
Traceability and Factorization in Class Diagrams:
an Experimentation of their Correlation

Cam-Ngan Tran1 and Michel Dao2

1 France T́elécom R&D DTL/TAL
2 avenue Pierre Marzin

22307 Lannion Cedex – France

2 France T́elécom R&D DTL/TAL
38-40, rue du ǵeńeral Leclerc

92794 Issy Moulineaux Cedex 9 – France

Abstract. In this article, we present a study of the correlation between factoriza-
tion and the quality criterion of traceability. Our work is based on a set of new
factorization metrics and a specific definition of traceability. The results of our
experiment show a good correlation between the increase of the factorization of
a UML class diagram and its traceability.

1 Introduction

A quality model defines a methodology and a set of measures in order to evaluate the
quality of a software system (source code, analysis or conception models, etc.) [1, 2].
MACAO project3 has specified its own quality model, based on existing ones [3, 4]. It
uses, besides “classical” object-oriented metrics [5, 6], a body of specific metrics ded-
icated to the measurement of factorization4 in UML class diagrams [7]. In our quality
model, the results of the computation of the metrics on a given UML class diagram are
combined in order to obtain an evaluation of several quality criteria such as encapsula-
tion, consistency, testability, etc.

Assessing that a quality model actually measures what it is supposed to measure
is an essential task in order to ensure confidence in its results. This article presents a
study of a limited aspect of the validation of MACAO project quality model, namely
the correlation between the degree of factorization of a UML class diagram and the
evaluation of the traceability criterion.

This article is organized as follows:
In section 2 we briefly present quality model validation and explain the validation

we have carried out, which is based on a set of factorization metrics presented in section

3 MACAO is a common project of France Telecom R&D, SOFTEAM and LIRMM (CNRS and
University Montpellier 2.) supported by the french national network on software technologies
RNTL

4 We define factorization as the amount of features (attributes and methods) that are shared
through inheritance. The more features are shared, the better the factorization.

Tran C. and Dao M. (2004).
Traceability and Factorization in Class Diagrams: an Experimentation of their Correlation.
In Proceedings of the 1st International Workshop on Software Audits and Metrics, pages 38-48
DOI: 10.5220/0002673500380048
Copyright c© SciTePress

3 and on a specification of traceability specified in section 4. We then analyze the results
of our study in section 5 before drawing some conclusions.

2 Quality model validation

Validation of quality models may be roughly divided into two types of activities [8, 9]:

– the validation that the metrics used in the model actually measure what they claim
to measure. This activity is known as “internal validation”;

– the determination of correlations between an external quality criterion (such as
traceability) and an internal measurement. This activity is known as “external vali-
dation”.

We have chosen to study the set of metrics specific to factorization [7] defined in
MACAO project and we have made a limited internal validation of thoses metrics [10].
Our internal validation was focused on 11 properties extracted from litterature:non-
negativity, null value, simplicity, non-coarseness, non-uniqueness, minimum factori-
sation, maximum factorisation, monotonicity, non-equivalent of interaction, tracking
property, importance of implementationand one property specific to factorization:re-
dundancy. This internal validation is studied and discussed in [10].

Regarding external validation, which is the subject of this article, we have carried
out a study of the correlation between factorization measured by our set of metrics and
the traceability criterion.

Our aim during this study was to (in)validate the following assumption:

The increase of factorization of a UML class diagram leads to an increase
of the traceability criterion

The problem regarding the evaluation of such a correlation is that one must mea-
sure traceability in a way that is not directly based on the factorization. We propose
a definition and a means to compute traceability in section 4 that we believe to be a
good indicator of tracebility’s estimation and to be independent (in its definition) of
factorization.

3 Factorization measurement

Our set of factorization metrics is based on our previous work on class hierarchy restruc-
turation [11]. We have designed and implemented several algorithms that reconstruct
class hierarchies in order to maximize factorization. Those algorithms use a structure
known as Galois sub-hierarchy which is a restriction of Galois lattice. The Galois sub-
hierarchy provides an organization of classes in a hierarchy where features are max-
imally factorized (they are introduced by only one class and inherited by the others),
thus improving generalization and the number of classes introduced is minimal.

