
Towards a Services Platform for Mobile Context-

Aware Applications

Patrícia Dockhorn Costa1, Luís Ferreira Pires1, Marten van Sinderen1

and José Gonçalves Pereira Filho2

1Centre for Telematics and Information Technology, University of Twente,

PO Box 217, 7500 AE Enschede, the Netherlands

2Universidade Federal do Espírito Santo, Dept. de Informática,

Av. Fernando Ferrari s/n, CEP 29060-900 Vitória (ES), Brazil

Abstract. Context-aware services platforms aim at supporting the handling of

contextual information in order to provide better user-tailored services. This

paper proposes a novel services platform architecture to support mobile

context-aware applications, giving emphasis to the configurability of the

platform’s generic functionality. The paper introduces concepts and a language

to cope with configurability aspects. The paper also reports on the

implementation of this architecture in the WASPa platform, which is a Web

services-based context-aware services platform that runs on top of 3G

networks.

1 Introduction

Context-awareness has emerged as an important and desirable feature in distributed

mobile applications. This feature deals with the ability of applications to utilize

information about the user’s environment (context) in order to dynamically select and

execute relevant services that better match the user needs [2]. In a ubiquitous

environment, with many services available at any time, context information is

especially important to help determining which services are relevant for the user [4].

Building context-aware systems involves the consideration of several new

challenges mainly related to the gathering/sensing, modelling, storing, distributing

and monitoring of contextual information. These challenges motivate the need for

proper architectural support.

There have been many initiatives towards architectural support for context-aware

applications. In particular, considerable effort has been spent on the development of

infrastructure software to support the development and/or operation of context-aware

applications. Infrastructure software comprises code libraries or runtime

environments that provide high-level abstractions to shield application developers

from the interactions with (lower-level) data repositories, hardware devices and

a The WASP (Web Architectures for Service platforms) project is funded by the Freeband

Knowledge Impulse joint initiative of the Dutch government, knowledge institutes and industry.

Dockhorn Costa P., Ferreira Pires L., van Sinderen M. and Gonçalves Pereira Filho J. (2004).
Towards a Services Platform for Mobile Context-Aware Applications.
In Proceedings of the 1st International Workshop on Ubiquitous Computing, pages 48-61
DOI: 10.5220/0002680300480061
Copyright c© SciTePress

software constructs [4]. Among these infrastructures, we have seen the emergence of

context-aware services platforms, which aim at providing support for application

designers to conceive their applications by using services, mechanisms and interfaces

that shield them from the complexity of handling contextual information [3].

Currently available platforms, however, offer a limited level of configurability.

Ideally, a platform for context-aware applications should facilitate the creation and

the dynamic deployment of a large range of context-aware applications that are

unanticipated during the design of the platform. In this paper, we define a services

platform architecture for context-aware applications, giving emphasis to the

configurability and extensibility of the platform’s generic functionality. We present a

descriptive language, coined WSL (WASP Subscription Language), which enables

applications to dynamically configure the platform to fulfil their needs.

The remainder of this paper is structured as follows: Section 2 gives an overview

of our proposed context-aware services platform, Section 3 defines the concepts

applied in the platform development, Section 4 describes WSL, Section 5 introduces

the platform components, Section 6 presents the prototype and an application

example, and Section 7 gives final remarks and identifies topics for further study.

2 Overview of the Services Platform

The services platform forms the system environment for context-aware mobile

applications. It supports the scenario in which context information is gathered from

Context Providers (sensors or third-party information providers) and services are

implemented by third-party service providers.

The services platform aims at delivering the most adequate services based on both

application requirements and contextual facts (see Fig. 1). Applications describe their

requirements by defining the desired services and the contextual conditions in which

the services should be provided. The platform should autonomously react to reaction

rules, which are defined in terms of conditions to be checked against contextual facts.

