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Abstract: The recent explosion of publicly available biomedical information gave drug discovery researchers 
unprecedented access to a wide variety of online repositories, but the sheer volume of the available data 
diminishes its utility. This is compounded by the fact that these repositories suffer from a silo effect: data 
from one cannot be easily linked to data in another. This is true for both publicly available sources and 
internal sources such as project reports. The ability to explore all aspects of biological data and to link data 
across sources is beneficial, as it allows researchers to discover new knowledge and to identify new 
collaboration opportunities by exploiting links.  This paper presents an approach to solving this problem and 
an application that allows researchers to browse and analyze disparate bio-medical repositories as one 
semantically integrated knowledge space. 

1 INTRODUCTION 

In the last two years, we have interviewed eighteen 
drug discovery scientists from several 
pharmaceutical companies and research institutes in 
Europe and North America to better understand their 
research tasks and information needs. These 
scientists are responsible for identifying new 
chemical compounds that have therapeutic purposes. 
They spend between 20 and 90 percent of their time 
reading scientific articles that might be pertinent to 
their projects. In some cases, they scan over 900 
abstracts and read 200 articles in a month just to 
keep up.  This translates to 45 abstracts and 10 full 
articles a day – a very time consuming activity. 

Until very recently, their primary external source 
of information was MEDLINE (Katcher, 1999), 
which contains over twelve million bibliographic 
citations and abstracts from articles published in 
over 4,600 bio-medical journals. However, with the 
recent advancement of computational molecular 
biology fields such as genomics and proteomics, 
these scientists find an increasing number of new, 
more structured information sources indispensable 
(Elmasri & Navathe, 1999; National Library of 
Medicine, 2003). Some of these sources include 
GenBank (gene sequence), KEGG (biological 
pathways) and OMIM (genetic disorders). 
Furthermore, as pharmaceutical companies introduce 
their own corporate intranets, highly valuable 

internal information such as project reports, lab 
notes and screening results become available 
enterprise-wide and may be relevant to these 
scientists. 

As a result, these scientists have to face dozens 
of information sources each with its own intricacies, 
access methods and nomenclature.  Even a simple 
question such as “Is there any internal expert on T4 
Polynucleotide Kinase?” can pose significant 
challenges as no single source may contain the 
answer. The answer may have to be constructed by 
examining the authors of various articles, reports 
and patent documents that are indirectly related to 
this particular kinase, such as through its proteins 
and biological pathways.  While doing this is 
certainly possible, it could be very time-consuming 
as it requires access to multiple heterogeneous 
internal and external sources.  

Existing systems such as GeneLynx (Lambrix & 
Jakoniene, 2003), DiscoveryLink (Haas et al., 2001) 
and SRS (Etzold, Ulyanov & Argos, 1996) view this 
as a distributed database problem and approach it by 
integrating the underlying schemas of the sources 
into a global schema and by providing a query 
language to go against the schema. Few of them deal 
with the nomenclature issues and the fact that 
scientists may pose questions at a different level of 
abstraction than what is available in the underlying 
sources (Geffner et al., 1999). 
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Developing a system that is appealing to the 
scientists is further complicated by their lack of 
computer skills making direct exposure to a formal 
query language, for example, impractical. Form-
based user interfaces are not effective as different 
users with diverse backgrounds fill out the forms 
differently. 

In this paper, we introduce our approach to 
addressing these issues and the Knowledge 
Discovery Tool, an application that embodies our 
answers. Our approach is based on the creation of a 
semantic index to information contained in the 
underlying heterogeneous sources. The basis for this 
index is the knowledge model that relates all major 
concepts in the domain. Domain and application-
specific rules utilize this index to infer relationships 
of potential value to researchers. The tool’s 
visualization framework enables intelligent 
browsing to support research and investigation tasks 
by providing the ability to uncover indirect or 
hidden linkages among pieces of information. 

2 KNOWLEDGE MODELING 

Central to our approach is a technique for modeling 
the kind of knowledge a scientist needs to perform 
his or her job (Brody et al., 1999). This model 
contains a representation of bio-medical concepts: 
entities and the relationships between them. This 
model is an ontology designed specifically for 
scientists performing a predefined set of tasks.  

The model shown in Figure 1, contains entities 
and relationships that depict treatments for a disease, 
how those treatments are related to a set of drugs, 
the chemical compounds that comprise those drugs, 
how the compounds are related to various target 
proteins, and so on.  This knowledge model is a 
representation of how the scientists think about the 
information they need in order to perform their 
tasks. 

The model enhances the accessibility of 
knowledge in three major ways.  First, it creates a 

layer that is independent of the location of the 
underlying information.  Second, the instantiated 
model allows the user to search and browse the 
entire body of knowledge as one homogeneous 
space of related entities while maintaining links back 
to the original sources.  

