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Abstract. Due to the different nature of the available dynamic interactions 
between components afforded by some middleware infrastructure, distributed 
information systems (DIS) behave differently from traditional centralized ones. 
This results in a different view of their quality attributes, which require 
specifically customized measures for accurate estimation. In previous work we 
proposed and theoretically validated design measures purposely defined for 
DIS. In this paper we investigate the relevance of the newly proposed measures 
to estimate one of the quality attributes of interest for DIS. To this end, we have 
applied the proposed measures to a proof-of-concept DIS in the context of an 
Australian university, for the ultimate purpose of efficiency estimation. The 
research concludes that most of the proposed measures are indeed correlated to 
the efficiency and are suitable to be used as part of estimation models. 

1. Introduction 

Precise quality indicators are an essential element for the success of information 
system projects. An information system of poor quality may have a significant 
influence on an enterprise operation and reputation. It is widely accepted that the 
design will have a deep impact on quality of the software as an operational entity [1]. 
Regrettably, there is not a single, unique way of measuring quality of software 
artefacts since, due to the frequent changes in technologies, methods and tools, 
software production is a continuously evolving process. 

New distributed technologies, such as Message Oriented Middleware, Web 
Services, CORBA, J2EE and .NET, have been established in the enterprise world in 
recent years. With the rising importance of information systems in general enterprise 
matters, the early evaluation and estimation of quality attributes of systems developed 
with these technologies is becoming a crucial area for research. Significant 
differences can be identified when comparing modern distributed information systems 
with traditional centralized ones, such as the possibility of partial failures, hardware 
and software heterogeneity, concurrency of components and, very importantly, new 
forms of interactions between components [2]. Because of these differences, it is 
necessary to revise, adapt and extend commonly used methods and tools to be able to 
apply them to the domain of DIS. 
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Given the importance of appropriate measures for accurate estimation of quality 
attributes, the literature provides many examples of software measures for traditional 
centralized information systems. However, only a few measures have been 
specifically developed for distributed scenario (e.g. [3], [4], [5]). The majority of 
these are not used in practice or in academia because either they have not been 
defined rigorously or they have not been empirically validated. As far as we know, 
there has been only one previous study [6] undertaking the empirical validation of 
software measures in the distributed arena, but it does not address design measures. 

Our research project focuses on the measurement of attributes of DIS design 
artefacts. An ultimate goal of this investigation is to evaluate empirically the proposed 
measures for the estimation of DIS quality attributes of interest such as efficiency, 
reliability and maintainability. Particularly, the following objectives drive this paper: 

• To find out which of the design measures defined and theoretically validated in 
our previous work [7] have, statistically and practically, a significant 
relationship with the efficiency of an operating DIS. 

• To investigate to what extent those measures can be used, separately or in 
combination, for estimating efficiency. 

These issues are being investigated using data collected from a DIS in a controlled 
experiment performed in one of our research laboratories. 

The rest of this paper is organized as follows: Section 2 contains a brief discussion 
of the background required to make the paper self-contained. Section 3 presents a 
detailed description of our study. The results of the study are reported in Section 4. 
Finally, Section 5 presents a summary, as well as future research directions. 

2. Background 

Distributed computing is a term often used in the literature with different 
meanings. Hence, it is important to understand this concept as used in our research. 
Typically, a distributed execution environment is comprised of multiple processes that 
can communicate with one another by an interconnecting network. In our context, the 
network is used to support the execution of autonomous components that cooperate – 

at the application level– with one another, working towards a common goal supported 

by some middleware infrastructure. Hence, distributed computing, in our case, may be 
also appropriately called cooperative computing [8].

At the application level, cooperation between the distributed components of a 

system can take several forms, depending on the requirements of the interaction [9]. A 

processing dependency means that the components are linked by a request/reply 

interaction. An informational dependency is found when the interaction between the 

two components is limited to exchanging information. 