Services

Platform
service capabilities

(service

description)

contextual facts

(context information) Context
Providers

Mobile CA
Applications

Third Party
Services

a.o. mobile network

services providers

application requirements

(user needs)

Fig. 1. Overview of the services platform

In [3] we have identified the essential requirements to be satisfied by the services

platform, which include:

49

Context handling: the platform should provide efficient mechanisms to gather,

store, distribute and monitor contextual information;

Reactive behaviour: the platform should allow the specification of reaction rules.

Moreover, it should be able to react according to the specified rules;

Configurability: the platform should be able to support context-aware applications

that are unanticipated during platform design. For that, mechanisms of

configurability and the use of generic components need to be considered.

We have addressed all these requirements when designing the platform architecture,

but most of our efforts have been spent on developing an architecture with a high

level of configurability. The proposed solution includes the definition of a

subscription language, which allows applications to dynamically expose their needs to

the platform.

Fig. 2 depicts the proposed services platform architecture, which contains three

main components: Monitor, Registry and Context Interpreter.

 SERVICES PLATFORM

Registry Monitor

Parser

Subscription
Manager

EntityType
Registry

FunctionType
Registry

ContextDB
Registry

Context Interpreter

ActionType
Registry

Entity
Registry

User Profile
Registry

C
A

A
P
P
L
I
C
A
T
I
O
N
S

S
E
R
V
I
C
E

P
R
O
V
I
D
E
R
S

CONTEXT PROVIDERS

Fig. 2. Services platform architecture

The Context Interpreter gathers contextual information from Context Providers

(sensors or third-party providers), manipulates contextual information and makes it

uniformly available to the rest of the platform. The Registry maintains information

necessary to support the interpretation of application requirements and the execution

of services. The Monitor is the core of the platform, since it is responsible for

receiving and interpreting application requests and making them active within the

platform.

50

In our approach, application platform interactions are dynamically configured

through the definition of application subscriptions. In a subscription, an application is

capable of dynamically exposing its requirements to the platform, which composes at

runtime new tailored services from the set of available services.

The services platform architecture proposed in this paper has been designed and

implemented in the WASP (Web Architectures for Services platforms) project. The

prototype implementation is referred to as the WASP Platform. The WASP project is

concerned with the definition and validation of a services platform to facilitate the

development and deployment of mobile context-aware applications, called WASP

applications, on top of 3G networks [7], using Web Services technologies [12]. The

3G networks provide the telecommunication infrastructure for mobile terminals. In

addition, a 3G network can play the role of a Context Provider, since it is able to

provide the current location of its users. 3G network functions are accessed using the

Parlay X [8], a Web services interface. Web Services technologies are used to support

application platform and platform service provider interactions.

3 Concepts

In order to effectively and consistently manipulate the contextual knowledge of the

platform, we need to organize, represent, and describe it in a model. For this purpose

we have introduced a context model. Whenever such a model is available, it can be

used as basis for common understanding between platform and applications

developers, and service providers.

3.1 The Platform Context Model

The services platform manipulates data entities, which represent objects of the real

world (users, restaurants, museums, roads, vehicles, etc.). Attributes (age, area,

address, etc.) and Context (time, location, activity, etc.) are associated with data

entities.

The UML class diagram depicted in Fig. 3 shows a possible configuration of the

context model proposed for the platform. This diagram shows only an example

configuration, with entities restaurant and user, and their relationship with the

location context. The model can be extended if required by the applications, by

(dynamically) adding new entity types, such as, e.g., museum and supermarket and

context types, such as, e.g., time and activity.

The model presents three instantiation levels, namely a metamodel, a model and an

object level. The metamodel level is embedded in the platform and is defined during

the platform design-time, but remains unchanged during runtime. The model and the

object levels can be dynamically changed during runtime. They represent instances of

the metamodel and the model levels, respectively. The context model is discussed in

more detail in [2].

