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Abstract. This paper cryptanalyses the MOR cryptosystem [6] when
the group GL(2, R) ×θ ZZn proposed in [7] is used.
We show generic attacks on the system that work with every ring R. For
a concrete choice of R even stronger attacks may be possible.
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1 Introduction

In 2001 Paeng, Ha, Kim, Chee and Park proposed a new cryptosystem based
on the difficulty of the discrete logarithm problem in the inner automorphism
group Inn(G) of a non-abelian group G [6]. Later this system was named MOR
cryptosystem [7].
The used non-abelian group G has to be chosen very carefully not to under-
mine the security of the system. The first proposal for G was the semi-direct
product group SL(2, ZZp) ×θ ZZp (see [6]). The authors themselves showed the
interrelation between MOR using SL(2, ZZp)×θ ZZp and MOR using SL(2, ZZp).
Since the conjugacy and the special conjugacy problem can be efficiently solved
in SL(2, ZZp), the security of MOR using SL(2, ZZp)×θ ZZp could be reduced to
the hardness of the discrete logarithm problem in SL(2, ZZp) (see [7]).
In 2003 a detailed analysis of MOR using SL(2, ZZp) ×θ ZZp [8] was published.
The efficient modes of MOR using SL(2, ZZp) ×θ ZZp proved to be extremely
vulnerable to the presented attacks. In some cases an attacker is able to gain
information equivalent to the secret key.
In [7] Paeng, Kwon, Ha and Kim described how to construct a semi-direct prod-
uct group GL(2, R) ×θ ZZn from a given ring isomorphism Φ : R → R and
proposed to use this group for the MOR cryptosystem. The purpose of this arti-
cle is to evaluate the level of security provided by MOR using GL(2, R)×θ ZZn.
Our analysis focusses on the impact of the hardness of the computational Diffie-
Hellman and the discrete logarithm problem in < Φ > on the security of MOR
using GL(2, R)×θ ZZn. We show that if the computational Diffie-Hellman prob-
lem can be solved efficiently in < Φ >, then the efficient modes of MOR using
GL(2, R) ×θ ZZn are vulnerable to chosen-ciphertext attacks. Furthermore, if
even the discrete logarithm problem can be solved efficiently in < Φ >, then the
secret key can be (partly) calculated from the public parameters.
The rest of this paper is organized as follows. In section 2 needed notations
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and definitions are described and the MOR cryptosystem is introduced. Sec-
tion 3 shows how to construct a semi-direct product group GL(2, R) ×θ ZZn

given a ring isomorphism Φ : R → R and how to apply this group to the
MOR cryptosystem. We further demonstrate that the discrete logarithm prob-
lem in Inn(GL(2, R)×θ ZZn) can be reduced to the discrete logarithm problem
in < Φ >. In section 4 we show that MOR using GL(2, R)×θ ZZn is vulnerable to
chosen ciphertext attacks if the computational Diffie-Hellman problem in < Φ >
can be solved efficiently. In the final section 5 the impact of the presented attacks
on the security of MOR using GL(2, R) ×θ ZZn is discussed and directions for
future research are pointed out. The appendix briefly describes how to solve the
special conjugacy problem (SCP) in GL(2, R) by solving simultaneous instances
of the conjugacy problem (CP) in GL(2, R).

Related Work: The conjugacy problem is considered a hard problem in braid
groups. There is no known polynomial time algorithm which solves the decisional
or the computational conjugacy problem in braid groups. For a detailed discus-
sion of cryptography on braid groups we refer to [1, 3, 5]. Other cryptosystems
using the conjugation map on matrix groups have been published by Yamamura
[9, 10]. The systems later were broken by Blackburn and Galbraith [2].

2 Framework and Definitions

Definition 1 (Semi-Direct Product Group). Let G and H be groups and
θ : H → Aut(G) be a homomorphism. The set G × H = {(g, h) | g ∈ G, h ∈ H}
together with the multiplication map

(g1, h1)(g2, h2) = (g1θ(h1)(g2), h1h2)

is a group, called the semi-direct product G ×θ H of G and H with respect to θ.

