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Abstract: Industrial robots comprise substantial parts of machine tools and manipulators in production lines. Their 
present development stagnates in their control. Traditional approaches, e.g. NC (numerical control) systems 
combined with PID/PSD structures, provide control of the tool drives as separate units only, but not solve 
the control from view of the whole machine system. On the other hand, in control theory, there are a lot of 
approaches, in which the information on tool dynamics and kinematic relations can be involved. The main 
contribution of this paper is to introduce various utilization and modifications (not only control tasks) of one 
such approach – model-base predictive control. The control is being developed for modern industrial robots 
based on parallel configurations. The modifications of predictive algorithm are substantiated by real 
laboratory experiments. The paper concerns with basic control design and its possibilities to remove 
positional steady-state error. Quadraticaly-optimal trajectory planning is outlined in it. 

1 INTRODUCTION 

Industrial robots comprise substantial parts of ma-
chine tools and manipulators in production lines. 
Their present development stagnates in their control, 
which should ensure not only high accuracy, but also 
economical and safe operation. 

Traditional approaches, e.g. Numerical Control 
systems (NC systems) combined with PID/PSD stru-
ctures, provide control of the robots only from view 
of their drives considered as separate units. It means 
that whole robotic system is taken into account 
as a set of drives and their relations. These relations 
are given by mechanical constrains arising from real 
robot structure – real mechanism. In those appro-
aches, the relations are considered only as distur-
bances acting to individual drives. This concept 
yields no possibilities for further increase of opera-
tional accuracy and load capacity. 

Modern control approaches can involve the most 
of properties of whole robotic system through its 

mathematical model. It is obtained by virtue of ma-
thematical-physical analysis or some numerical 
identification method. Such control approaches are 
generally called model-based approaches. They can 
design, just by use of the mathematical model, 
corresponding and energetically reasonable control 
actions. 

One of modern model-based approaches is multi-
step Predictive control (Ordys and Clarke 1993). It is 
applicable in new developed industrial robots (e.g. 
Neugebauer, ed., 2002), which are based on redun-
dantly actuated parallel structures. They represent 
multi-input multi-output systems and their redundant 
actuation solving the problem of workspace 
singularities (Belda et al. 2003) deter mines different 
number of their inputs and outputs. 

In use of parallel robots, model-based control 
can be fully utilized, for more complicacy of the 
robot structure. Control based on model can better 
distribute the input energy in the structure. Example 
of two parallel structures is shown in Figure 1. 
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Figure 1: Planar parallel robots: horizontal and vertical 
 
Although the parallelism is appeared in robotics 

in the sixties - Stewart platform in 1965 (Tsai, 
1999), their wider development started in the nine-
ties (Neugebauer, ed., 2002). The parallel robots are 
promising way, how to significantly improve accu-
racy, speed and stiffness of machine tools. They can 
be simply understood as movable truss constructions 
or as movable work platforms supported by a set 
of parallel arms (Tsai, 1999). 

The main contribution of this paper is to demon-
strate various utilization and modifications (not only 
control tasks) of predictive control; if it can achieve 
acceptable dynamic control errors and solve steady-
state error problem. The theoretical results imple-
mented in algorithms are substantiated by real 
laboratory experiments with redundant parallel 
structure ‘Sliding Star’ (Figure 1, 3). 

2 MODEL-BASED APPROACH 

The model-based approaches use the model as prior 
information (feed-forward). It enables to predict 
future behavior of a controlled system. Considering 
future requirements and behavior, the input energy 
can be optimized (Ordys and Clarke, 1993). 

The models can be expressed in different forms. 
In case of multi-input multi-output structures 
(MIMO systems), as robots are, the model is useful 
expressed by state-space formulation. State-space 
model more clearly expresses the relations among 
inputs and outputs and their coupling. 

2.1 Composition of the Robot Model 

Generally, the robot is a multibody system. Its 
model is represented by pure equations of motion. 
They are composed mostly from Lagrange’s 
equations (e.g. Stejskal and Valášek, 1996). Then 
the mathematical model described the real system 
is given by a set of differential equations (1) 
 uyyyy )(),( gf +=  (1) 
where input vector u can represent only forces, 

caused by torques on drives in case of horizontal 
configuration 
 τFu =  (2) 
or these forces enlarged by gravitational forces 
in case of vertical configuration 
 τFFu +−= g  (3) 

The equations (2) and (3) serve for final 
determination of real control actions – force effects 
required from drives. Furthermore, this arrangement 
provides the equality 0yy =),(f  for arbitrary y from 
range of definition and zero time derivatives 0y =  
in spite of presence of gravitational forces, which are 
added to inputs (equation (3)). 