Third, when used with classification hierarchies, 
the model becomes a powerful abstraction 
mechanism (Geffner et al., 1999). For example, 
when a scientist inquires about the role of G-protein 
in Central Nervous System (CNS) diseases, a 
straight text search might not reveal anything as the 
underlying sources may not contain the phrase 
“Central Nervous System” or its synonyms. 
However, these sources may contain references to 
the relationship of G-protein and Parkinson’s or 
Alzheimer’s diseases. To answer the above question, 
the system must utilize a disease classification 
hierarchy such as the one in Medical Subject 
Headings (Lowe & Barnett, 1994) which classifies 
Parkinson’s and Alzheimer’s as sub-diseases of 
CNS. As a result, the system can exploit these 
linkages and provide information about the 
relationship between G-protein and higher level 
diseases. 

In addition to structural relationships, our 
knowledge model contains dozens of domain-
specific functional rules such as “Any person who 
has authored more than X documents on a protein is 
an expert in that protein.” Such rules constrain and 
guide the automatic inference process. 

3 KNOWLEDGE DISCOVERY 
TOOL 

When the model is instantiated with existing data 
sources as described in section 4, it becomes a giant 
semantic index into the underlying sources and can 
support a variety of applications. One can easily 
build an SQL interface for example, to query the 
index. However, given that our target users have 

Figure 1: A knowledge model to support drug discovery scientists. 
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little or no SQL or information retrieval skills, we 
built a web-based intelligent browser called 
Knowledge Discovery Tool (KDT) that uses our 
semantic index and the model’s inference rules to 
select and present the most likely relationships 
among the data of interest to the user.  

To demonstrate some of the KDT features, 
consider the following interaction: A drug discovery 
scientist who specializes in Oncology is researching 
a potential link between Parkinson’s disease and 
cancer. She needs to bring herself up-to-speed about 
Parkinson’s disease in a short time. She needs to 
identify experts in the area and any past work that 
might be relevant. 

She starts up KDT, selects the search type 
“Disease” and types “Parkinson’s” into the search 
box. KDT then displays all diseases whose names 
include “Parkinson’s”. She clicks on “Parkinson’s 
disease” and is brought to the Landscape View for 
that disease (Figure 2). The view divides the screen 
into 9 (3x3) panes. The center pane shows her 
current focus (Parkinson’s Disease). Each outer pane 
displays information related to the current focus as 
filtered by the knowledge model. She sees recent 
literature related to the disease in the top left pane, a 
list of experts on the disease in the top center pane, 

and a list of organizations that have published 
articles or own patents related to the disease in the 
top right pane. The center row contains a list of 
related chemical compounds; the disease itself; and a 
list of biological target classes used for treatments of 
the disease. 

The researcher can see linkages among the items 
in the panes indicated by light grey lines that are 
visible without cluttering the screen. The lines let 
users visually maintain the connectivity among 
entities, which seems to be intuitive to many users. 
Studies have shown that exposing a large number of 
relationships stimulates fresh thoughts and breaks 
through creative blocks (Schneiderman, 2000).  

The view facilitates fast browsing by minimizing 
the need for mouse clicking. For example, if the user 
hovers the mouse over an item, a tool-tip will pop up 
displaying the item’s full title and attributes and it 
will also highlight its links. Since each item 
represents an index to the underlying source, the 
user can view the source by double clicking on the 
item.  

Single clicking on an item will re-orient the 
knowledge model, move the item to the center pane, 
and refresh the contents of the outer panes 
accordingly. Figure 3a shows how the view looks 

 (a) (b) 
Figure 3: (a) Landscape view of gene “PRKN”, (b) A window showing a path that substantiates the link 

between PRKN and UBE2L1 

Figure 2: Landscape View of “Parkinson’s disease”. 
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after the user has clicked on PRKN - the third gene 
(locus) in the bottom middle pane of Figure 2. 

Each outer pane of the browser presents the 
results of a query run against the underlying 
semantic index, filtered and prioritized according to 
the rules in the knowledge model. The user can 
easily customize the view in each pane by picking 
from a large library of predefined views. For 
example, the user can change the list of disease 
expert shown in top center pane of Figure 3a to 
show those people that have been published about 
PRKN in the past 3 years and sort the list based on 
their most recent publication date.  A user who is an 
oncologist can tailor a pane to display only genes 
that relate to PRKN and cancer-related diseases.  