In centralized information systems, there is essentially one way for two software 

components to interact: a procedure or method call. Consequently, each interaction 

may be deemed to have the same influence over quality attributes. However, due to 

the different ways in which distributed components interactions may be resolved, 

dynamic – that is, run-time – aspects of inter-component communication ought to 

have a different impact on DIS quality attributes such as efficiency, reliability and 
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maintainability [10]. The possible different modes of communication between two 
running components have been discussed previously [9] and are listed here: 

• Synchronous vs. asynchronous  
• Available vs. non-available 
• Conversational vs. non-conversational 
• Static vs. dynamic binding 
Frequently, enterprise information systems are distributed because they tend to 

reflect the structure of organizations, and the way in which organizational units 
interact with each other. In these cases, the components of a system that have been 
developed independently and operate autonomously are made to exchange 
information and/or processing. We consider the components of such a DIS as the 
fundamental units to be studied. However, when components are naturally grouped 
together  – because they are part of the same subsystem, or because they execute on 

the same hardware platform, for example – we will also consider clusters of such 

components. Even though we are particularly interested in these systems, the 

generality of our approach makes it suitable to a broader range of DIS. 

3. The Empirical Study 

We have followed some of the guidelines provided by Wohlin et al [11] and 
Kitchenham et al [12] on how to perform and report controlled experiments. (Please 
note that not all available information has been included due to space constraints.) 

3.1. Definition 

Following the GQM template [13], the experiment goal is defined as follows: 

Analyse distributed coupling measures, 
for the purpose of evaluating, 
with respect to their capability of being used as indicators of efficiency, 
from the point of view of  DIS software engineers, 
in the context of a proof-of concept DIS developed by a team of CS graduates.

3.2. Planning 

Context. The DIS studied is a proof-of-concept Academic Management System for 
an Australian university. The system, developed by a team of Computer Science 
graduates, it is entirely written in Java and it is composed of 21 executable distributed 
components, 67 classes and about 11,000 lines of code. The middleware used by 
components to interact are JDBC, JRMI and JMS [14].
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Experiment Design. In order to evaluate software measurement hypothesis 
empirically, it is possible to adopt two main strategies [15]: (a) small-scale controlled 
experiments, and/or (b) real-scale industrial case studies. In this case we chose the 
first alternative, since it is more suitable to study the phenomena of interest in 
isolation, without having to deal with other sources of variation, such as co-existing 
systems, security mechanisms, etc. However, we envisage that after several 
experiments the suite of measures will be shown to be robust, and we intend to test 
the measures following the second strategy.

Hypotheses. We are particularly interested in design measures since it is widely 
acknowledged that attributes of the intermediate software artefacts influence attributes 
of the final software product [1]. Due to the different interaction modes of DIS 
components discussed above, distributed coupling (i.e. the strength of component 
interconnection) is one the key design attributes to be studied. Design artefacts that 
capture the structure and behaviour of a DIS are the entities of interest — for more 

details about how the structure and the behaviour of a DIS are represented by (graph-

based) generic abstractions, the reader is referred to our previous work [7]. Efficiency 

is one of the quality attributes that we argue is affected by coupling in the case of DIS 

[16]. In this paper we have chosen to focus on the following empirical hypotheses: 

• The stronger the outbound structural coupling of a cluster of distributed 

components due to dependencies, the more inefficient the cluster becomes. 

• The stronger the outbound behavioural coupling of a distributed component in 

terms of interactions, the more inefficient the component becomes.  

These empirical hypotheses are refined into statistical hypothesis by instantiating 

the independent variables with design measures and the dependent variables with the 

quality measures [17]. 

Table 1. Structural and behavioural design measures 

Measure Definition 
NCoOPD Number of components of a cluster coupled by outgoing processing 

dependencies to other clusters. 

NCoOID  Number of components of a cluster coupled by outgoing informational 

dependencies to other clusters. 

NClOPD  Number of other clusters to which a cluster is coupled by outgoing 

processing dependencies. 