51

Entity Type Context Type

UserLocation

«instance»

«instance»

Restaurant

Model

Restaurant:Location

* *

Model

User:Location

* *

«instance»

AccessModelType

* *

«instance»

«instance»

Metamodel

Model

LosPonchos 123, 3425 John

«instance»

«instance» «instance»

Pinochio

«instance»

Alice

«instance»

Objects

Fig. 3. Context Model

Fig. 3 shows a model configuration in which entities types Restaurant and User

(model) are instances of Entity Type (metamodel). Moreover, the context Location

(model) is instance of Context Type (metamodel). Similarly, Pinochio and

LosPonchos (object) are instances of entity Restaurant (model) and Alice and John

(object) are instances of entity User (model).

(Hierarchical) relations between entity types can also be defined, varying from

simple categorizations of entity types to complex ontologies [9]. A common

representation of this knowledge is essential for the interoperability of the platform

and its environment.

3.2 Services

We have defined two types of service units to be used as building blocks for services

in the platform: (i) service units that reason about contextual circumstances, which we

call functions and (ii) service units that are triggered and react to some determined

contextual fact, which we call actions.

A function is a service unit that performs a computation with no side-effects, i.e.,

the computation does not change the current status of the platform. An example of

function is the isInside operation, with parameters of type container and person.

This functions returns true if the given person instance is inside the given container

instance, and false otherwise.

An action is a service unit that performs a computation with side-effects for one or

more parties involved in the system. An example of action is the sendAmbulance

52

operation, which sends an ambulance to a physical place. The invocation of functions

and actions follows the request-response pattern.

Functions and actions are composed together by the platform to form new services.

The service compositions are described by the applications, by means of applications

subscriptions written in WSL.

4 The WASP Subscription Language (WSL)

WSL is a descriptive language that we have developed in order to be able to specify

application subscriptions. Initially, we identified two essential requirements with

respect to the elements of this language: (i) a way to specify the reactions of the

platform to stimuli from the environment and (ii) a way to correlate events that

eventually trigger the specified reactions.

Subscriptions can be either parameterized or not. Parameterization is necessary

when the rule (subscription) applies to a collection of entities, since it would be

cumbersome to write a subscription for each target entity. Sometimes it is also

necessary to select entities of a collection for which a certain condition holds.

We illustrate the WSL clauses in the sequel by means of examples that use the

functions count and IsInside, and the action sendSms. Count returns the

number of elements in a collection; IsInside returns true if an entity is inside a

given container, and false otherwise; and sendSms sends a message to a set of users.

The WSL (abstract) syntax has been completely specified in [2], using both EBNF

and UML class diagrams.

4.1 The SELECT clause

The SELECT clause returns a collection of entities for which a given filtering

expression holds true. This clause allows the selection of a subset of a collection that

respects a filtering condition defined as a logical combination of contextual facts

and/or attributes. Its abstract syntax is as follows:

SELECT (<collection-of-entities>; <var>;
 <filtering-expression-involving-var>)

A select clause that returns a collection of users currently located in the city of

Enschede can be defined as:

SELECT (entity.user.*; u; u.location.city ==
"Enschede")

where entity.user.* represents the collection of all users in the system, u is the

variable to designate the elements of the collection and u.location.city ==
"Enschede" is the logical expression that filters the designated collection of users

by selecting the ones that are in Enschede.

53

4.2 The ACTION-GUARD clause

The ACTION-GUARD clause defines that one or more actions should be triggered as

a consequence of a correlation of events. This clause allows one to represent actions

that are performed by the platform as a reaction to stimuli defined in a logical

expression. Its abstract syntax is as follows:

ACTION <action> [GUARD <correlation-of-events>]

An action to send an SMS message to a user if he is inside a movie theatre can be

defined as:

ACTION SendSms (entity.user.John,
 "Hey John, Cola and movie, a perfect combination!");
GUARD
(count (SELECT (entity.cinema.*; c;
 (isInside(entity.user.John, c) AND
 (c.location.city == "Enschede")))
) > 0)

The statement above defines that a message should be sent to John if John is inside a

movie theatre and this movie theatre is located in Enschede. The SELECT clause is

used to select a collection of movie theatres in Enschede where user John currently is.

