If) The same as (Benzaouia and Hmamed, 
1993), with: 

( ) ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ++
≤ )z(v

q

q)t(Hq)t(H
 );z(v

q

q)t(Hq)t(H
maxmax)z(v

i

2

i2112
i

1

i2211

i
�

0t ≥∀                                                         (14) 
From condition (13), we have: 

0)z(v ≤� , 
m

z ℜ⊆ℑ∈∀  

Consequently, from (Hahn, 1967), we conclude that 
domain )q,q,I(D

21m
 is a stability domain of the 

system. 
(Only if): Assume that function )z(v  is a Lyapunov 

function of system (6) and condition (13) does not 
hold, i.e., there exist only ]m,1[i ∈  such that,  

0q)t(hq)t(hq)t(h
m

ij,1j

j

2ij

j

1ij

i

1ii
>⎥⎦

⎤
⎢⎣
⎡ ++ ∑

≠=

−+
 

At this step, we follow the proof given in 
(Benzaouia and Hmamed, 1993). 
Remarks 
1) When 1)t( =φ , we obtain the result given in 

(Benzaouia and Hmamed, 1993). 
2) It is well known that a stability domain for system 
(12) is also a positively set for the system 
3) The relation (13) is equivalent to the following 
matrix measure: 

0))t(H( ≤µ , 0t ≥∀                                     (15) 

Induced by the vector norm: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

−+

i

2

i
i

1

i
i q

z
,

q

z
maxmaxz                                  (16) 

For more detail, see Appendix 1. 
4) If there exist 0>ξ  such that ξ−≤µ ))t(H( , we 

have: 
)z(v)z(v ξ−≤�                                                    (17) 

and then from (Hahn, 1967), system (12) is 
asymptotically stable. 
The symmetrical case is obtained directly by : 
Corollary 2.5 

Function 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

iq

iz

i
max)z(v  is a Lyapunov 

function of system (12) on the set ℑ  and domain 

ℑ⊆
⎭
⎬
⎫

⎩
⎨
⎧ ≤≤−ℜ∈= qzq/z)q,q,I(D

m

m
 is a 

stability domain of the system if and only if: 

 0q)t(Ĥ ≤  with 
⎪⎩

⎪
⎨
⎧

≠

=
=

ji          )t(h 

ji           )t(h
Ĥ

ij

ii
, 0t ≥∀  

Proof: Follows readily from Theorem 2.4. 

3 MAIN RESULTS 

In this section, we apply the results of Theorem 2.4 
to the problem of the constrained regulator described 
in Section I. 
Consider system (1) with the feedback law given by 
(5). The system in the closed loop is then given by 
(6). Let us make the change of variables, 

)t(xF)t()t(z
0

φ= , 
mxn

0
F ℜ∈                            (18) 

        )t(x)t(F=  

with matrix 
0

F  given by (5) and (7). It follows that: 

[ ] )t(x)BF)t(A(F)t(F)t()t(z 000 φ+φ+φ= ��  

       )t(xBF)t(AI
)t(
)t(

F)t( 
0n0 ⎥
⎦

⎤
⎢
⎣

⎡
φ++φ

φφ=
�

 

If there exists a matrix 
mxm

)t(H ℜ∈  such that: 

[ ] )t(F I
)t(
)t(

)t(H)t(BFA)t(F
n ⎥⎦

⎤
⎢
⎣

⎡
φ
φ−=+
�

, 0t ≥∀  

(19) 
Then, the change of variables (18) allows us to 
transform dynamical system (6) to dynamical non-
stationary system (12). The study of the stability of 
system (6) with )q,q),t(F(Dx

21
∈  defined by (8), 

becomes possible by the use of system (12) and 
Theorem 2.4, with Ω==ℑ∈ )q,q,I(Dz

21m
. 

IMPROVEMENT OF THE DYNAMICS OF THE CONTINUOUS  LINEAR SYSTEMS WITH CONSTRAINTS
CONTROL

217



Before giving the main result, we present all the 
necessary Lemmas. The first concerns (19), which is 
to be for every t. 
For this, let us define the set )F(ℵ  of the matrix F(t) 

as follows : 

⎭
⎬
⎫

⎩
⎨
⎧ ℜ∈≥∀=ℜ∈=ℵ

mxnn
F(t)  0,t  0,F(t)x(t)  /)t(x)F( I

n the stationary case, )F(Ker)F( =ℵ  

We note )t(=
n

I
)t(
)t(

)t(H φ
φ−=
�

 and 

)t(BFA)t(A
0

+= . 