The metrics we have defined measure the “distance” between the existing class
hierarchy and the “ideally factorized” hierarchy that results from the application of one
of our algorithms. Metrics are defined at different levels: feature (attribute and method),

39

generic feature (set of semantically close features such as all methods with the same
name), class and hierarchy.

As our algorithms reorganize a class hierarchy so that factorization metrics are op-
timal, we used reorganized hierarchies as a benchmark in our study.

4 Traceability

Traceability is a key issue to guarantee consistency among software artifacts of the de-
velopment cycle phases. Together with changeability, modifiability and stability, trace-
ability is a quality criterion closely tied to the software maintenance. The improvement
of those quality criteria will reduce maintenance cost. Their assessment relies, to a large
extent, on software evolution and change impact analysis and is the subject of numerous
researches.

Changeability, as “the capacity of the software product to enable a specified mod-
ification to be implemented”, was studied by [12]. The author showed the existence
of a correlation between coupling and changeability and the absence of a significant
correlation between changeability and cohesion.

Modifiability, which is similar to changeability is defined by [13] as “the facility
with which a system can be adapted to the changes in the functional specification, the
environment or the expression of the requirements”. This work is in connection with
the architecture of the system. It argues that modifiability has to be taken into account
in earlier phases of the systems development life cycle.

Stability is also a criterion on which maintainability depends. It is defined as “the
capacity of the software product to avoid the unexpected effects of the modifications
of the software”. Studies on stability are mainly based on the comparison of various
versions of the software [14]. These studies allow to determine the most unstable com-
ponents.

4.1 Traceability concept

The traceability quality criterion deals with the software modifications which consist in
updating and/or expanding a system during the implementation or maintenance phases.
It is classified in two categories [15]:

– internal traceabilityshows the dependency between objects within a development
phase. It is based on tangible links of the same abstraction level. These tangible
links make the internal traceability easier to compute than the external traceability.
In software design, the internal traceability can be divided into three main types
[16]: object to object, association to association and use case to object;

– external traceabilityconcerns relations between objects in different phases of de-
velopment cycle. For example, it could be the relationship between specifications
and testing. External traceability is ensured by cognitive links. These links, by
which objects are connected to others objecs at different abstraction levels, are
determined by an expert who is familiar with the system. Thus, the external trace-
ability links must be manually created, based on the expertise and the intuition of
the designers [17].

40

In this study, we consider traceability as the facility to find elements impacted by a
modification. A number of research studies deals with code traceability [17–19] and
there are various ongoing works on external design traceability. However, just few
works still focus on internal design traceability.

Our work addresses internal traceability by examining links between elements with-
in a class hierarchy (features, links and classes). In this way, we deal only with the
modification ofclass diagrams.

The traceability issue regarding class diagrams is to discover which classes, or at
the lower level, which features will be affected when a modification occurs. On the one
hand, traceability does indicate the dependency level of an element in a class diagram.
On the other hand, the dependency level of the element reveals a certain facility of trac-
ing in the class diagram. Therefore, internal traceability is closely connected to com-
plexity and comprehensibility and other quality criteria as stated above. For example,
if a diagram is too complex or too difficult to understand and to analyze, modifications
will be more difficult to trace. In other words, traceability provide designers with an
indicator predicting the consequences of a modification within a class diagram.

4.2 Definitions

A

p : string

D

x : real
p : string

E

p : string
q : string

AS1

r : real

CO2

p : string

r : real

0..1

B

p : string

C

q : char

interfacep : string

p : string q : char

*

0..1*

AS2

s : real

CO1

s : real

s : real

*

* s : real

x : real
p : string

p : string
q : string

p : string

Fig. 1. Trace and impacted elements of a modification.

Before presenting the calculation method of the traceability concept, we present
hereunder some terms and definitions used in this article.

41

Modified Element:is a class or a feature where a modification occurs. Amodifica-
tion could be :

1. an internal modificationsuch as a modification of an element within a class (for
example: feature redefinition, feature addition/deletion, etc.);

2. an external modificationsuch as a modification of a relation between classes (for
example : class redefinition/addition/deletion or links addition/deletion etc.).

Impacted Element:is a class or a feature that must be adapted after implementing a
modification.