Definition 2 (The mapping Inn). Let G be a group. Then the mapping

Inn : G → Aut(G)
g �→ Inn(g)

is given by Inn(g)(h) = ghg−1.

We call Inn(g) an inner automorphism and Inn(G) = {Inn(g) | g ∈ G} the
inner automorphism group. If G is an abelian group then Inn(g) is the identity
map for all g ∈ G and Inn(G) is trivial. Let {γi} be a set of generators of G.
Since Inn(g) is a homomorphism, Inn(g) is totally specified for all m ∈ G if the
values {Inn(g)(γi)} are given.

Definition 3 (center, centralizer). Let G be a group. The center Z(G) of G
is defined as Z(G) := {g ∈ G | xg = gx ∀x ∈ G}.
Let g ∈ G. The centralizer Z(g) of g is defined as Z(g) := {h ∈ G | hg = gh}.
Note that Z(G) =

⋂
g∈G Z(g).
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In the appendix the terms ”center” and ”centralizer” are also used for rings resp.
ring elements. For a ring R and ring elements r ∈ R we define Z(R) := {r ∈ R |
sr = rs ∀s ∈ R} and Z(r) := {s ∈ R | rs = sr}.
In some cases it may not be clear from the context which structure is referred
to, e.g. for g ∈ GL(2, R) ⊆ M(2, R) the cenralizer Z(g) in the ring M(2, R) may
be different from the centralizer Z(g) in the multiplicative group GL(2, R). In
this case the corresponding structure is added as an index, e.g. ZM(2,R)(g) =
{h ∈ M(2, R) | gh = hg} and ZGL(2,R)(g) = {h ∈ GL(2, R) | gh = hg}.
Definition 4 (Conjugacy Problem). Let G be a group. For arbitrary x, y ∈ G
the conjugacy problem (CP) is to find w ∈ G such that wxw−1 = y.

Let w ∈ G be a solution of the instance (x, y) of the CP, i.e. wxw−1 = y. Then
w · Z(x) is the solution set for instance (x, y).

Definition 5 (Special Conjugacy Problem). For a given ϕ ∈ Inn(G) the
special conjugacy problem is to find an element g ∈ G satisfying Inn(g) = ϕ.

The solution set for instance Inn(g) of the special conjugacy problem is g ·Z(G).
In GL(2, ZZp) the conjugacy problem is easy. To solve the special conjugacy prob-
lem in GL(2, ZZp) two pairs (A1, Inn(A1)) and (A2, Inn(A2)) with A1 /∈ Z(A2)
are needed (see [8] for details). A similar result holds for the group GL(2, R) of
invertible matrices over a commutative ring with identity R (see appendix A).

The MOR cryptosystem: MOR is an asymmetric cryptosystem with a ran-
dom value a as secret and the two mappings Inn(g) and Inn(ga) (given as
{Inn(g)(γi)} and {Inn(ga)(γi)} for a generator set {γi} of G) as corresponding
public key. The encryption process works as follows:

1. Alice expresses the plaintext m ∈ G as a product of the γi.
2. Alice chooses a random b ∈R ZZord(Inn(g)) and computes (Inn(ga))b, i.e.

{(Inn(ga))b(γi)}.
3. Alice computes E = Inn(gab)(m) = (Inn(ga))b(m).
4. Alice computes Φ = Inn(g)b, i.e. {Inn(gb)(γi)}.
5. Alice sends the ciphertext C = (E,Φ) to Bob.

