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Abstract. This paper presents the FBT (FIL to Büchi automaton Translator) 
tool which automatically translates any formula from FIL (Future Interval 
Logic) into its semantically equivalent Büchi automaton. There are two advan-
tages of using this logic for specifying and verifying system properties instead 
of other more traditional and extended temporal logics, such as LTL (Linear 
Temporal Logic): firstly, it allows a succinct construction of specific temporal 
contexts, where certain properties must be evaluated, thanks to its key element, 
the interval; and secondly, it also permits a natural, intuitive, graphical repre-
sentation. The underlying algorithm of the tool is based on the tableau method 
and is specially intended for application in on-the-fly model checking. In addi-
tion to a description of the design and implementation structure of FBT, we 
also present some experimental results obtained by our tool, and compare these 
results with the ones produced by another tool of similar characteristics (i.e. 
based on an on-the-fly tableau algorithm), but for LTL. 

1   Introduction 

The FBT (FIL to Büchi automaton Translator) tool presented in this paper automati-
cally translates a formula from FIL (Future Interval Logic) [11] into its semantically 
equivalent Büchi automaton. The underlying algorithm [6] is based on the tableau 
method [13], and is specially intended to be applied to on-the-fly model checking. 
Until very recently, the integration of both approaches (tableau and on-the-fly) for an 
interval logic was considered unfeasible for this type of logic. For this reason, we 
consider FBT to be not only an innovation but also an important achievement. 

Traditional temporal logics, such as LTL (Linear Temporal Logic) [10], allow rea-
soning about the relative ordering of events in a system. However, we must formulate 
quite intricate expressions with them in order to describe a temporal context in which 
certain requirements or properties must only be satisfied within it. This, together with 
the fact that these logics do not have an intuitive representation, such as a semanti-
cally equivalent graphical notation, has lead many system designers to believe that 
they are difficult to use as formal description languages for the requirement specifica-
tion of systems, and that many of the specifications created with them are formulas 
which are too complicated to understand. All of this has hindered a more extended 
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use of the mentioned logics as specification languages during the analysis phase of 
the development cycle of industrial applications. Unlike these logics, the formal 
specification language FIL which our tool uses, allows the succinct construction of 
bounded temporal contexts, thanks to its key element, the interval, which defines 
such contexts clearly and concisely. In addition to the textual representation of its 
formulas, this logic also has a natural, intuitive, graphical representation, called GIL 
(Graphical Interval Logic) [1], and both the textual and graphical representation are 
semantically equivalent. 

This paper is organized as follows. Section 2 introduces the textual syntax of FIL 
and the graphical syntax of GIL, and also the semantics associated with these. Section 
3 describes the design structure and implementation of FBT, while Section 4 presents 
some of the experimental results obtained, and compares these with the results ob-
tained with another similar tool (i.e. based on an on-the-fly tableau algorithm), but 
with LTL as the specification formalism. Finally, we present the conclusions and 
related lines of research which we would like to follow in the future. 

2   Specification Formalism 

Since our purpose is to specify the temporal properties of a system in a formalism 
that is very close to the way in which a human being reasons, we shall use a proposi-
tional, linear-time temporal logic, which uses an intuitive, graphical representation for 
its formulas. This logic, called GIL (Graphical Interval Logic) [1], allows us to carry 
out logical reasoning at the level of time intervals instead of instants. Nevertheless, its 
primitive elements are instants. An interval is therefore formed by identifying its end-
points, which are instants satisfying certain properties. These points are searched for 
in the global context representing an infinite sequence of states corresponding to a 
system execution. Once the end-points of an interval have been located, the semantics 
of the nested formula (to the interval) is restricted to the subtrace delimited by these 
points. Each interval therefore represents a specific temporal context. 

The first three graphical formulas in Figure 1 show the basic types of properties 
that can be expressed over an interval. Thus, (a) is an initial property, which states 
that the formula f expressing such a property holds at the first state of the interval, 
where f is drawn left-justified below its left end-point; (b) represents an invariant 
property over the interval, where f  is placed below it and indented to the right of its 
left end-point to express that f  holds at every state of the interval; and (c) give us an 
eventuality property stating that f eventually holds at some state within the interval, 
where a diamond is placed on it with f  left-justified below the diamond. 