The selected collection has 0 or 1 element (either the user is in one or in zero movie

theatres). If the user is inside a movie theatre, an advertisement is sent; otherwise the

action is not triggered.

An ACTION-GUARD clause can be used to define an application subscription,

since it tells the platform which correlation of events has to be monitored, and which

actions should be triggered.

4.3 The SCOPE clause

The SCOPE clause defines a collection of target entities for which the subscription

defined in a nested ACTION-GUARD clause should be applied. The SCOPE clause

has been introduced to support subscription parameterization. Its abstract syntax is as

follows:

SCOPE (<collection-of-entities>; var){
ACTION <action-involving-var>
 [GUARD <correlation-of-events>]}

The SCOPE clause can be used to define the scenario "Send an advertisement to every

user inside the movie theatres in Enschede" in the following way:

SCOPE ((SELECT (entity.user.*; u2; u2.location.city ==
"Enschede")); u)
{
 ACTION SendSms (u,
 "Cola and movie, a perfect combination!");
 GUARD
 (count (SELECT (entity.cinema.*; c;
 (isInside(u,c) AND

54

 (c.location.city == "Enschede")))
) >0)
}

The SELECT clause returns a collection of users located in Enschede in that given

moment. The nested ACTION-GUARD clause applies to each of the selected users,

which are named u in the SCOPE clause.

5 Platform Components

The three main components of the services platform architecture are the Context

Interpreter, the Registry and the Monitor.

5.1 Context Interpreter

The Context Interpreter gathers contextual information from Context Providers

(sensors or third-party providers) and makes it uniformly available to the rest of the

platform. The interpreter may also perform:

Context aggregation: the context interpreter provides contextual information about

a certain entity by gathering and aggregating context from a set of context

providers, if necessary;

Context inference: the context interpreter infers context from other contexts.

Inference rules may be used to perform this activity.

5.2 Registry

The Registry component consists of a collection of registries that contain and

maintain the information represented in the data entity model (see Fig. 3). These

registries provide essential information to support the deployment of applications in

the platform. We have defined six registries:

Entity Type Registry: stores entity types, and their correspondent attributes and

context types. Examples of entity types are person, cinema, restaurant and

museum; examples of attributes are age and address; examples of context types are

location, velocity and activity. Some types of contexts apply only to specific entity

types. For example, velocity may be applied to a person but not to a movie theatre.

The Entity Type registry manages all possible combinations of context types and

entity types, being the actual representation of the Model level of the context

model;

Entity Registry: stores instances of entity types. For example, it might store the

instances Alice and John of the entity type person, and Pizza Hut of entity type

restaurant;

Function and Action Type Registries: store, match and retrieve functions and

actions profiles, respectively. Actions and functions are published and

implemented by third-parties service providers;

55

User Profile Registry: manages user profiles. Significant facts can be collected

directly from the user profiles, like, e.g., as gender, date of birth, name,

preferences, etc. These facts can be considered as contextual information, in the

sense that they describe the environment in which a user operates;

ContextDB Registry: preserves contextual information over time (history). Keeping

context history is essential to allow context inference based on past occurrences.

5.3 Monitor

The core of the platform architecture is the Monitor module, which is responsible for

interpreting and managing the application subscriptions. In order to perform its

operations, the Monitor makes use of the data available in the Registry and the

contextual information provided by the Context Interpreter.

Application platform interactions are dynamically configured through the

definition of application subscriptions written in WSL, as discussed in Section 4.

Using WSL one can refer to entities (their context and attributes) and the combination

of actions and functions in order to express the desired service in terms of a

subscription. Furthermore, new entities, context, attributes, actions and functions can

be added to the platform on demand. This implies that different forms of possibly

complex services can be composed and deployed at runtime by the platform, making

it highly configurable.