NClOID  Number of other clusters to which of a cluster is coupled by outgoing 

informational dependencies. 

SyIL  Length of nested outgoing synchronous interactions of a component. 

AvIL  Length of nested outgoing available interactions of a component. 

StIL  Length of nested outgoing statically bound interactions of a component. 

NoSyI  Number of direct outgoing synchronous interactions of a component. 

NoAvI  Number of direct outgoing available interactions of a component. 

NoStI  Number of direct outgoing statically bound interactions of a component. 
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Variables. The independent variables are measured by the four structural measures 
and six behavioural measures shown in Table 1. Efficiency is a high-level quality 
attribute, which it may be evaluated by targeting one of its sub-attributes: time 
behaviour or resource utilization [18]. In our investigation, we are interested in time 
behaviour as the dependent variable, which is measured by the total blocking time 
(TBT) caused by remote communication.  

Instrumentation. A tool was developed to extract generic high-level design 
information about the structure and behaviour of the system. This information was 
consequently used to compute the measures presented above (and eventually others 
that might be defined). Monitoring code was added to the system in appropriate 
locations to obtain the time measurement data. 

3.3. Operation 

Preparation. In addition to the monitoring and measurement code, special software 
components were written to simulate the random operation of the system by end-
users. Before the actual experiment, several pilot experiments were run to make sure 
that there were no apparent anomalies, and the system behaved in the same way as 
before the measurement and simulation code was introduced.

Execution. The experiment was conducted in the Distributed Computing Research 
Laboratory of our University. The system was executed on an isolated network of 
workstations, each of which equipped with a single CPU and running under a Linux 
operating system. All computers had the same hardware and software, and were 
configured in the same way — we use the same binary image for all hard disks. Every 

component was run on a separate workstation as the only user process, all other 

processes running were a few system processes started by default. The execution of 

the system was initiated and terminated by the experiment team, which also controlled 

that in the meantime nobody else had access to the facilities.  

Data validation. Despite the data being collected reliably and objectively by 

electronic means, it was thoroughly inspected to assert that it was consistent. For this 

purpose we run the experiment three different times and compared the 3 data sets 

obtained. However, it should be noted that only the first data set was subject to 

analysis. Finally, there was no need to discard any data; hence all data collected was 

used. 

4. Analysis and Interpretation of the Results 

After the execution of the experiment, all the measures were computed electronically 

from the recorded data. The empirical data was analysed with the assistance of the 

software package SPSS [19]. 
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4.1. Descriptive statistics 

Table 2 presents the minimum, maximum, mean and standard deviation of TBT and 
the design measures for the system we analysed. These descriptive statistics are not 
only useful to clarify the current study, but also comparisons will made easier in 
future replications of this study. 

Table 2. Descriptive Statistics (n=21)

 Attribute Measure Minimum Maximum  Mean Std. Dev.
 NCoOPD 0.00 1.00 0.71 0.46 
 NCoOID 0.00 1.00 0.14 0.36 
 NClOPD 0.00 3.00 1.43 1.08 

Structural 
Coupling 
(Design) 

 NClOID 0.00 2.00 0.24 0.62 
 NSyI 0.00 31.00 6.76 8.38 
 SyIL 0.00 3.00 1.43 1.21 
 NAvI 0.00 31.00 6.76 8.38 
 AvIL 0.00 3.00 1.43 1.21 
 NStI 0.00 5.00 0.62 1.36 

Behavioural 
Coupling 
(Design) 

 StIL 0.00 1.00 0.29 0.46 
Efficiency (Quality)  TBT 0.00 15.98 4.29 4.46 

Discussion. NSyI, NAvI, NStI and all structural measures are simple counts, hence 
their values are non-negative integer numbers and their minimal value is zero. All 
measures were defined and validated on the ratio scale [7]. TBT is a measure of time 
and its units are seconds per hour. The measures NCoOIPD and NClOIPD have less 
than five observations that are non-zero.  Therefore they were excluded from further 
analysis. (This approach is also followed in [20]).