In the formulas explained, f can be any GIL formula, even another interval for-
mula, and the intervals in them can represent the global context or a subinterval ex-
tracted from a larger interval. Each end-point of a subinterval is defined by a search 
pattern represented by a horizontal concatenation of dashed search arrows, where 
search targets are left-justified below the arrowheads. Thus, the formula (d) in Figure 
1 states that i is an initial property in the subinterval extracted from the global context 
by using a first search that locates the earliest state at which f  holds (its left end-
point), and from this, the right end-point is located by searching for the formula h 
from the state where g is found. 
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Fig. 1. GIL formulas expressing different types of properties 

Every GIL formula is read from top to bottom and from left to right. The topmost 
interval represents the global context. Formulas can be composed using the usual 
infix Boolean operators laid out horizontally or vertically. Further details about the 
visual syntax of GIL can be found in [1]. 

FIL (Future Interval Logic) [11] is the textual representation used for defining the 
semantics of GIL. The equivalence between the textual formulas of FIL and the cor-
responding graphical formulas in GIL is established in [1]. The syntax of FIL for a 
finite set P    of primitive propositions, where p∈P , is defined as follows: 

  f ::== p   |   ¬f   |   f1 ∨ f2   |   I f /* FIL formulas */ 
  I ::== [θ1|θ2)   |    [−|θ2)   |   [θ1|→) /* Intervals */ 
 θ ::== →f    |   →f,θ /* Search patterns */ 

A FIL formula is purely propositional when it does not contain any interval. Oth-
erwise, it is an interval formula, with its structure given by I f, where I represents an 
interval and f represents any other FIL formula nested to it. All the intervals are half-
open, including their left but not their right end-point. Each interval end-point is de-
fined by a search pattern, which is either a sequence of one or more searches or a 
trivial pattern (represented by − or →). Each search, e.g. →f, locates the first point in 
the reflexive future (which includes the current state) where the target formula f 
holds. When several searches are sequentially composed, such as in →g,→h, each 
subsequent search begins in the state located by the previous search; the last of these 
therefore locates the end-point of the interval that such a pattern defines. The trivial 
search pattern − leaves us at the point where we are, while → takes us to the end of 
the current context. 

The other standard constructs of Propositional Logic are defined as abbreviations 
of certain expressions, i.e. T=p∨¬p, F=¬T, ¬¬f = f,  f1∧ f2 = ¬(¬f1∨¬f2) and f1⇒f2 = 

¬f1∨f2. The restricted syntax presented above for FIL can be extended with several 
LTL temporal operators, defined as other abbreviations. Thus, since the logical con-
stant F can only hold in the null context, the formula [→¬f |→)F can never therefore 
be satisfied in a trace in which ¬f  holds at some state, with this formula being 
equivalent to f. Its dual, ¬[→f |→)F, states that there is some instant in the future 
where f  holds, which is why it is equivalent to ◊f. The operator strong until is defined 
as f1U f2 = ¬[→(¬f1∨ f2)|→)¬f2. The complete FIL formal semantics can be found in 
[11]. The FIL formulas corresponding to the GIL ones in Figure 1 are: (a) f, (b) f, 
(c) ◊f, and (d) [→f |→f,→g,→h) i. 
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3   Design and Implementation of FBT 

Figure 2 describes the structure of the different classes of FIL formulas considered in 
the design and implementation of FBT, using a class diagram in UML (Unified Mod-
eling Language) [12]. Fil is an abstract class that defines the elements which are 
common to the different types of formulas, defined in its subclasses, which are: FilA-
tom, the class that represents the literals (atomic propositions, negated or not); Fil-
Constant stands for the logical constants (T or F); FilJunct implements the conjunc-
tions and disjunctions of (two) FIL formulas, while FilIff does something similar, but 
with equivalences and exclusive disjunctions; and FilInterval, the class that builds 
interval formulas, comprising two search patterns which attempt to locate each end-
point of the interval, and a FIL formula nested to it. An instance of the class Search-
Pattern is a sequence of zero (if it is a trivial pattern) or more FIL formulas, as many 
searches as comprise that pattern. 

Fil
1         nested_formula

2

SearchPattern

2

2

0..N searches

FilAtom FilJunct FilIff FilIntervalFilConstant

 

Fig. 2. UML class diagram representing the different types of FIL formulas 

The UML class diagram shown in Figure 3 describes the structure of the graph that 
FBT generates from a FIL formula. FilGraph is therefore the class representing the 
graph, which is formed by the aggregation of nodes (i.e. objects of class Fil-
GraphNode). Two nodes of the graph are related if a transition exists between them. 
This has been represented by means of an association with two role names: predeces-
sor and successor. The structure of each node is constituted for the aggregation of the 
following sets of (zero or more) FIL formulas: 

• New: Temporal properties that must hold in the node and have not yet been proc-
essed. When a node has been processed completely, this set is empty. 