The Monitor contains a Parser and a Subscription Manager component.

Parser. The Parser component is responsible for verifying whether the subscriptions

are syntactically and semantically correct, having as reference the syntax of WSL [2].

The parsing result is a tree containing WSL primitive elements. There are two levels

of semantic checking:

1. A model checking level using the platform entity metamodel (Fig. 3). At this level,

the Parser verifies the existence of the entity types and whether the combinations

of context type and entity type are meaningful. Furthermore, the Parser needs to

verify the semantics of functions and actions;

2. An instance checking level using the instance repositories to check the existence of

the entities (final instances).

Subscription Manager (SM). The SM provides an interface for applications to add,

remove or update subscriptions. Furthermore, applications should provide a

notification interface for possible callbacks from the platform. Fig. 4 depicts the

internal structure of the Subscription Manager.

Applications subscribe to the platform by dynamically adding application

subscriptions. Moreover, existing application subscriptions can be updated or

removed. An added or updated subscription is parsed and verified for syntax and

semantic integrity. If no errors are found, the subscription is forwarded to the event

handler, which constantly checks the condition in the GUARD clause. The frequency

in which checks are performed depends on how often contextual information is

56

provided by the Context Interpreter. In general, the GUARD clause is checked

whenever notifications of context changes are received from the Context Interpreter.

Subcription Manager (SM)

a

b

c

e

NotifyApp

Event-driven
subscription

Non-parsed
subscription

OK/
Error

Action (user)

GUARD
clause is true

Add,
remove,
update

subscription

NotifyApp

a

d

Metamodel
and model
information

Context

Context

a) Applications interface
b) Parser interface
c) Context Interpreter interface
d) Repositories interfaces
e) Parlay Web Services Interface

Event
Handler

P
R
O
X
Y

Action
Executor

Fig. 4. Subscription manager

When a condition in the GUARD clause becomes true, the corresponding action is

triggered, which could be a simple callback to the application or a more complex task

on the users’ device. Fig. 5 shows the interactions that take place in the Subscription

Manager in order to handle a subscription.

Application Proxy Parser
Events
Verifier

Action
ExecutorUser

req(service:Service)

add(subs:Subscription)

send(event_subs:Subscription)

send(subs:Subscription)

send(ok:bool)

send(ok:bool)

send(event_subs:Subscription)

sendSMS(msg:String)

Fig. 5. Interactions necessary for handling a subscription

In Fig. 5 the user requests a service to the application, which consists of sending

him a message in case one of his colleagues is close to him. The application describes

57

the service composition by means of a subscription and adds it to the platform. The

Proxy gets the subscription and asks the Parser to check it. Once the subscription is

checked, it is forwarded to the EventVerifier. The EventVerifier checks whether there

is a colleague of the user close by him. In case this condition becomes true, the

ActionExecutor triggers the sendSMS action.

6 Validation Scenario

The main goal of the services platform prototype built in the WASP project has been

to demonstrate and validate the concepts and the main architectural elements. In this

prototype we have focused on the application platform interactions.

6.1 Prototype

We have prototyped the Monitor (Subscription Manager and the Parser), some of the

Registries and a simplified Context Interpreter. The application platform and

platform context provider interactions have been implemented. The prototype does

not include the implementation of the platform service providers interactions.

Essential actions and functions have been hard-coded in the platform with which our

scenarios have been performed (mainly location-aware scenarios). Future

implementations of the prototype will consider these interactions, by implementing

the action type registry and function type registry. Service discovery can also be

implemented, e.g., by using UDDI [13].

We have defined an XML Schema that represents the WSL syntax [2], so that

application subscriptions can be written as XML documents and validated using this

WSL XML Schema. The WSL parser reads application subscriptions in XML format

and maps them into Java classes, which are automatically compiled and executed

during runtime.