Lemma 3.1 

If a matrix 
mxm

)t(H ℜ∈  satisfying (19) exists, then 

n-m stables extended eigenvectors common to 
matrices A  and )t(A

0
 belong to )F(ℵ . 

Proof:  
Let a matrix )t(= satisfying equation (19) exists. 

Consider an extended eigenvector )t(e  of matrix 

)t(A
0

 corresponding to an extended eigenvalue 

)t(λ , (Min-Yen, 1982), i.e: 

)t(e)t(e)t()t(e)t(A
0

�+λ=                                  (20) 

Equation (19) allows us to write 
))t(e)t(F())t(e)t(F)(t()t(e)t(A)t(F

0
�+λ=           (21) 

                      ))t(e)t(F)(t(==  

Then )t(e)t(F  is an extended eigenvector of matrix 

)t(=  corresponding to the same extended eigenvalue 

)t(λ . Matrix 
mxm

)t( ℜ∈=  could admit only m 

extended eigenvalues from the set of extended 
eigenvalues of matrix )t(A

0
. Let us note 

210
))t(A( Λ∪Λ=Λ=σ , with σ ( )t(= ) ⊂

m
C  and 

mn

2
C

−
⊂Λ . 

Where ))t(A(
0

σ  ( ))t((=σ ) denotes a set of extended 

eigenvalues of )t(A
0

 (respectively )t(= ). 

Then, for 
2

Λ∈δ , we should have, 

)t(w)t(w)t()t(w)t(A
0

�+δ=                               (22) 

then 
))t(w)t(F()t(w)t(F)(t()t(w)t(A)t(F

0
�+δ=  

))t(w)t(F)(t(==                            (23) 

Implies, 
0)t(w)t(F = , 

0
tt ≥∀                                       (24) 

For w satisfying )t(w)t(w)t(w)t(A
0

�+δ= . 

Since )t(F)t(B)t(A)t(A
0

+= , we should also have: 

)t(w)t(w)t()t(w)t(F)t(B)t(w)t(A �+δ=+         

From (24), we obtain )t(w)t(w)t()t(w)t(A �+δ= , 

and then ))t(A(
2

σ⊂Λ . 

If 0=δ , then from (23), 0))t(w)t(F)(dt/d( = , 

implies cste)t(w)t(F = . In this case, vector w(t) do 

not belong necessarily to )F(ℵ . Further, condition 

(7) ensures that ( ) ξ−≤µ )t(A
0

, 0>ξ , 
0

tt ≥∀ , 

using the fact that ))t(A())t(A(Re(
00i

µ≤λ , 

(Benzaouia, 1994), then, the set of extended 
eigenvalues of matrix )t(A

0
 is stable. Consequently, 

2
Λ  contains n-m stable and non-null extended 

eigenvalues corresponding to n-m common extended 
eigenvectors to matrices A(t) and )t(A

0
 and 

belonging to )F(ℵ . 

We now give two lemmas on the )F(ℵ  with 

mxn
)t(F ℜ∈  and m))t(F(rank = . 

Lemma 3.2 

There exists a matrix 
mxm

)t(H ℜ∈  satisfying 

relation (19) if and only if the existence of 0t >  
such that )F()t(x ℵ∈  implies )F()t(x ℵ∈τ+ , 

0>τ∀ , t∀ . 
Proof: (If): Assume that there exists a matrix 

mxm
)t(H ℜ∈  satisfying (19) and let )F()0(x ℵ∈ , 

that is, 
0)0(x)0(F =                                                      (25) 

Let us present the solution for system (6) in the 
following form, 

0t),0(xe)t(x

t

0
0

d)BF)(A(

≥∀=
∫ ττφ+

                    (26) 

Using the fact that, 

∑ ∫
∞

=

ττφ+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

τφ+=
∫

0k

kt

0

0

d)BF)(A(

d)BF)t(A(e

t

0

0

 

                      ∑
∞

=
∫

⎭
⎬
⎫

⎩
⎨
⎧ τφ++=

1k

kt

0 0
d)BF)t(A(I  

By using (19) and the following relation obtained 
from (19) 