• Old: Formulas that must hold in the node and have already been analysed. 
• Next: Temporal properties that must be satisfied in all the next nodes (i.e. states 

which are its immediate successors). This set can only contain interval formulas, 
since these are the only FIL formulas that can postpone their fulfilment. 

• Literals: Literals stored in Old. 

The implementation of FBT is based on the C++ code of LBT (LTL to Büchi 
automaton Translator) [8], a tool of similar characteristics, since it is based on an on-
the-fly tableau algorithm [3], but with LTL as the specification formalism. Conse-
quently, both tools share the same input and output interface, and the syntax and 
notation for all the formula components that are commonly accepted by both, i.e. the 
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logical constants, literals, propositional operators and temporal operators of LTL. Our 
initial intention was to integrate FBT into MARIA [9], a tool that performs on-the-fly 
model checking. This was the main reason for reusing part of the LBT code in order 
to make integration easier, since LBT is the translator used in MARIA. Obviously, we 
have had to incorporate a series of specific classes and functions for the analysis of 
interval formulas, which are not present in LTL. We have also implemented a series 
of heuristics in order to improve and optimise the code; we have therefore managed 
to generate automata with fewer nodes and edges and in less time, and to determine 
the accepting states more quickly. The FBT input and output interface as well as 
additional details about the tool design and implementation can be found in [5]. 
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Fig. 3. Structure in UML of the graph generated from a FIL formula 

4   Experimental Results 

As FBT has been implemented from the LBT code, this section not only presents 
some experimental results obtained with our tool, but also those generated by LBT 
for the same or equivalent specifications, in order to compare both tools. 

FBT recognizes not only the unique temporal operator of FIL, i.e. the interval, but 
also the following temporal operators of LTL:  (always or henceforth) and its dual 
◊ (eventually), and U (until strong) and its dual V (release), but as abbreviations of 
the corresponding FIL interval formulas. FBT therefore accepts LTL formulas, such 
as the one shown in the following example, but automatically transforms them into 
their equivalent ones in FIL, which are the ones that it really stores and processes. 

Example 1: For the input specification ◊p0 ∧ ◊p1, FBT processes the FIL formula 
¬[→p0|→)F ∧ ¬[→p1|→)F in order to build its semantically equivalent automaton, 
which is graphically represented in Figure 4 using the tool GRAPHVIZ [2]. It should 
be noted that each edge is labelled with the conjunction of literals (in prefix notation) 
that enables that transition. The upper number labelling each node is its state identi-
fier, while the lower numbers identify the acceptance conditions that it satisfies. The 
initial state is always shaded and numbered 0. In order to compare the automata gen-
erated by FBT and LBT, we count the number of nodes, edges and acceptance condi-
tions, as well as the number of states that satisfy each condition. Since both tools 
produce generalized Büchi automata, the resulting automaton generally have k accep-
tance conditions; each one defines a set of accepting states, Fi (with i=1..k), which 
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contains those states that satisfy it. The automaton in Figure 4 has 9 nodes (the initial 
node is not considered), 20 edges (the ones leaving the initial node are counted), and 
two acceptance conditions (k=2), the first (identified by the number 0) is satisfied by 
six states (nodes 3, 4, 5, 7, 8 and 13), while the second one (identified by the number 
1) is satisfied by another six (nodes 3, 4, 7, 11, 13 and 14). When k>1, if we want to 
obtain a classic Büchi automaton, i.e. one with only one set of accepting states, F, we 
only need to obtain the states that are in the intersection of the sets Fi (i.e. F=∩Fi). 
There are therefore four accepting states in our example (nodes 3, 4, 7 and 13).  

 

Fig. 4. Büchi automaton generated by FBT for the formula ◊p0 ∧ ◊p1 

Table 1 gathers the values counted in the automata generated by FBT and LBT for 
various specifications. The one explained in Example 1 is shown in Case 5. Each case 
occupies two rows: the first row corresponds to the results obtained with LBT, and 
the second row is for those produced by FBT. It should be noted that in the second 
one, the input specification is represented in the extended syntax of FIL, while the 
processed formula is expressed in its restricted syntax. We can observe that for the 
simplest specifications (Cases 1 and 2), we obtained the same values in the automata 
generated by both tools. However, for slightly more complex specifications (Cases 4, 
5 and 6), FBT generally produces smaller automata than those obtained with LBT. 
The formulas containing either the operator U or its dual V are usually the exception 
to this rule, since for these, LBT usually produces automata which are slightly sim-
pler than those generated by FBT (Case 3). This is due to the fact that the correspond-
ing interval formula which is analysed by FBT attempts to “simulate” the property 
that these operators represent more naturally. Something similar happens in the oppo-
site way with interval formulas: since LBT does not admit interval formulas, it is 
necessary to resort to appreciably more complicated expressions (Case 7) in order to 
provide it with an equivalent LTL formula, as Example 2 explains. 