We have used Web Services technologies and Java language for implementing the

prototype. The WASP platform interface is offered as a web service end-point,

allowing the operations to be remotely called by the platform applications.

Furthermore, we also have implemented the users’ terminals as a web service end-

point to allow callbacks from the platform. We have used JAX-RPC [10] to

automatically generate the WSDL file from Java interfaces and the W3C’s Document

Object Model (DOM) [11] to develop our XML-based WSL parser.

6.2 Example: Taxicab Application

We illustrate the use of the platform with a context-aware taxicab application. Users

request a taxicab directly at the taxicab company’s web site with no need to inform

their current location. Furthermore, users get a message when the requested taxicab

approaches their location. Fig. 6 depicts the sequence diagram of this scenario.

58

 (1)

(2)
(3)

(3)

(3) (3) (4)

(5)
(6)

 .
 .
.

(7)

John:
User

TaxiCab:
App

Platform Context
Provider

Fig. 6. Sequence diagram for the taxicab scenario

Table 1 gives the messages that correspond to the numbering in Fig. 6.

Table 1. Exchanged messages in the taxicab scenario

Message

Number

Message Contents

(1) “I need a cab”

(2) ACTION
 NotifyApp(bookTaxicab
 (SELECT (entity.taxicab.*; tc;
 (CloseBy (tc, entity.user.John,
 3000)) AND
 (tc.company = "ABC"))));

(3) John’s location and taxicabs’ locations

(4) The booked taxicab identification and the approximate taxicab

arrival time

(5) “The taxicab will arrive in approximately 5 minutes”

(6) ACTION
 SendSMS(entity.user.John,
 "Your taxicab has arrived.");
GUARD
 CloseBy(entity.user.John,
 entity.taxicab.cab1234, 50)

(7) SMS with the text “your taxi has arrived”

In Table 1, message (1) represents the user request for a taxicab. Message (2) is the

application subscription in WSL for a service composed using actions NotifyApp
and bookTaxicab, and function closeby as building blocks. Action

NotifyApp causes a callback from the platform to the application, in which the

results of action bookTaxicab are informed. These results are the identification of

the taxicab and an approximate arrival time. Besides returning this information,

59

bookTaxicab is a third-party service that books a taxicab from a given collection.

We assume in this scenario that the context provider is able of providing the current

locations of taxicabs and users (message (3)).

An extra service offered by this context-aware taxicab application is that the user

gets a message when the taxicab approaches the current location of the user. Message

(6) is the application subscription used to define this extra service.

7 Final Remarks

Most of the current approaches for building context-aware services platforms ignore

the dynamic (runtime) deployment of mobile context-aware applications on top of

these platforms. The architecture presented in [6] focuses on the handling of different

types of adaptation mechanisms for device-oriented services, and addresses resource

availability and adaptability. A language for coordination of events intended for the

enterprise domain has been reported in [5]. An infrastructure based on a distributed

database and a dynamic decentralized resource discovery service for wearable

computing has been described in [1].

Our approach supports the configuration of applications platform interactions at

runtime. Furthermore, our platform can be extended with additional functions, actions

and data entities, making it appropriate for a large range of (unanticipated) context-

aware applications.

In order to allow dynamic configuration of interactions we have introduced WSL,

which is a descriptive language developed especially for this purpose. We have

decided to develop our own relatively simple language in order to be able to start

experimenting with our configuration approach right away. By using XML-based

techniques, the development of language manipulation support (parsers and

interpreters) has been facilitated. In future we will investigate how WSL can be

replaced by standard languages.

We have used Web Services technology to support the interactions of the platform

with its environment. As a consequence, third-party applications can access the

services offered by the platform through widely-used Internet protocols. In addition,

Web Services technology facilitates the extension of the platform by third-party

service providers, which can provide additional functions and actions as web services.