Decryption Process:

1. Bob expresses E as a product of the γi.
2. Bob computes Φ−a, i.e. {Φ−a(γi)}.
3. Bob computes m = Φ−a(E).

The MOR cryptosystem is very similar to the ElGamal cryptosystem [4]. The
Diffie-Hellman key establishment protocol is used to fix a common inner auto-
morphism (Inn(g))ab. The ciphertext of a message m ∈ G is the image of m
under Inn(gab) = (Inn(g))ab.
In [6] no formal proof of security is given for the MOR system. If the discrete
logarithm problem is efficiently solvable in < Inn(g) >, then the secret key a can
be calculated from Inn(g), Inn(ga) which are part of the public key. However,
knowledge of the secret key is not necessary to attack the MOR cryptosystem
for certain non-abelian groups G (see [8] for details).
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3 MOR using GL(2, R) ×θ ZZn

Let R be a commutative ring with identity and Φ : R → R be a (non-trivial) ring

isomorphism. Then GL(2, R) = {
(

a1 a2

a3 a4

)
∈ M(2, R) | a1a4−a2a3 is invertible}

is a (multiplicative) group. A group automorphism φ is induced by Φ:

φ : GL(2, R) → GL(2, R),
(

a1 a2

a3 a4

)
�→

(
Φ(a1) Φ(a2)
Φ(a3) Φ(a4)

)

By setting θ(1) = φ we get a homomorphism θ : ZZn → Aut(GL(2, R)), i.e.

θ(k) = φk :
(

a1 a2

a3 a4

)
→

(
Φk(a1) Φk(a2)
Φk(a3) Φk(a4)

)

We now examine MOR using the semi-direct product GL(2, R) ×θ ZZn.

The conjugation map in GL(2, R) ×θ ZZn:
Let (x, y), (m1,m2) ∈ G ×θ H. Then:

(x, y)(m1,m2)(x, y)−1 = (xθ(y)(m1)θ(m2)(x−1),m2)

Applied to the group G = GL(2, R) ×θ ZZn and homomorphism θ we get for
(x, y), (m1,m2) ∈ GL(2, R) ×θ ZZn:

(x, y)(m1,m2)(x, y)−1 = (x · φy(m1) · φm2(x−1),m2)

The choice of Φ:
Let G = GL(2, R) ×θ ZZn and Φ, φ and θ as defined above. Then

1. ord(Φ) = ord(φ)
2. θ(n) = IdGL(2,R) ⇔ n ≡ 0 (mod ord(Φ))
3. If (x, y), (x, ŷ) ∈ G, then Inn((x, y)) = Inn((x, ŷ)) ⇔ y ≡ ŷ (mod ord(Φ))
4. The homomorphism θ is well-defined if and only if ord(Φ) | n.

Let (x, y) ∈ GL(2, R) ×θ ZZn and (x, y)ab = (x̂, aby (mod n)) for some x̂ ∈
GL(2, R). Then a ciphertext of a message (m1,m2) ∈ GL(2, R) ×θ ZZn looks as
follows:

Inn((x, y)ab)(m1,m2) = (x̂φaby(m1)φm2(x̂−1),m2)

The values a, b, y ∈ ZZn should have no common divisor with the order of ho-
momorphism φ. Otherwise φaby is no generator of the cyclic group < φ >. This
reduces the number of possible ciphertexts for a plaintext message (m1,m2) ∈
GL(2, R) ×θ ZZn. To avoid this problem, we suggest to choose n prime.
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Extracting φy from Inn(g):
We now show that given an inner automorphism Inn(g) for some g = (x, y) ∈
GL(2, R) ×θ ZZn the group automorphism φy can be calculated efficiently.

Step 1: To calculate φy we make use of the fact that Φy(0) = 0 and Φy(1) = 1.
For a unimodular matrix m ∈ GL(2, R) (i.e. a matrix with entries only 0 and 1)
it follows that φy(m) = m and we get

Inn(g)(m, 0) = (x, y)(m, 0)(x, y)−1 = (x · φx(m) · φ0(x−1), 0)
= (x · m · x−1, 0)

This leads to an instance m,xmx−1 of the conjugacy problem in GL(2, R). By

solving the two instances
(

0 1
1 0

)
, x

(
0 1
1 0

)
x−1 and

(
1 1
1 0

)
, x

(
1 1
1 0

)
x−1 of the

conjugacy problem in GL(2, R) simultaneously the special conjugacy problem
can be solved and an element x̂ ∈ GL(2, R) with Inn(x) = Inn(x̂) can be cal-
culated (see appendix A).