The function ),( yyf  produces that the equation 
(1) is nonlinear for state TT ],[],[ 21 xxyyX == . 
One of ways to cope with nonlinearity is to use some 
kind of linearization. In the following subsection, 
one linearizing technique is introduced. 

2.2 Exact Linearization 

The subsection 2.2 deals with the linearization based 
on differences. Against standard linearization using 
partial derivatives, the resultant form is usable not 
only in the working point, but also in its wider 
neighbourhood. 

The nonlinearity in the equation (1) can be 
linearized as follows (Valášek and Steinbauer, 1999) 
 yyyyyyyy ),(),(),( 21 aa +=f  (4) 

and transformed in state-space form 
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Provided that the nonlinear function ),( yyf  
and point TT ],[],[ 21 xxyyX ==  are given; X 
belongs to the range of definition of the function; 
zero elements in X are substituted by suitable 
nonzero number 0→κ  to prevent zero division. 
Furthermore, two types of state variables are 
assumed: generally outputs x1 = y and their time 
derivatives x2 = y ; i.e. 
 TTT xxxx ]],,[],,,[[],[],[ 2221121121 === xxyyX (6) 
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Finally, the assumption from previous section 
has to be also fulfilled for arbitrary y and zero y  
          ]2arbitrary,1[)(),( 0xxXX0Xfyy ===== rrrf  (7) 

Then the decomposition indicated by equation 
(4) can be reached. Its algorithm starts from second 
state variables x2 (i.e. according to the equation (6): 
order is 
 {x21,  x22, ···, x11, x12, ···} i.e. {21, 22, ···, 11, 12, ···}) (8) 

The order is given by amount of the information 
included in the function f(X) and assumption (7). 
The indicated order of selection will considerably 
simplify decomposition, as it will be shown later. 

In view of previous assumptions, the exact 
linearization-decomposition is expressed as follows: 
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(Note: The dots before variables in denominators 
mark division ‘element by element’; division of all 
elements of differences by scalar ∆xij .) 

In detail, the equation (9) is written that way 
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The individual fractions of the equation (10) are 

columns of the coefficients of the matrices ),( yya1  
and ),(2 yya  with following internal structures 
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The first column group (matrix ),(1 yya ) 
contains only zeros due to differences being also 
zeros - the vector function equals zeros for zero time 
derivatives; see equation (6) – e.g. numerator of the 
first column of ),(1 yya  is 

0ff =− )]0,0,0,,,([)]0,0,0,,,([ 131211131211
T

r
T xxxxxx  (12) 

2.3 Discrete State-Space Formulation 

Let the linear (or linearized) differential equation 
or the system of differential equations with separate 
the highest derivation on left side are assumed 
     uyyyyyyyyyfy )(),(),(),( g++== 21 aa  (13) 

 

Then, its continuous state-space form is written as 
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For real-time control the system (14) has to be 
discretized, because continuous realization is not 
feasible. The reason is that the model of the robot 
needs certain time for its own composition and real 
control systems are usually realized discretely. 

The discretization of the model has to be realized 
also in finite time. Therefore, the conventional 
discretization technique (Šulc, 1999) 
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is provided by finite expansion of exponential 
function )( ⋅e . 

Finally, then the discrete state-space model is 
written as follows 
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This model (16) is initial form for further 
explanation of design of predictive algorithm. 

3 PREDICTIVE CONTROL 

Generalized Predictive Control is a multi-step con-
trol (Ordys and Clarke, 1993) as well as a similar 
approach – Linear Quadratic Control (Phillips and 
Nagle, 1995). It offers more powerful control actions 
than standard PID controllers and therefore it gains 
significant and widespread application in industrial 
process control. Its basic formulation can be 
adapted, without difficult modifications, for multi-
input multi-output (MIMO) systems. 

The control is based on local optimization 
of quadratic cost function (quadratic criterion) 
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The criterion is expressed in step k. N is a hori-
zon of optimization, No is a horizon of initial 
insensitivity and Nu is a control horizon. Qy and Qu 
are output and input penalizations and y(k+j) and 
u(k+j −1) are input and output values. 
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The predictive control combines together both 
feed-forward part and feed-back part. The former, 
feed-forward part is represented by prediction 
via mathematical model of the controlled system 
(parallel robot). It forms the dominant part of control 
actions. The latter, feed-back, closed from measured 
outputs, compensates some model inaccuracies 
and certain bounded disturbances. 

In spite of mentioned incontestable advantages of 
predictive control, it can cause, in general point 
of view, occurrence of steady-state errors. It is 
happened not only when penalizations in quadratic 
cost function are nonzero but also e.g. when 
unmeasured disturbances occur. 

It can be solved by modification of generalized 
predictive algorithm, which will be explained 
thereinafter. 