Example 2: Since LBT does not recognize the formula [→p0|→p1) ¬p2, we must 
input an equivalent LTL formula. The semantics associated with this interval formula 
indicates that it holds whenever one of the following four conditions is fulfilled: 
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1. p0 does not hold in the future, i.e. the LTL formula ¬p0 holds. 
2. p1 never holds in the future, i.e. ¬p1 is true. 
3. p1 precedes p0, which is expressed as p1V¬p0 in LTL. This formula asserts that in 

the first state where p1 holds as well as in all the previous ones to it ¬p0 holds. 
4. Either p0 and p1 hold in the same state or p0 holds strictly before p1 and (in this 

case) ¬p2 is invariantly satisfied from the instant in which p0 holds until p1 is ful-
filled. Both conditions are formulated in LTL as ¬p1 U (p0 ∧ ¬p2 U p1). 

Consequently, the equivalent formula to [→p0|→p1) ¬p2 that must be inputted 
into LBT is the disjunction of the previous four LTL formulas, i.e. ¬p0 ∨ ¬p1 ∨ 
p1V¬p0 ∨ ¬p1 U (p0 ∧ ¬p2 U p1). The interval formula clearly expresses the ex-
plained property more concisely and elegantly. Moreover, the analysis carried out by 
FBT produces a simpler automaton (see Case 7 in Table 1).  

Table 1. Comparison of results obtained with LBT        and FBT 

 Specification Size Accept statesing   
 Input Processed Nodes Edges k |Fi| |∩Fi| 

 

¬p0 1 2 0   1 ¬p0 [→p0|→)F 1 2 0   

◊p0 3 6 1 2  2 ◊p0 ¬[→p0|→)F 3 6 1 2  

p1 U p2 3 6 1 2  3 p1 U p2 ¬[→(¬p1∨ p2)|→)¬p2  4 9 1 3  

◊◊p1 6 13 2 4, 5 3 4 ◊◊p1 ¬[→¬[→p1|→)F|→)F 4 8 2 3, 3 2 

◊p0 ∧ ◊p1 13 29 2 8, 8 4 5 ◊p0 ∧ ◊p1 ¬[→p0|→)F ∧ ¬[→p1|→)F 9 20 2 6, 6 4 

◊p1 ⇒ ◊p2 9 19 2 7, 7 5 6 ◊p1 ⇒ ◊p2 ¬[→[→p1|→)F|→)F ∨ [→[→p2|→)F|→)F 5 15 3 4, 3, 4 2 

¬p0 ∨ ¬p1 ∨ p1V¬p0 ∨ ¬p1 U (p0 ∧ ¬p2 U p1)  17 33 2 15, 14 12 7 [→p0|→p1) ¬p2 [→p0|→p1)[→p2|→)F 12 25 2 9, 9 7 

5   Conclusions and Future Work 

In this paper, we have presented the FBT tool, which is specially intended to be ap-
plied to the automatic verification of systems, using the on-the-fly model checking 
method and FIL formulas. We have adopted this logic as the specification formalism 
of our tool for two reasons: firstly, its ability to express succinctly limited temporal 
contexts in which certain properties must be satisfied; and secondly, its natural, intui-
tive, graphical representation, which makes the specifications easier to develop and 
understand. 

We have also included class diagrams illustrating the design and implementation 
structure of FBT, and some experimental results which we have compared with the 
results obtained with LBT for the same or equivalent formulas. The automata gener-
ated by both translators are of a similar complexity, but those produced by FBT are 
slightly simpler in most of the analyzed cases. As a good specification formalism is 
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the one that describes the most frequently used properties in verification with specifi-
cations that are relatively short and not difficult to check in practice, we can conclude 
that FIL is a good specification formalism and that FBT is a good tool for the effi-
cient translation of its formulas into Büchi automata. 

In future work, we intend to supply FBT with a graphical editor for GIL formulas, 
so that the specifications can be pictorially provided, instead of in the textual syntax 
of FIL. GILED [7] is an editor of this type that automatically translates the graphical 
specifications created with it into the corresponding FIL formulas. The idea is to 
adapt this editor or to build one of similar characteristics for FBT. We also intend to 
integrate our translator into an on-the-fly model checking tool. Although FBT has 
been designed so that it may be easily incorporated into the model checker of MARIA 
[9], it can also be adapted to be integrated into other more popular finite-state verifi-
cation tools such as SPIN [4]. 
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