0

d)(HI
)(

)(
d)BF)(A(

0 FeeF

t

0

t

0
0 τ⎥

⎦

⎤
⎢
⎣

⎡
τ+

τφ
τφ

−ττφ+ ∫∫
=

�
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then, 

)0(x)t(Fe)0(xe)t(F
0

d)(HI
)(
)(

d)BF)(A(
t

0

t

0
0

φ=
τ⎥

⎦

⎤
⎢
⎣

⎡
τ+

τφ
τφ−ττφ+ ∫∫
�

By using (25) and the fact that 0t,0)t( ≥∀≠φ , we 

obtain 
0t,0)t(xF)t(

0
≥∀=φ , i.e., )F()t(x ℵ∈ , 0t ≥∀ . 

(Only if): Assume that the existence of 0t >  such 
that )F()t(x ℵ∈  implies )F()t(x ℵ∈τ+ , 0>τ∀ , 

and show that condition (19) holds. Let, that is 
0t,0)t(xF)t(

0
≥∀=φ . It is clear that 

( ) 0))t(Fx(dt/d =  and obviously 

0t,0)t(xF)t()t(xF)t(
00

≥∀=φ+φ �� . 

We obtain: 

⎪
⎩

⎪
⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡
φ++φ

φ
=φ

0)t(xBF)t(AI
)t(
)t(

F

0)t(xF)t(

0

0
� , 0t ≥∀     (27) 

In this step, we can generalize the results of 
(Benzaouia and Hmamed, 1993) to the relation (27). 

This implies the existence of 
mxm

)t(H ℜ∈  such 

that (19) is satisfied. 
Lemma 3.3 
If domain )q,q),t(F(D

21
 is positively invariant w.r.t. 

system (6), 0t ≥∀ , then if )F()t(x ℵ∈ , 

)F()t(x ℵ∈τ+ , 0>τ∀ . 

Proof: Let )F()0(x ℵ∈ , it is clear that 

)q,q),t(F(D)0(x
21

∈ . From (26), we can deduce  

)0(xe)t(F)t(x)t(F

t

0
0

d)BF)(A(∫ ττφ+

= , 0>τ∀ . 

At this step, we can use the proof given in 
(Benzaouia and Hmamed, 1993) as the proof 
remains unchanged. We can deduce that 

0t,0)t(x)t(F ≥∀= . 

We are now able to give the main result of this 
paper. 
Theorem 3.4 
Domain )q,q),t(F(D

21
 is positively invariant w.r.t 

system (6) if and only if there exists a matrix 
mxm

)t(H ℜ∈ , such that: 

i) [ ]
0n00

FI
)t(
)t(

)t(HBF)t(AF ⎥
⎦

⎤
⎢
⎣

⎡
φ
φ−=φ+
�

, 0t ≥∀  

(28) 

ii) 0q)t(H
~ ≤  ,    0t ≥∀                                   (29) 

with matrix )t(H
~

 and vector q are defined by (13). 

Proof: The proof is the same as given in (Benzaouia 
and Hmamed, 1993) and is omitted for brevity. 
Remark: 
When 1)t( =φ , we obtain the result given in 

(Benzaouia and Hmamed, 1993). 
The symmetrical case is obtained directly by 
Corollary3.5. 
Corollary 3.5 
If ρ==

21
qq , domain )q,q),t(F(D

21
 is positively 

invariant w.r.t system (6) if and only if there exists a 

matrix 
mxm

)t(H ℜ∈ , such that: 

i) [ ]
0n00

FI
)t(
)t(

)t(HBF)t(AF ⎥
⎦

⎤
⎢
⎣

⎡
φ
φ−=φ+
�

, 0t ≥∀  

ii) 0q)t(Ĥ ≤ , 0t ≥∀ . 

matrix Ĥ  is given in Corollary 2.4. 
The result of this Theorem is based on the existence 

of a matrix 
mxm

)t(H ℜ∈  satisfying (19). A 

necessary and sufficient condition of the existence of 
a matrix )t(H  is giving by the following Theorem. 