3.1 Equations of Prediction 

The prediction is fundamental part of the design. 
It defines the character of the algorithm. Generally, 
let us consider two types of algorithms: 

• absolute algorithm (standard) 
• incremental algorithm (modified standard) 
Absolute algorithm generates directly values 

of the control actions, their full (absolute) values. 
The algorithm arises from the model (14) or (16) 
without any changes. On the other hand, incremental 
algorithm generates only increments of the control 
actions. To obtain incremental/integrative character, 
the integrator has to be added to the model of the system. 
The following lines show this addition 
     uyyyyyyyyyfy )(),(),(),( g++== 21 aa  (18) 

             uduuduu ~)(' ==→= ∫ tdt  (19) 

after insertion of equation (19) to (18), it is obtained 
 uyyyyfy ~'''))',((''' g++== 21 aa  (20) 

Then continuous state-space formulation is 
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Extended state  X~   is computed by state observer 
(Anderson and Moore, 1979). This modified model 
(22) has the same form as state-space model (14). 
If it is discretized according to (15), then obtained 

model is the same as (16). That form is generally 
correct and it will be used in the following text also 
for the modification (21) and (22). 

Using considered discrete state-space form (16), 
the equations of prediction are usually expressed as 
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and in matrix notation, they are given that way 
 uGfy +=       
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Vector f represents free responds (u = 0) from time 
instant k. The product G u compensates differences 
of free responds from desired values within horizon 
of optimization N (Ordys and Clarke, 1993). 

3.2 Computation of Control Actions 

The control actions are obtained by minimization 
of quadratic criterion (17). It can be simply rewritten 
to the following matrix product (Belda et al. 2002) 
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where y  is a vector composed according to (24) 
(time step k+1, · · ·, k+N), w is a vector of desired 
values, corresponding to vector y  and u is a vector 
of designed future inputs, again in discrete time 
instants for the whole horizon (k, · · ·, N - 1). 

The product (25) is more suitable form that can 
be decomposed in two parts so-called square roots 
of the criterion. From mathematical point of view 
the minimization of square root is more straight-
forward. 

If the square root of the criterion on the right side 
is selected and expression of prediction (24) 
is inserted in this square root, then the criterion is 
given 
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J is a column vector and its Euclidean norm equals 
a cost of the square root of the criterion. 
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The objective is to search for such u, which 
minimizes the square root (26) i.e. the control u 
minimizes the norm |J| of the criterion. In case of 
square root (26), the minimization leads to a system 
of algebraic equations with more rows than 
columns – over-determined system: 
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For optimization of the criterion, the orthogonal 

triangular decomposition (Golub and Van, 1989; 
Lawson and Hanson, 1974) is used. It reduces 
excess rows of matrix A [(2·N·i)×(N·i)] and elements 
of vector b [2·N·i] (i is a number of DOF) into upper 
triangular matrix R and a vector c according 
to the following scheme: 
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Vector cz is a lost vector, whose Euclidean norm 

|cz| is equal value of square root √J (i.e. J = cz
Tcz). 

To obtain unknown control actions u, only upper 
part of the system (29) is need 
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Since a matrix R1 is upper triangle, then the con-
trol u is given directly by back-run procedure. 

The penalizations Qu and Qy (usually selected 
as Qy = diag(λy), λy=1 and Qu = diag(λu), 〉〈∈ 1,0uλ ) 
determines magnitude of the redistributed loss 
in considered horizon of the prediction N. 

The horizons Nu and No have not direct 
utilization here. Control horizon Nu is usually equal 
horizon of prediction N; lower values provide 
equality of control actions at the end of optimization 
horizon – useless for robot motion. Initial insen-
sitivity horizon No is also directly useless. It causes, 
that control differences at the beginning of the hori-
zon N are not considered. 

The different choice of ratio of penalization λu /λy 
together with horizon N enables to generate control 
actions that the available drives were not fitfully 
exerted. However, distributed changes of torques 
are achieved with the cost of certain loss (error), 
that theoretically equals value of the criterion. 

3.3 Quadraticaly-Optimal Trajectories 

As one interesting possibility, the predictive control 
offers, due to its several horizons (N, No, Nu), planning 
trajectories by record of outputs from simulation. 
The task is defined as follows: let us have two points 
– start and end, and at the same time, a path 
(trajectory) is not conditioned, only end-point must 
be achieved (Figure 2). In such case, we can use 
predictive control with specific setting of the output 
horizons N and No. If we set, that the horizon 

maxNN =  and kNNo −= , where k is order of the 
controlled system, then the quadratic criterion will 
consider only last k differences among predicted 
end-point and its reference value. Thus, the matrix G 
and corresponding differences (w - f) in the criterion 
(27), are reduced only on their last k rows and 
elements respectively 
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Lower unit matrix in (31) corresponds to dimen-
sion of input penalization. Such form, specifically 
last k rows of matrix G and corresponding 
differences (w – f), causes quadratic distribution 
of energy to individual inputs (control actions) 
within whole horizon Nmax. 