Defining a comprehensive architecture for a context-aware services platform is a

non-trivial task. It involves several issues and domains, such as ubiquitous computing,

artificial intelligence, human-computer interaction, and other crosscutting issues such

as security and privacy, scalability and performance. Another effort within the WASP

project has aimed at designing a privacy architecture for the WASP platform [14],

providing the users of the platform with privacy control while being unobtrusive.

In the WASP project we have also investigated the applicability and usefulness of

Semantic Web technologies for the representation of contextual information, leading

to the development of context ontologies and the use of reasoners to detect context

conditions [9]. Further work in the WASP project will consider the integration of the

different results, such as the overall architecture and the privacy support, giving

special attention to the use of Semantic Web technologies. We believe that the use of

60

ontologies and reasoners are promising techniques to enhance the reusability,

flexibility and intelligence of context-aware services platforms and applications.

References

1. DeVaul, R. et al.: The Ektara Architecture. MIT Technical Report (2000)

2. Dockhorn Costa, P.: Towards a Services Platform for Context-Aware Applications. Master

Thesis. University of Twente, the Netherlands (2003)

3. Dockhorn Costa, P., Pereira Filho, J.G., van Sinderen, M.: Architectural Requirements for

Building Context-Aware Services Platforms. In: E. Halasz et al (eds.): Proceedings of 9th

Open European Summer School and IFIP Workshop on Next Generation Networks

(EUNICE 2003). Hungary (2003)

4. Edwards, W.K., Bellotti, V., Dey, A.K., Newman, M.W.: Stuck in the Middle: The

Challenges of User-Centered Design and Evaluation for Infrastructure. In: Proceedings of

the Conference on Human Factors in Computing Systems (CHI 2003). Fort Lauderdale,

Florida, USA (2003)

5. Efstratiou, C. Cheverst, K., Davies, N., Friday, A.: An Architecture for the Effective

Support of Adaptive Context-Aware Applications. In: Tan, K-L., Franklin, M.J., Lui, J.C.S.

(eds.): Mobile Data Management: Second International Conference (MDM 2001). Lecture

Notes in Computer Science, Vol. 1987. Springer-Verlag (2001) 15-26

6. Indulska, J., Loke, S.W., Rakotonirainy, A., Witana, V., Zaslavsky, A.B.: An Open

Architecture for Pervasive System. In: Zielinski, K., Geihs, K., Laurentowski, A. (eds.):

Proceedings of the 3rd International Working Conference on Distributed Applications and

Interoperable Systems (DAIS 2001). Kluwer (2001) 175-188

7. Laar, V.: Requirements for the 3G Platform. WASP Deliverable D1.1 (2003)

8. Parlay Group: Parlay X Web Services White Paper (2002)

[http://www.parlay.org/ about/parlay_x/ParlayX-WhitePaper-1.0.pdf]

9. Rios D., Dockhorn Costa, P., Guizzardi, G., Ferreira Pires, L., Pereira Filho, J.G., van

Sinderen M.: Using Ontologies for Modeling Context-Aware Services Platforms. In:

Workshop on Ontologies to Complement Software Architectures (OOPSLA 2003).

Anaheim, CA, USA (2003)

10. Sun Microsystems: Java API for XML-Based RPC (JAX-RPC) Specification 1.0, JSR-101.

[http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec1]

11. World Wide Web Consortium. Document Object Model (DOM) Level 1 Specification

(1998)

[http://www.w3.org/TR/REC-DOM-Level-1/]

12. World Wide Web Consortium: Web Services Architecture (2003)

[http://www.w3.org/TR/ws-arch/]

13. Universal Description, Discovery and Integration (UDDI) project: UDDI: Specifications.

[http://www.uddi.org/specification.html]

14. Zuidweg, M., Pereira Filho, J.G., van Sinderen M.: Using P3P in a Web Services-Based

Context-Aware Application Platform. In: E. Halasz et al (eds.): Proceedings of 9th Open

European Summer School and IFIP Workshop on Next Generation Networks (EUNICE

2003). Hungary (2003)

61