 KDT provides utilities to explore potential 
linkages among entities that are depicted as grey 
lines. For example, one of the items in the left center 
pane in figure 3a, UBE2L1, is a gene that has been 
associated with several forms of cancer including 
Leukemia and Breast Cancer (Ardley et al., 2000). 
The link between PRKN and UBE2L1 is drawn as a 
dashed line indicating there are multiple degrees of 
separation between them. By clicking on the right 
menu over the line, the user can query the tool to 
show how this link is derived. The tool found two 
paths that substantiate the link. Figure 3b shows one 
of them: a path with six items as follows. Gene 
PRKN has been renamed to PARK2 and this gene 
produces the Parkin protein. Parkin is linked to 
another protein UbcR7 through two articles. The 
bottom half of figure 3b shows one of the articles 
that describes an interaction between Parkin and 
UbcR7 in rat brain (Wang et al., 2001). UbcR7 in 
turn is produced by UBE2L1. Deriving links in this 
manner to expose hidden or indirect links that the 
users might not have thought of is a powerful 
capability (Schneiderman, 2000). 

KDT also serves as a powerful collaboration 
tool. By annotating items or links, users can 
informally share their opinions and enrich the 
existing contents. Furthermore, by continuously 
monitoring common bookmarks and users’ 
navigation paths, the tool also can match users with 
similar interests. 

Because the index is continuously updated, the 
researchers can use KDT to monitor new items and 
links related to a topic of interest. We also 
developed wizards similar to those used in setting up 
printers in Microsoft Windows, to automate the 
repetitive tasks that the users frequently do with 
KDT. 

4 INSTANTIATING THE MODEL 

The process used to instantiate the model is very 
similar to the one used for data warehousing 
(Fayyad et al., 1996). The data from the selected 
data sources is extracted and transformed into its 
relational form. It is then cleansed of errors using a 
semi-automated approach.  Thesauri are created in 
the process. Cleansed data is then integrated.  This 
process is described more in detail below. 

4.1 Data Selection, Mapping and 
Extraction 

The 13 sources used in the current implementation 
of KDT are: Enzyme, GeneOntology, NCBI 
Genome, Interpro, KEGG, LocusLink, MeSH, NLM 
Taxonomy, OMIM, MEDLINE, NCBI RefSeq, 
Swissprot, and Unigene. 

First, data fields in each source are mapped onto 
the attributes of entities in our model. For example, 
NLMTaxonomy’s TaxID, LocusLink’s OrganismID 
and RefSeq’s OrganismID are all mapped to the 
OrganismID in the model. We map all attributes of 
all entities and relationships defined in our model. 
As the above example indicates, most attributes in 
the knowledge model are instantiated from multiple 
sources.  This, of course, generates conflicts and 
they will be addressed in section 4.3. 

Second, we create a representation of each 
source in a local database. Once the information is in 
the database, some of the fields have to be parsed 
further. For example, the pathway description field 
from KEGG may contain a piece of text like 
“Glycolysis/Gluconeogenesis – Aquifex aeolicus” 
which would be parsed into two subfields:  
“Glycolysis/Gluconeogenesis” as the pathway’s title 
and “Aquifex aeolicus” as the associated organism 
name. This secondary parsing could also result in 
building new hierarchies. For example, by parsing 
the ExPASy’s EnzymeID, one can determine that 
the protein family with EnzymeID of “EC.2.7.1.12” 
is a child of EnzymeID  “EC.2.7.1.” We use dozens 
of rules to guide data extraction. 

4.2 Schema Integration 

This phase reconciles diverse schemas in the local 
database with the schema as defined in the 
knowledge model. Lenzerini (2002) describes this as 
the local-as-view (LAV) process. It is done in two 
steps. The first step handles the fact that a data 
source could be mapped into multiple entities in the 
knowledge model. This is accomplished by creating 
multiple database views. The second step handles 
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the fact that an attribute of an entity can be 
assembled from multiple sources. Thus we need to 
combine multiple database views from step one. 
This is accomplished by writing SQL scripts to 
insert the contents from the appropriate views to the 
target table for each entity. 

4.3 Instance Integration 

Schema integration produces a large number of 
redundant instances for each entity primarily due to 
the fact that different sources use different 
nomenclature or provide different set of attributes. 
The objective of instance integration is to remove 
conflicts and merge redundant data of an instance by 
comparing one or more of its attributes.  

We start instance integration by identifying 
redundant records. We employ the vector space 
model (Fasulo, 1999) to determine the similarity 
among attributes through the use of two broad 
classes of heuristics: ID-based and text-based. In ID-
based heuristics, we assume that there are one or 
more IDs that uniquely identify an instance. While 
this is the most straightforward in most cases, the 
process is complicated by the fact that some of these 
IDs may not be consistent. 

The heuristics to solve ID consistencies were 
manually developed by domain experts after visually 
inspecting the origins of the inconsistencies. For 
example, we found that the combination of 
SwissprotID and OrganismID can be used to 
uniquely identify a gene for our purpose. This class 
of heuristics is applicable to gene, proteins, 
pathways, protein families and genomes where the 
use of IDs is quite pervasive. 