4.2. Correlation Analysis 

The data was evaluated using the Shapiro-Wilk test to verify whether the data was 
normally distributed. As the results confirmed that all measures were not normally 
distributed, a non-parametric statistic was used. Tables 3 and 4 present the 
Spearman’s correlation coefficients (significant at the 0.01 level) between the design 

measures and efficiency (measured by TBT). The coefficients of non-significant 

correlated measures are not shown, they have been substituted by a *. These measures 

will not be considered in further analysis.  

Table 3. Correlation coefficients between 
structural measures and TBT

Table 4. Correlation coefficients between 
behavioural measures and TBT

NClOPD NCoOPD
0.96 0.79 

NSyI SyIL NAvI AvIL NStI StIL
0.89 0.77 0.89 0.77 * * 
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Discussion. The results show that most of the associations are statistically significant. 
The correlation coefficients are significant, indicating a nontrivial association of the 
measures with efficiency. This suggests that these variables are candidates for a base 
regression model to estimate efficiency. Examination of the coefficients indicates that 
all design measures are positively correlated to TBT — it should be noted that a 

higher value of TBT indicates worse efficiency. StIL and NStI did not have common 

values, therefore, a weak association was not surprising.

4.3. Univariate Regression Analysis 

In this section, we present the results obtained when analysing the individual impact 

of the design measures on efficiency using Ordinary Least Squares Regression [21]. 

In general, a multivariate linear regression equation has the following form: 

Y = B0 + B1X1 + ... + BnXn (1)

where Y is the response variable, and Xi are the explanatory variables. A univariate 

regression model is a special case of this, where only one explanatory variable 

appears.  

Tables 5 and 6 present the unstandardized regression coefficients (Bi), the 

statistical significance of Bi (p), and the goodness-of-fit (R
2
) of models. Each row 

contains the statistics of a different univariate regression model.  

Table 6. Univariate Behavioural Models 

Table 5. Univariate Structural Models  

Xi B0 B1 p R2

NClOPD -10.66 37.52 0.000 0.82
NCoOPD 0.00 60.11 0.002 0.39

Xi B0 B1 p R
2

NSyI 9.71 4.91 0.000 0.85

SyIL 9.14 23.65 0.002 0.41

NAvI 9.71 4.91 0.000 0.85

AvIL 9.14 23.65 0.002 0.41

Discussion. The results obtained are remarkably consistent. They indicate that all 

measures that we considered in this section (namely, NCoOP, NClOP, NSyI, SyIL, 

NAvI, and AvIL) indeed strongly correlate with efficiency. In addition, by analyzing 

the trends indicated by the coefficients, we see that the hypotheses underlying the 

measures are empirically supported. Components and clusters with lower coupling are 

indeed more efficient. In the best case, in our environment, distributed coupling ( 

measured by NSyI) accounted for 85 percent of the variation in efficiency (measured 

by TBT), and each increase of one unit of coupling increased the TBT by 4.91 

seconds (per hour).

4.4. Multivariate Regression Analysis 

Tables 7 and 8 provide the estimated regression coefficients (Bi) and their 

significance (p) based on a t test, for the structural and behavioural measures after

performing stepwise multivariate linear regression [22]. It is important to note that we 
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do not expect design measures to account for all the variation of efficiency, since 
other factors, such as network bandwidth, are likely to be important too. However, the 
goal of multivariate analysis is to determine whether the measures appearing 
significant in the univariate analysis are complementary and useful for estimation. 