In figure 1, a modification of featureq in classC demands adaptations of featuresx
andp in classD, p andq in classE ands in classAS2. So, featuresx, p, q, sare defined
as impacted elements by a modification of featureq.

If x/A denotes̈the feature x of the class AändSETELEM IMP(X) is defined as
the set of all impacted elements ofX, thenSETELEM IMP(q/C) will be {x/D;p/D;
p/E;q/E;s/AS2}.

Dependency:is a link between a “modified element” and an “impacted element”.
We say that there exists a dependency between them.

4.3 Impact analysis

 (a) (b) (c)

B

m()

A

m()m()

m()
B

A

p()

q()

q()

B

q()

A

p()
q()

Bi

p()

q()

q()

Fig. 2. Dependency in an inheritance relationship.

Firstly, our analysis is based on the dependency analysis during which we list down
all the possible cases which are calleddependency rules. 15 dependency rules were
defined in our project.

Hereunder is an example of the dependency rule”features of a child class depend
potentially on all the features of its super class”illustrated in figure 2. Ina), feature
m of child classB depends on featurem of super classA. In b) andc) featureq of B

42

depends on featuresp andq of A. There exists no explicit dependency of a feature ofA
on any feature ofB.

Secondly, we used modification scenarios. Three groups of modification scenarios
were delimited:

– manipulation of features (addition, deletion, redefinition);
– manipulation of links (association link, inheritance link, etc.);
– manipulation of classes (addition, deletion, redefinition). The manipulation of fea-

tures and links may be a sub-group of classes manipulation.

The two last groups of scenarios are based on the first one. According to the depen-
dency rules, we found that:

– features of the same class are impacted;
– features of the children classes are impacted;
– features of the associated classes (direct and indirect) are impacted. (Based on the

dependency rules defined for the association links, and taking into account the nav-
igability, the composition, aggregation, etc.);

– features of the dependent classes are impacted.

For example, in figure 3, the features impacted by a suppression or an addition of
the feature “nom:string” of classUtilisateur are:

– all features of classUtilisateur
– all features of classChauffeur
– all features of classTypeVehicule
– all features of classVehicule
– all features of classAgence

Altogether, 8 features are impacted by a suppression, an addition or a modification
of featurenom:stringof classUtilisateur. This impact covers all the possible scenarios
for the feature.

4.4 Computation method

Two kinds of measures are used to quantify a quality criterion: direct or indirect mea-
sures.Direct measuresare the measures of an attribute which does not depend on the
measures of another attribute.Indirect measuresare measures which must be calculated
by other measures.

We chose to use direct measures in our project because of the following. Several ex-
isting methods use checklists or interviews to evaluate a quality criterion. Such methods
are based on a cognitive system where information is extracted from the experiences and
expertise parameters. These methods require a significant number of tests, samples and
human resources. The context of our project did not enable us to carry out the external
validation by such methods. Thus, we tried to find internal measures of the class dia-
grams to estimate objectively their traceability. Moreover, computation of these internal
measures may be more easily automated.

43

Roue

Attribute : undefined
Attribute1 : undefined
Attribute2 : undefined
Operation()

F

G

*
r6Attribute1 : undefined

Attribute2 : undefined

Pneu

Jante

E

Attribute : undefined

Operation()

1
1

1
4

*

Utilisateur

Nom : string

D

Nom : string

Vehicule

Operation()

nomImmatriculation : string
kilometrage : real
estLibre : boolean

B

Operation()
est de type

r4

Agence

nom : stringnom : string
1

nomImmatriculation : string
kilometrage : real
estLibre : boolean

*r7

*

0..1
r5

Chauffeur

permis : char

Ressource

A

permis : char

Mission

reference : string
dateDepartPrevue : string
dateArriveePrevue : string
commentaire : string

reference : string
dateDepartPrevue : string
dateArriveePrevue : string
commentaire : string

1r2
est affecté à

0..1r1

*

TypeVehicule

nom : string
hauteur : real
largeur : real

C

nom : string
hauteur : real
largeur : real

1

*

*

Fig. 3. Example of impact analysis in a class diagram.