Step 2: For arbitrary m ∈ GL(2, R) we get

Inn(g)(m, 0) = (x, y)(m, 0)(x, y)−1 = (x · φy(m) · x−1, 0)

Since Inn(x) = Inn(x̂) we know that x̂−1 · x ∈ Z(GL(2, R)). The image of
martix m under φy can be calculated as follows:

Inn(x̂−1)(x · φy(m) · x−1) = (x̂−1x) · φy(m) · (x̂−1x)−1 = φy(m)

Using the same technique the homomorphism φay can be calculated given Inn(ga).
Since Inn(g) and Inn(ga) are part of the public key, the two ring homomor-
phisms φy and φay can be calculated efficiently. For the security of MOR using
GL(2, R) ×θ ZZn it is necessary that the discrete logarithm problem is hard in
< φ >. Otherwise a (mod ord(φ)) can be calculated which gives partial infor-
mation of the secret key a.

4 Analysis of MOR using GL(2, R) ×θ ZZn

The most time consuming operations in the encryption and decryption process of
the MOR cryptosystem are the exponentiations in < Inn(g) >. The inner auto-
morphisms are given by the images of the generators γ1, . . . γn of the used group
G. To calculate Inn(g2)(γi), two steps are needed. In the first step Inn(g)(γi)
has to be expressed as a product of the generators γi and in the second step the
corresponding images Inn(g)(γi) have to be multiplied. Since 2 (resp. 1) expo-
nentiations in < Inn(g) > have to be calculated during the encryption (resp.
decryption) process, the MOR cryptosystem in its basic form is much too inef-
ficient to be of practical interest.
Therefore a variant of MOR has been proposed [6] where the encryption expo-
nent b is used for multiple encryptions. Since the resulting encryption scheme
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is deterministic, the authors of [6] recommend to use a probabilistic padding
scheme when fixing the encryption exponent.
We now show that MOR using GL(2, R)×θ ZZn with fixed encryption exponent
(even when the probabilistic padding scheme is used) is vulnerable to chosen
ciphertext attacks if the computational Diffie-Hellman Problem in < φ > can be
solved (efficiently). From Inn(ga) (which is part of the public key) and Inn(gb)
(which is part of the ciphertext) the homomorphisms φay and φby can be com-
puted. Solving the computational Diffie-Hellman problem yields φaby.

Let c = (c1, c2) ∈ GL(2, R) be a given challenge ciphertext of MOR using
GL(2, R) ×θ ZZn. In a chosen ciphertext attack the attacker is assumed to have
access to a decryption oracle. He is allowed to send ciphertexts ĉ �= c to the
oracle and gets the corresponding plaintext messages. A cryptosystem is secure
against chosen ciphertext attacks if such an attacker is not able to compute the
plaintext corresponding to c efficiently.
In our attack we make use of the fact that the encryption function Inn(gab) is
an automorphism, i.e. every d = (d1, d2) ∈ GL(2, R)×θ ZZn is a valid ciphertext
of a (maybe unknown) message m = (m1,m2) ∈ GL(2, R) ×θ ZZn.
Let g = (x, y) ∈ GL(2, R) ×θ ZZn. Then (x, y)ab = (x̂, aby (mod n)) for some
x̂ ∈ GL(2, R). Ciphertexts of MOR using GL(2, R) ×θ ZZn are of the form

d = (d1, d2) = (x̂ · φaby(m1) · φm2(x̂−1),m2)

The attack consists of two steps. In the first step an x̄ ∈ GL(2, R) with Inn(x̂) =
Inn(x̄) is computed. This element x̄ is used in the second step to decipher the
challenge ciphertext c.