The text-based heuristics are applicable to 
organisms, phenotypes, organizations and people 
where IDs are not readily available. We employ 
many techniques and heuristics to resolve the name 
similarity problem. Many of such techniques are 
also used in WHIRL (Cohen, 2000). They range 
from simple removal of punctuation (e.g., 
“Legionnaires' Disease” vs. “Legionnaires 
Disease”), to comparing last name and first initial 
(e.g., “A. aeolicus” vs. “Aquifex aeolicus”), to using 
dictionaries and synonyms to match “zebrafish” to 
“zebra danio”. 

Our synonym tables are created in three ways. 
First, there are several sources such as 
NLMTaxonomy that contain synonym information 
explicitly and we simply import them. Second, some 
sources contain implicit synonym information that 
we have to extract. For example, Swissprot’s protein 
name may contain text like “Alzheimer's disease 
amyloid A4 protein precursor (Fragment) (Protease 
nexin-II) (PN-II) (APPI)“. From this piece of text we 

extract “PN-II” and “APPI” as the synonyms of 
“Protease nexin-II”. The third way is described in 
conflict resolution below. 
In conflict resolution, we tag each attribute with the 
source from which the value was extracted. Each 
source is associated with a confidence value between 
0 and 10 by a domain expert. An attribute with a 
higher confidence value can overwrite those with 
lower confidence values. However, for the attributes 
that signify the names of an object, we mark them as 
potentially synonymous instead of overwriting them. 

The merge step involves a domain expert to 
confirm that the identified redundant records are 
indeed redundant and that the suggested merged 
record is correct. We developed a small application 
called Thesaurus Builder to assist a domain expert in 
this task. This application also allows the domain 
expert to manually identify instances to merge. 
While this manual step is time consuming, it is 
important to have an expert to validate this step as 
the quality of the entire integration result is highly 
dependant on it. The decisions made by the domain 
expert are captured so that they can be automatically 
re-applied in the future. 

4.4 Post-Integration   

While published articles in MEDLINE form one of 
the richest sources of bio-medical information to 
date, automatically extracting semantic information 
from them is hard (Jacquemin, 2001).  Currently, we 
use these articles to create weak unlabelled links 
between the entities in the knowledge model through 
the co-occurrences of terms in the articles. The more 
articles that link the two entities, the stronger the 
link is.  The strength value is then used to rank and 
sort the query results. 

Another factor in determining the strength value 
is the length of inferred relationships. For example, a 
gene can be related to a disease through its proteins 
and variants. As each intermediate step introduces 
further uncertainty, we assigned lower strength to 
the relationships inferred using longer paths. 

5  OUTCOME AND BENEFIT 

As shown in section 3, a KDT user is able to explore 
thematically related information across multiple data 
sources as if it were a single richly connected 
knowledge space. The user does not have to be 
concerned with the details of the underlying 
databases, their formats, or their access methods. 
Exploration of a potential link between two entities 
as shown in Figure 3b that takes minutes with KDT 
would require hours or perhaps days using the 
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access methods provided by the 13 knowledge 
sources we cover.  

We developed the components used to 
instantiate the knowledge model using Microsoft-
based technologies including Microsoft Windows 
2000 Server and Microsoft SQL Database. KDT was 
written entirely in Java as a Java applet. This eases 
the deployment of the tool as it can run in most 
Internet browsers that support Java.  

From the thirteen sources we have selected, the 
instantiated knowledge model contains over 1.1 
million genes, 1.6 million proteins, 200,000 
organisms, 12,000 pathways, 6,000 diseases, 12 
million articles and over 4 billion relationships 
across these biological entities.  Prior to the post-
integration phase, the instantiated knowledge model 
is about 70GB in size. Once the indices and pre-
calculated relationships are created, the size of the 
database grows to 400GB. 

While we have not conducted a formal 
evaluation of KDT’s effectiveness as compared to 
the current access methods, bio-medical researchers 
who have tried KDT have given us very positive 
feedback and expressed a strong desire to use the 
tool in their daily activities. In one particularly 
gratifying case, the senior leader of a heart failure 
research project tried it during a ten-minute 
demonstration and discovered a valuable 
relationship between heart failure and leukemia of 
which he had not been aware. In another case, a 
post-doctoral biologist discovered a new link 
between Lou Gehrig’s disease and genital diseases 
suggesting that a drug for one disease can be 
modified for the treatment of the other. 

Currently, we are working with several 
pharmaceutical companies, the University of 
Colorado Health Sciences Center in Denver and the 
Integrative Neuroscience Initiative on Alcoholism – 
an initiative sponsored by the National Institute of 
Alcohol Abuse and Alcoholism – to formally 
evaluate the effectiveness of KDT. We have over 30 
people who have signed up for our initial pilot. We 
estimate the formal evaluation will be done in 
Spring 2004. 
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