Theorem 3.6 

There exists a matrix 
mxm

)t(H ℜ∈  solution of (19) 

or (28), where 
m

0
F ℜ∈  and m)F(rang

0
= , nm ≤  

if and only if : 

m
AF

F
rang

0

0 =
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
                                                (30) 

Proof: We change only matrix A by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+φ

φ
AI

)t(
)t(�

 

in the proof given in (Porter, 1977) and by observing 
that: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

φ
φ=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+φ

φ
AF

F
 

II
)t(
)t(

0I

AI
)t(
)t(

F

F

0

0

0

0
��  

The proof remains unchanged. 
In order to ensure a rate of increase of the system 
dynamics, one should impose to matrix H(t) : 

0t  , qq)t(H
~ ≥∀ε−≤

 where ε  is a positive real number ( 0≥ε ). 
Comments 
Conditions (28) and (29) guarantee that domain 

)q,q),t(F(D
21

 defined by (8) is positively invariant 

w.r.t system (1)-(7), despite the existence of non-
symmetrical constraints on the control, but these 

IMPROVEMENT OF THE DYNAMICS OF THE CONTINUOUS  LINEAR SYSTEMS WITH CONSTRAINTS
CONTROL

219



conditions are very difficult to verify, because we 
can not compute the matrix )t(H for all t. Then, we 

propose to employ only )0(H  and )(H ∞  to handle 

such situation. 
Before proving the Proposition 3.7, we first need the 
following assumptions about the function )t(φ : 

(a) 0)t( >φ , 0t ≥∀  

(b) )t(φ  is a nondecreasing function. 

(c) ⎟
⎠
⎞

⎜
⎝
⎛

∞φ−φ
∞φ−φ

φ
φ≤φ

φ
)()0(
)()t(

)0(
)0(

)t(
)t( ��

, 0t ≥∀ . 

Remarks 
1) From assumption (a) and (b), we have: 

)()t()0(0 ∞φ≤φ≤φ< , 0t ≥∀  

It follows that, 

1
)()0(
)()t(

0 ≤∞φ−φ
∞φ−φ≤ ,  0t ≥∀  

2) From (b), we have 0)t( ≥φ� , 0t ≥∀ , then from 

(a), we can conclude that: 

0
)t(
)t( ≥φ

φ�
, 0t ≥∀  

3) Giving the inequality (c), and taking its limit as t 
tends to infinity, one has: 

⎟
⎠
⎞

⎜
⎝
⎛

∞φ−φ
∞φ−φ

φ
φ≤φ

φ
∞→∞→ )()0(

)()t(
)0(
)0(

lim
)t(
)t(

lim
tt

��

 

It is clear that: 0
)(
)( ≤∞φ

∞φ�
,  0t ≥∀ . 

Combining this condition and the condition giving 

by Remark2, (i.e. 0
)t(
)t( ≥φ

φ�
, 0t ≥∀ ), this implies 

that: 0
)(
)( =∞φ

∞φ�
. From assumption (a), one has 

0)( =∞φ� . This suffices to conclude that: 

Kcste)( ==∞φ . 

Proposition 3.7 
The polyhedral set defined by (8) is a positively 
invariant w.r.t. system (6) if and only if there exists 

)0(H  and )(H ∞  such that: 

[ ]
0n00

FI
)0(
)0(

)0(HBF)0(AF ⎥
⎦

⎤
⎢
⎣

⎡
φ
φ−=φ+
�

            (31) 

[ ]
0n00

FI
)(
)(

)(HBF)(AF ⎥
⎦

⎤
⎢
⎣

⎡
∞φ
∞φ−∞=∞φ+
�

          (32) 

0q)0(H
~ ≤                                                         (33) 

0q)(H
~ ≤∞                                                         (34) 

Proof: 
(IF) It follows from (31), (32) and (19) that: 

⎥
⎦

⎤
⎢
⎣

⎡ φ+φ
φ−=

0m000
BF)0(I

)0(
)0(FF)0(HAF

�
             (35) 

    ⎥
⎦

⎤
⎢
⎣

⎡
∞φ+∞φ

∞φ−∞=
0m00

BF)(I
)(
)(

FF)(H
�

      (36) 

   ⎥
⎦

⎤
⎢
⎣

⎡
φ+φ

φ−=
0m00

BF)t(I
)t(
)t(

FF)t(H
�

           (37) 