The distance between the modified elements and the elements impacted was used to
calculate the traceability. The distance from elementX to Y is calculated by all the ele-
ments we have to pass fromX to Y (figure 4). The relationship between the traceability
and the distances is:the longer the distance, the more difficult to trace and therefore the
worse the traceability.

If there exists more than one track between modified element and impacted element,
the average of distances will be computed.

To calculate the degree of traceability for a given feature, we look for a set of im-
pacted elements of this features. This set includes all the features in the impacted classes
and all the empty impacted classes (an empty class is a class without feature). The dis-
tance between this feature and all impacted elements will be added together. The trace-
ability is the inverse of the distance. If the distance is equal to0, the traceability is equal
to 1. This means that if the set of impacted elements isnull, there is no effort to trace
when a modification is implemented to this feature.

44

X

Y

modified element

impacted element

Fig. 4. Distance trace between modified element and impacted element.

The traceability of a class will be the sum of the traceabilities of all its features plus
the reverse of the distance between this class with other empty impacted classes.

Suppose thatX is an modified element andSETELEM IMP(X) contains all the
impacted elements ofX. We can resume our computation of the traceability ofX like
following:

Find SET ELEM IMP(X)=Y1..Yn

Initiate the variable distance DIS=0
For each i

CalculateDIS(X,Yi)
DIS=DIS+DIS(X,Yi)

EndFor
If DIS==0 then

TRA(X)=1
else

TRA(X)=1/DIS
EndIf

5 Analysis of experiment results

The traceability measurement is implemented in the UML CASE tool Objecteering
in J language. J is the Objecteering internal object-oriented language that allows to
implement new behaviors on the UML meta-model. The module created allows to find
the impacted elements and to compute the distance and the traceability accordingly.

5.1 Test models

To analyze the correlation between traceability and factorization, we used one of the
algorithms of factorization of class hierarchies (see section 3). This algorithm trans-
forms a hierarchy into an optimally factorized hierarchy which comprises new classes
allowing to factorize features. As a result, the factorization metrics of the elements after

45

Classes and
features

BEFORE

Class hierarchy
restructuration

Traceability
BEFORE

Factorization metrics
BEFORE

Factorization metrics
AFTER

Classes and
features
AFTER

Traceability
AFTER

AFTER
FACTORIZATION

Statics analysis

factorization metrics after the
transformation is greater than before

BEFORE
FACTORIZATION

Fig. 5. Test protocol.

the transformation are necessarily better than before, so a computation of factorization
metrics is not needed.

We use a method combining the replicated and synthetic methods [20]. The compu-
tation was realized on three projects with 100 classes and 264 properties. If a significant
change between the traceability before and after the transformation is found, we will be
able to identify a correlation between the traceability and the factorization of the ele-
ments in the class hierarchy.

5.2 Experiment results

The results of the tests summarize as follows:
For classes:

1. Only one class among 100 has a worse traceability after the restructuring and the re-
duction for this class is -0,0032 whereas the average increase is 0,1457. The overall
results are:

– 88% of classes have a better traceability after the transformation;
– 11% of classes have the same traceability after the transformation;
– 1% of classes have a worse traceability after the transformation.

2. the average of the traceability degree before the transformation is 0,1023 and the av-
erage of the traceability’s degree after the transformation is 0,4051 (4 times more).

For features

1. Only 5 features out of 264 features have a worse traceability after the transforma-
tion and the average reduction for these five features is -0,0052 where as the average
increase is 0,1077. The overall results are:

– 95% of features have a better traceability after the transformation;
– 2% of features have the same traceability after the transformation;

46

– 3% of features have a worse traceability after the transformation.
2. the average of the traceability before the transformation is 0,0560 and the average

of the traceability after the transformation is 0,1638 (3 times enhancement).

As a result, this experiment shows that, on our examples, it is easier to trace modifi-
cations within UML class hierarchies reorganized by one of our algorithms. Therefore,
applying the algorithm of reorganization, allows to increase tracebility, thereby making
maintenance easier.