Table 7. Multivariate structural model 
(R2=0.91) 

Xi Bi p 
(Constant) 0.000 > 0.01 
NCoOPD -57.089 0.000 
NClOPD 58.853 0.000 

Table 8. Multivariate behavioural model 
(R2=0.92) 

Xi Bi p 
(Constant) -0.581 > 0.01 
NSyI 4.239 0.000 
SyIL 10.398 0.002 

Discussion. Behavioural measures outperform slightly structural measures, but 
estimations from structural measures are available earlier usually. The fact that p > 
0.01 for B0 only means that we cannot conclude that B0 �� ��� ����	�
�� ��� �
��

realistically conclude that is very unlikely that B1 �� �� 
����2 �� ��� ������ ��� ��� 	�
��

likely that X1 and X2 are correlated to efficiency. The multivariate models show a 
better fit than univariate models, so the measures are deemed to be potentially useful 
for building a multivariate model to predict efficiency. Another important point is that 
in this study, we were interested in the goodness of fit of the models, and we did not 
investigate the predictive capability of the models per se. However, a satisfactory 
goodness of fit is required in order to realistically expect a satisfactory predictive 
capability in future studies [15].  

The analysis of residuals is a simple yet powerful tool for evaluating the 
appropriateness of regression models [20]. Therefore, the underlying assumptions 
have been evaluated: 

• Homogeneity of the error term variance. This assumption holds since the plot 
of standardized residuals against the standardized predicted values shows a 
random scatter of points and no discernible pattern was identified. 

• Independence of the error term. We tested this assumption with a Durbin-
Watson test that did not reveal a significant correlation between residuals. 

• Normality of the error term distribution. A visual inspection of the histogram 
and the normal probability plot of the residuals indicated clearly that this 
assumption is tenable. 

Finally, NAvI and AvIL are not included in the behavioural model because they 
present multi-colinearity problems with NSyI and SyIL.  

4.5. Threats 

Four different threats to the validity of the study should be addressed [11]:   
• Conclusion validity. An issue that could affect the statistical validity of this 

study is the size of the sample data, which may not be large enough for a 
conclusive statistical analysis. We are aware of this, so we do not consider 
these results to be final. 
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• Construct validity. The study was carefully designed, and the design was 
piloted several times before actually being run. The quality measures are times, 
which can be objectively and reliably measured. The design measures used in 
this study were shown to adequately quantify the attribute they purport to 
measure [7].  

• Internal validity. The study was highly controlled and monitored, so it is very 
unlikely that undetected influences have occurred without our knowledge. The 
instrumentation was trustworthy since the data was collected, and the measures 
computed, electronically.  

• External validity. Although the study is based on a real case, more studies are 
needed using systems from different enterprise domains. We are aware that 
more experiments with different platforms (e.g. computer and network 
hardware, operating systems, etc.) and infrastructure (e.g. middleware type, 
programming language) must also be carried out to further generalize these 
results. As a first step in this direction, we replicated the experiment running 
the system under another operating system (Windows). The results were highly 
consistent with our original study. 

5. Conclusions and future work 

With any new technology or paradigm comes the necessity to re-assess the suitability 
of methods and tools used in the past. The estimation of software quality attributes 
will benefit from having suitable design measures, as the structure and behaviour of 
DIS have a significant impact on quality the final product. In this paper we initiated 
the process of empirically evaluating some of the available measures for the 
estimation of DIS quality attributes, in this case efficiency. More research is 
necessary to confirm these results and to test other possible and existing measures for 
this domain. In this study we have investigated two research questions: 

• Which of the considered design measures have, statistically and practically, a 
significant relationship with the efficiency of DIS in terms of total blocking 
time (TBT)? 

• To what extent these measures can be used separately or in combination for the 
estimation of efficiency in terms of TBT? 

To the best of our knowledge, this is the first reported empirical study of design 
measures for DIS and the second in the domain. We found that the results provide 
promising signs to attempt further large-scale studies. The system used in this study is 
relatively small but sufficient for an initial study. It is also likely that additional 
application of the measures will suggest modifications to the suite as additional 
understanding is achieved.  

Further work will include replicating the study with larger DIS and evaluating the 
measures against other quality attributes of interest such as reliability and 
maintainability. 
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