Then the full rankness of the matrix 
0

F  leads to the 

following equation, 

BF)0(I
)0(
)0(

)0(HBF)(I
)(
)(

)(H
00

φ−φ
φ−=∞φ−∞φ

∞φ−∞
��

 

(38) 
Then, 

[ ] BF )()0(I
)(
)(

)0(
)0(

)0(H)(H
0

∞φ−φ−⎥
⎦

⎤
⎢
⎣

⎡
∞φ
∞φ−φ

φ−=∞
��

(

39) 
From (37) and (38), we have: 

)0(H
)()0(
)()t(

)(H
)()0(
)()t(

1)t(H ⎟
⎠
⎞

⎜
⎝
⎛

∞φ−φ
∞φ−φ+∞⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

∞φ−φ
∞φ−φ−=

m
I

)0(
)0(

)()0(
)()t(

)(
)(

)()0(
)()t(

1
)t(
)t(

⎥
⎦

⎤
⎢
⎣

⎡
φ
φ

⎟
⎠
⎞

⎜
⎝
⎛

∞φ−φ
∞φ−φ−∞φ

∞φ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

∞φ−φ
∞φ−φ−−φ

φ+
���

(40) 
We note: 

)()0(
)()t(

)t(e ∞φ−φ
∞φ−φ=                                            (41) 

Then, 
   ( )  )I)t( c)0(eH)(H)t(e1())t(H(

m
++∞−µ=µ       (42) 

where: 

( ) 0
)0(
)0(

)t(e
)(
)(

)t(e1
)t(
)t(

)t( c ≤φ
φ−∞φ

∞φ−−φ
φ=

���
   (43) 

and e(t) is giving by (41). 
By applying Lemma 2.2 ©, we have, 

( ) )t(c))0(H)t(e)(H)t(e1())t(H( ++∞−µ=µ   (44) 

)t(φ  is chosen to satisfy (a), (b) and (c), then by 

applying Lemma 2.2 to equation (44), we obtain, 
( ) c(t) ))0(H()t(e))(H()t(e1))t(H( +µ+∞µ−≤µ  (45) 

where c(t) is giving by (40) and  e(t) by (41). 
Furthermore, 

)t(c))(H(),0(H(max())t(H( +∞µµ≤µ , 0)t(c ≤  (46) 

It follows that if (33) and (34) holds, from the above 

results, one should obtain 0q)t(H
~ ≤ , 0t ≥∀ . 

(Only if): We assume that the polyhedral (8) is 
positively invariant w.r.t. system (6). By using 

Theorem3.4, there exists 
mxm

)t(H ℜ∈  such that: 
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[ ]
0n00

FI
)t(
)t(

)t(HBF)t(AF ⎥
⎦

⎤
⎢
⎣

⎡
φ
φ−=φ+
�

 

0t   0q)t(H
~ ≥∀≤  

In particular, for 0t =  and ∞→t , we obtain: 

[ ]
0n00

FI
)0(
)0(

)0(HBF)0(AF ⎥
⎦

⎤
⎢
⎣

⎡
φ
φ−=φ+
�

 

[ ]
0n00

FI
)(
)(

)(HBF)(AF ⎥
⎦

⎤
⎢
⎣

⎡
∞φ
∞φ−∞=∞φ+
�

 

0q)0(H
~ ≤  

0q)(H
~ ≤∞  

Remarks 
1) The symmetrical case is easily deduced. 
2) In order to augment the system dynamics, one 
should impose to matrices )0(H  and )(H ∞ : 

qq)0(H
~ ε−≤                                                     (47) 

qq)(H
~ ε−≤∞                                                     (48) 

where ε  is a positive number 0≥ε . 
Comments: 
When the regulator 

0
F  is changed to 

0
F)(F ∞φ=∞ , 

the eigenvalues of )(H ∞  will be placed in a region 

of the left half-complex space, which makes them 
more stables than the eigenvalues of )0(H . 

Furthermore, the control law increases the gain as 
the trajectory converges towards the origin. 

)t(φ  is chosen to satisfy assumptions (a), (b) and (c). 

This means that the dynamics amelioration cannot 
be made with enough liberty. 