6 Conclusion

In this article, we have presented a limited experiment of the validation of the correla-
tion between the factorization of a UML class hierarchy and the traceability within this
hierarchy. We have proposed a definition of the concept of traceability that relies on the
fact that the majority of the impacts of a modification in a UML class hierarchy may
be found using the different relations between the classes of the hierarchy (inheritance
and associations). We have implemented an algorithm to compute this traceability and
compared the results of this computation on class hiearchies before and after their re-
structuration by an algorithm that optimizes factorization. On those examples, we could
observe a definite improvement of traceability once the restructuration of the class hi-
erarchy has been carried out.

This work should be extended in two directions. Firstly, we should realize other ex-
periments in order to confirm the positive results of this study. Ideally, we should be able
to have enough numerical results in order to make a statistical analysis. Secondly, there
exists many more quality criteria on which an external validation should be performed
in order to validate our entire quality model.

References

1. IEEE1061: Software Quality Metrics Methodology. IEEE Standard. 1061-1992 edn. Insti-
tute of Electrical and Electronics Engineers, Inc., New York (1998)

2. ISO9126: Information Technology - Software Product Evaluation - Software Quality Char-
acteristics and Metrics. International Organization for Standardization, Geneva, Switzerland
(1998)

3. Bansiya, J., Davis, C.: A Hierarchical Model for Object-Oriented Design Quality Assess-
ment. IEEE Transactions on Software Engineering28 (2002) 4–17

4. Dromey, R.G.: A Model For Software Product Quality. IEEE Transactions On Software
Engineering21 (1995) 146 –162

5. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEE Transac-
tions on software engineering20 (1994) 476–493

6. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics, a Practical Guide. Prentice Hall
(1994)

7. Dao, M., Huchard, M., Leblanc, H., Libourel, T., Roume, C.: A New Approach to factor-
ization – Introducing Metrics. In: Proc. Metrics 2002 – 8th International Software Metrics
Symposium, Ottawa, Canada (2002)

8. Fenton, N.E.: Software Metrics: A Rigorous Approach. Chapman & Hall, London (1992)

47

9. Zuse, H.: Software Complexity: Measures and Methods. 1st edn. Walter de Gruyter, Berlin
(1991)

10. Rasheed, T.M., Tran, C.N., Dao, M.: Validation théorique des ḿetriques de factorisation
(Internal Validation of Factorization Metrics). MACAO project report 5.2.1, France Télécom
R&D (2003)

11. Dao, M., Huchard, M., Libourel, T., Roume, C.: Evaluating and Optimizing Factorization
in Inheritance Hierarchies. In Black, A.P., Ernst, E., Grogono, P., Sakkinen, M., eds.: The
Inheritance Workshop at ECOOP 2002, University of Jyvāskyl̄a (2002) 38 – 43

12. Kabaili, H.: Changeability of Object-Oriented Software Systems: Architectural Properties
and Quality Indicators. Doctoral thesis, Universit de Montréal, Montŕeal, Qubec, Canada
(2002)

13. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-Level Modifiability Anal-
ysis (ALMA). Journal of Systems and Software69 (2003) 129 – 147

14. Sahraoui, H.A., Grosser, D., Valtchev, P.: Predicting software stability using Case-Based
Reasoning. In: Proceedings of the 17th IEEE International Conference on Automated Soft-
ware Engienering (ASE ’02). (2002)

15. Lanubile, F., Visaggio, G.: Decision-driven maintenance. Journal of Software Maintenance:
Research and Practice7 (1995) 91 – 115

16. Lindvall, M., Sandahl, K.: Practical Implications of Traceability. Software Practice and
Experience26 (1996) 1161 – 1180

17. D. Kung, J. Gao, P.H., Wen, F.: Change Impact Identification in Object Oriented Software
Maintenance. Proceedings of the International Conference on Software Maintenance (1994)

18. G. Antoniol, G. Canfora, A.d.L.: Maintaining Traceability During Object-Oriented Software
Evolution, a Case Study. Proceedings of the IEEE International Conference on Software
Maintenance (1999)

19. P. Clarke, B. Malloy, P.G.: Using a Taxonomy Tool to Identify Changes in OO Software
. Proceedings of the European Conference on Software Maintenance and Reengineering
(2003)

20. Emam, K.E.: A methodology for validating software product metrics. Technical report,
National Research Coucil, Canada (2000)

48