If indicated procedure would be applied, then the 
control process has no information, in which step 
should stop. Difference of horizons N and No is still 
the same. Information on stopping the control 
process is given by horizon No. 

Described sequence represents specific dead-
bead control spread within time. Thus, it is not 
necessary to achieve end point during minimal 
number of steps (= order of system) in control 
process, but on the other hand (from reasons of 
feasibility by drives) it is better to distribute the 
input energy uniformly without rapid turns in some 
wider horizon. Its length should arise from 
technological requirements. 

The sequence can be used only once under 
condition, that the system is linear and horizon No is 
a little bit lower than horizon N; i.e. value No gives 
the length of horizon, on which the system should 
stop after previous )( No-maxN  steps. 

 
Figure 2: One example of planned trajectory 
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In case of nonlinear systems, the sequence has 
to be repeated with progressively shortened horizon N 
      min,minmax max, NN,-NNN 1,1: +=  (32) 
where the value minN  is suitable selected, 
not exceed number approx. 20 (k < Nmin < 20). 
The higher numbers do not improve the process. 
The repetition provides the changes of model during 
planning of the trajectory according to real state 
of the controlled system i.e. it respects nonlinearity 
by changing of models in compliance with real 
positions and velocities of the robot. 

4 LABORATORY EXPERIMENTS 
     RESULTS AND CONCLUSIONS 

For laboratory tests, robot ‘Sliding Star’ was used. 
It represents vertical planar parallel configuration 
with different levels of potential energies (i.e. gra-
vitational force has to be considered) and redundant 
actuation. The aim of the experiments was control 
based on described predictive algorithms (control 
circuit in Figure 4) fulfilling a given trajectory (time 
histories of control process Figure 5 and 6). 
 

 
 

Figure 3: Lab model of parallel robot ‘Sliding Star’ 
 

 
 

Figure 4: Control scheme for predictive control and PSD controller for comparison (discrete form of PID) 
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Figure 5: Absolute GPC – Steady state error is evident (ts = 0.02s; N = 10, Nu = 10, No = 0, λu = 1e-6) 
 

  
 

Figure 6: Incremental GPC – Steady state error converges to zero (ts = 0.02s; N = 10, Nu = 9, No = 1, ∆λu = 1e-6) 
 

The control circuit (Figure 4) is composed 
in MATLAB-Simulink environment, where the pre-
dictive control algorithm itself was realized as cap-
sulized C-coded s-function in Simulink block (Belda 
et al. 2004). This control circuit (Simulink scheme), 
after its compilation and uploading to digital signal 
processor, was used for real time tests of control 
on laboratory model of parallel robot ‘Sliding Star’ 
(Figure 3). The robot model has three degrees 
of freedom (movement in direction x and z and 
rotation ψ around perpendicular axis y), but it is 
redundantly actuated by fourth rotational DC motors 
with gearings and motion screws. The screws 
provide transformation of rotation of the motors 
to straight-line motion. 

The circuit contains not only the block of con-
troller and block representing robot interface, but 
also other necessary blocks as blocks of generating 
trajectory, model composition, discretization, kine-

matical transformations, measurement of current, 
safety logical blocks etc. 

The Figures 5 and 6 well present the difference 
of the results of real control process with different 
predictive algorithms. 

In the upper parts of figure left sides, the testing 
trajectory (shape ,S’) is shown. In lower parts, there 
are consecutively time histories of position error, 
desired rotation (besides rectilinear motion the robot 
performs also rotation), and just error of rotation. 

On right sides of the figures, there are times 
histories of foursomes control actions – real values 
of torques on appropriate drives. 

The Figure 6 shows the improvement of control 
process, when the incremental modification of pre-
dictive algorithm is used. Indicated error in position 
in steady-state (let us say undesirable offset) is 
evident in Figure 5. On the other hand, the error 
in Figure 6 converges to zero. 

error 

error 
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Figure 7: Time histories of differences at quadratically-optimal trajectory planning for trajectory in Figure 8 
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Figure 8: Really planned trajectory for ‘Sliding Star’ 

On the basis of shown results (representative 
selection only) model-based control can be effective. 
It can achieve acceptable control errors. Model-based 
control can also meet some additional requirements 
not only from control point of view. One of examples 
can be quadratically-optimal trajectory planning (exam-
ple in Figures 7 and 8) described in subsection 3.2. 
The presented simple trajectory planning is basic 
idea, which can solve avoidance of obstacles not 
only in robot workspace. 
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