4 APPLICATION 

The assumption (a), (b) and (c) institute the class of 
regulator, which permit to achieve the desired 
performance. In particular, we can choose )t(φ  in 

the form: 

)e1(1)t(
tα−

−β+=φ , 0, ≥βα  

It is clear that the assumption a)-c) are satisfied. 
The aim of this kind of regulator is to permit to start 
with a slow dynamics very close to the regulator 
with the gain 

0
F  and to force this dynamics to 

increase until it reaches the one of the regulator with 
the gain 

0
F)1( β+  at asymptotic behaviour. In 

addition, this permits the boundless of the time-
varying control gain )t(φ . 

In this case, equation (31) and (32) become the 
following: 

0m00
FI)0(H)BFA(F ⎥⎦
⎤

⎢⎣
⎡ αβ−=+  

000
F)(H]BF)1(A[F ∞=β++  

with : 

I          )0(He)(H)e1()t(H
tt α−α−

+∞−=  

       I e
)e1(1

e
 

t

t

t

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
αβ−

−β+

αβ+
α−

α−

α−
 

and 
BFI)(H)0(H

0
β−αβ+∞=  

Two parameters must be found to satisfy assumption  
(a), (b) and (c) with: 

)e1(1

e
)t(
)t(

t

t

α−

α−

−β+

αβ=φ
φ�

, αβ=φ
φ

)0(
)0(�

, 0
)(
)( =∞φ

∞φ�
. 

From (45), we have: 

I          ))0(H(e))(H()e1())t(H(
tt
µ+∞µ−≤µ

α−α−                         

)e1(1

)e1(e
-

t

tt2

α−

α−α−

−β+

−αβ
    , 0t ≥∀  

In order to recapitulate all the steps required to 
satisfy our purpose, we present the following 
algorithm. 
Algorithm 
Step0: Verify that A possesses (n-m) stable 
eigenvalues. When it is not the case, we proceed to 
an augmentation of the vector entries without losing 
assumption (3a), this technique is given in 
(Benzaouia and Burgat, 1989 - a). 
Step1: Give ε , 0 , ≥βα  and a matrix H(0) such 

that; 

qq)0(H
~ ε−≤  

Step2: Solve equation (31) by using the inverse 
procedure detailed in (Benzaouia, 1994) to obtain 

0
F . 

Step3: Solve equation (32) to obtain )(H ∞ . 

Step4: If qq)(H
~ ε−≤∞  holds, then use α , β  and 

0
F  to realize a time-varying regulator. If not, we 

return to step1. 

5 COMPUTER SIMULATION 

In this section, we present several numerical 
examples illustrating the performance of the 
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proposed regulator. 
Example1 
Consider the second order system (1) given by: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−
=

1

1
B     ;

5.03

21
A ,     [ ]T513q = . 

{ }8117.2,3120.2)A( −=σ  

We choose, 21.0=α , 3=β  and 3.0=ε  and let: 
39.0)0(H −= . 

The resolution of equation (31) gives: 
[ ]8422.5674.9F

0
−=  

and then : 
[ ]36.2369.38F)1(F

0
−=β+=∞  

According to (32), )(H ∞  is given 

by: 4554.12)(H −=∞  and 

[ ] q2770.629202.161q)(H
~ T

ε−≤−−=∞  

We obtain the desired results given by: 
{ } 9998.0,3120.2)BFA(

0
−−=+σ  

{ } 0358.11,3120.2)BF))e1(1(A(
10t0

t
−−=−β++σ =

α−

{ } 5152.12,3120.2)BFA( −−=+σ ∞  

Note that the eigenvalues -2.3120 is common to A 
and 

0
BFA +   

According to the result given in (Benzaouia and 
Baddou, 1999), we choose N=3 and 

0
H  such that 

00000
FHBFFAF =+  and qqH

~
0

ε−≤ , which 

implies from (31) that 02.1I)0(HH
0

−=αβ−= . 

From (Benzaouia and Baddou, 1999), if we choose 
01.1

]3[
=α , we obtain the following results, with: 

{ } 3120.2,9998.0)BFA(
0

−−=+σ   

{ }312.2,   0581.1)BF)(A(
0]3[

−−=α+σ . 

{ }  3120.2,  0968.1)BF)(A(
0

2

]3[
−−=α+σ . 

{ } 312.2,   1359.1 )BF)(A(
0

3

]3[
−−=α+σ . 

Finally, the dynamics amelioration is guaranteed by 
the choice of this regulator. The state and the control 
components for time varying control, piece-wise 
control (Benzaouia and Baddou, 1999) and for a 
fixed gain chosen to be 

0
F , the initial gain is 

represented in figure4 and figure5 respectively. 
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Figure 4: Space state 
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Figure 5: Control evolution 

Example2 
Consider the system (1) with: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

−−

=

5.00

13.0

2.01

B , 

159.02

4445.0

321

A  

Matrix A is unstable, 
 i.e, { }  7983.3 ,2937.14 ,5046.1)A( −=σ . 

[ ]T  78.252637q = . 

We choose 1.0=α  and 2=β . 

Let: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

3.00

04.0
)0(H  

By applying the algorithm, the resolution of 
equation (31) gives: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−−
=

0186.317706.19817.3

4774.179614.15443.4
F

0
 

and 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−−
=β+=∞ 0558.933118.59451.11

4322.528842.56329.13
F)1(F
0

 

If we choose 1.0=ε , according to (32), we obtain: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=∞

3847.269010.6

7369.115118.8
)(H  
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With : { }1312.30,7653.4))(H( −−=∞σ  and : 

[ ]
q            

 6471.64461.1376652.430772.9q)(H
~ T

ε−≤
−−−−=∞  

Finally, we obtain the following results: 
{ }

{ }
{ }.7984.3,7653.4,1312.30)BF)1(A(

.7984.3,2275.3,2358.19)BF))e1(1(A(

.7984.3,5.0,6.0)BFA(

0

10t0

t

0

−−−=β++σ

−−−=−β++σ

−−−=+σ

=

α−  

Note that  -3.7984 is a common eigenvalues of A, 

0
BFA +  and 

0
BF)1(A β++ . 

Furthermore, 
))0(H(Re())(H(Re(

ii
λ≤∞λ , m,,1i …=  

Which means that in the control, the dominant 
eigenvalues of )(H ∞  is more stable than the 

eigenvalues of )0(H . 

According to the result given in (Benzaouia and 
Baddou, 1999), we choose 3N =  and a diagonal 
matrix 

0
H  such that 

00000
FHBFFAF =+  and 

qqH
~

0
ε−≤ , which implies from (31) that: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=αβ−=

5.00

06.0
I)0(HH

0
 

From (Benzaouia and Baddou, 1999), we obtain 
0260.10

]3[
≤α< , if we choose 025.1

]3[
=α , we 

obtain the following results, with: 
{ }7984.3,5.0,6.0)BFA(

0
−−−=+σ   

{ }7983.3,9117.0,6361.0)BF)(A(
0]3[

−−−=α+σ .

{ }7983.3,3119.1,6955.0)BF)(A(
0

2

]3[
−−−=α+σ

{ }7983.3,7247.1,7546.0)BF)(A(
0

3

]3[
−−−=α+σ  

Then, compared to the results given in (Benzaouia 
and Baddou, 1999), the dynamics amelioration with 
a time-varying regu1ator is guaranteed and is better 
than that derived in (Benzaouia and Baddou, 1999). 
The state and the control components for time 
varying control, piece-wise contro1 (Benzaouia and 
Baddou, 1999) and for a fixed gain chosen to be 

0
F , 

the initial gain is represented in figure2 and figure3 
respectively. 
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Figure 2: Space state 
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Figure 3: Control Evolution 

6 CONCLUSION 

In this paper, a time varying regulator is derived 
for linear continuous time systems. Necessary and 
sufficient conditions for domain )q,q),t(F(D

21
to 

be a positively invariant set w.r.t. system (6) are 
given. The proposed technique guarantees the 
admissibility of the control and enables system in 
the closed loop to admit the largest non-
symmetrical constrained control. The asymptotic 
stability of the origin is also guaranteed. The 
results have been shown to be better than the 
literature ones. 

REFERENCES 

Benzaouia A. and A. Hmamed, (a)" Regulator problem for 

IMPROVEMENT OF THE DYNAMICS OF THE CONTINUOUS  LINEAR SYSTEMS WITH CONSTRAINTS
CONTROL

223



Linear continuous time systems with nonsymmetrical 
constrained control using non-symmetrical Lyapunov 
function," In Proc.3th CDC IEEE-Arizona, 1992; (b 
)"Regu1ator problem for continuous time systems with 
nonsymmetrica1 constrained control, "IEEE 
Trans.Aut. Control. vol.38, no10, pp 1556-1560, 
October 1993. 

Benzaouia A. and C. Burgat, (a)" Regu1ator problem for 
linear discrete-time systems with nonsymmetrica1 
constrained control", Int.J.cont, vo1.48, n06,pp.244-
245, 1988; (b)" Existence of nonsymmetrica1 
Lyapunov functions for systems," Int.syst.Sci., 
vo120,pp 597-607, 1989; (c)" Existence of non-
symmetrical stable domains for linear systems," Linear 
A1gebra Appl., vo1.l21,pp.217-231,1989. 

Benzaouia A. and A. Baddou," Piecewise linear 
constrained contro1 for continuous-time systems," 
IEEE Trans. Aut. Control, Vol. 44, no. 7, pp. 1477, 
July, 1999. 

Benzaoiua A.," Application du concept d'invariance 
positive à l'étude des problèmes de commande des 
systèmes dynamiques discrets avec contraintes sur la 
commande". Thesis of UPS LAAS, No 88322, 1988. 

Bistoris G.,"Existence of positively invariant polyhedral 
sets for continuous time linear systems" Control theory 
and advanced technology. voI.7,no3,ppA07-427, 
September 1991. 

Wredenhagen G.F. and P. R. Bélanger," Piecewise linear 
LQ control for systems with input constraints," 
Automatica, vol.30, no3,pp. 403-416,1994. 

Benzaouia A., "The resolution of equation XA+XBX=HX 
and the pole assignment problem" IEEE. Trans.on 
aut.Cont. vo1.39, nol0, pp2091-2094 ,October 1994. 

B. Porter, "Eigenvalue assignment in linear multivariable 
systems by output feedback," InU.contr.,voI.25, no.3, 
ppA83-490, 1977. 

W. Hahn, Stabilty of Motion, Berlin: Springer-Verlag, 
1967. 

P.O. Gutman and P.A. Hagander, "New design of 
constrained controllers for liner systems," IEEE Trans. 
Automat. Contr., vol. AC-30, pp. 22_23, 

1985. 
M. Vassilaki and G. Bistoris, "Constrained regulation of 

linear continuous-time dynamical systems," Syst. 
Contr. Lett., vol. 13, pp. 247-252, 1989. 

C.A., Desoer and M. Vidyasagar, "Feedback Systems: 
Input-Output Properties (New York: Academic Press), 
1975. 

Min-Yen Wu, " On stability of linear time-varying 
systems", CDC-IEEE, pp. 1211-1214, 1982. 

Makoudi M and Radouane L. (1992). On decentralized 
discrete time varying feedback control. Advances in 
modelling and analysis C, vol.33, NA, pp.29-38. 

Makoudi M and Radouane L. (1991). On decentralized 
time varying feedback control of linear continuous 
systems. Troisième colloque magrébin sur les modèles 
numériques de l'ingénieur. November, 26-29, Tunis. 

Anderson B.O.D., Moore LB., 1981, "Time-varying 
feedback laws for decentralised control", IEEE. Trans. 
Autom. Control, vo1.26, N5, 1133. 

APPENDIX I 

Matrix norm ∞M  

The matrix norm given by the vector norm: 
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For this, we use the result of (Benzaouia and Burgat, 
1989 – b, c) 
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APPENDIX II 

NOTATIONS: If x is a vector of 
n

ℜ  then: 

)0,xsup(  xand  )0,xsup(x
i

-

iii
−==

+
, n,,1i …=   

We will further note the following: for two vectors x, y of 
n

ℜ : 

yx ≤  (Respectively, yx < ) if 
ii

yx ≤  (respectively, 

ii
yx < ) n,,1i …= . 

n
I  is the identity matrix of 

nxn
ℜ ; )A(σ  denotes the spectrum 

of matrix A; )Re(λ  the real part of the eigenvalue λ  and 

)A(
i

λ  the ith eigenvalue of A. )A(µ  the measure of A , 

)(Int
m

+ℜ  is the interior of 
m

+ℜ , whereas D∂  denotes 

the boundary of D. F Ker  is the null space of matrix F. 

ICINCO 2005 - ROBOTICS AND AUTOMATION

224