Step 1: For every d1 ∈ GL(2, R) the value (d1, 0) ∈ GL(2, R)×θ ZZn is a valid
ciphertext of the (unknown) message (m1, 0) ∈ GL(2, R) ×θ ZZn:

(d1, 0) = (x̂ · φaby(m1) · x̂−1, 0)

Sending (d1, 0) to the decryption oracle, the attacker gets the corresponding
plaintext message (m1, 0). Since we assumed that the attacker knows φaby he is
able to compute φaby(m1). The values φaby(m1), d1 = x̂ ·φaby(m1) · x̂−1 form an
instance of the conjugacy problem in GL(2, R). Repeating this process generates
multiple simultaneous instances of the conjugacy problem in GL(2, R) which can
be used to solve the special conjugacy problem in GL(2, R) and get a group el-
ement x̄ ∈ GL(2, R) with Inn(x̂) = Inn(x̄) (see appendix A for details).

The oracle may not answer queries with zero as second component, because
GL(2, R) ×θ {0} is isomorphic to GL(2, R) and the conjugacy problem is effi-
ciently solvable in GL(2, R). In this case the attacker sends queries (d1, i), (d̂1, i) ∈
GL(2, R) ×θ ZZn with the same second component to the decryption oracle:

(d1, i) = (x̂ · φaby(m1) · φi(x̂−1), i)

(d̂1, i) = (x̂ · φaby(m̂1) · φi(x̂−1), i)
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With the plaintext messages (m1, i), (m̂1, i) ∈ GL(2, R) ×θ ZZn and homomor-
phism φaby the attacker can compute φaby(m1) ·(φaby(m̂1))−1 = φaby(m1 ·m̂1

−1)
and d1 ·(d̂1)−1 = x̂·φaby(m1 ·m̂1

−1)·x̂−1 to get an instance of the CP in GL(2, R).

Step 2: Let (p1, p2) be the plaintext message encrypted in the challenge cipher-
text c = (c1, c2). Since x̄ = x̂ · z for a z ∈ Z(GL(2, R)) we get:

x̄−1 · c1 · φc2(x̄) = x̄−1 · (x̂ · φaby(p1) · φc2(x̂)) · φc2(x̄)
= φaby(p1) · z−1 · φc2(z)

Only one oracle query is necessary to calculate z−1 ·φc2(z). The attacker chooses
a c3 �= c1 ∈ GL(2, R) and sends (c3, c2) to the oracle. If m̂ is the answer of the
oracle, the attacker gets z−1 · φc2(z) as follows:

c3 · (φc2(x̄)φaby(m̂−1)x̄−1) = (x̂φaby(m̂)φc2(x̂−1)) · (φc2(x̄)φaby(m̂−1)x̄−1)
= x̂φaby(m̂)φc2(x̂−1)φc2(x̂z)φaby(m̂−1)(x̂z)−1

= z−1 · φc2(z)

Now the attacker can compute φaby(p1).

Step 3: If the knowledge of φaby is not sufficient to compute p1 from φaby(p1),
the decryption oracle is used to compute preimages under φaby. To obtain the
preimage of φaby(p1) the attacker sends

(d1, 0) = (x̄ · φaby(p1) · x̄−1, 0) = (x̂ · φaby(p1) · x̂−1, 0)

as query to the decryption oracle. The oracle reply equals the wanted preim-
age. If the oracle does not answer queries with zero as second component the
value x̄ · φaby(p1) · x̄−1 can be expressed as x̄ · φaby(p1) · x̄−1 = e1 · ê1

−1 for
e1, ê1 ∈ GL(2, R) and (e1, i) and (ê1, i) can be sent to the oracle. If a1 and â1

are the oracle’s answers, the desired preimage is p1 = a1 · â1
−1 (see also step 1

for a similar argument).

Using a randomised padding scheme: In [6] the authors propose to use a
probabilistic padding scheme when fixing the encryption exponent. The plain-
text message m ∈ R is embedded in GL(2, R) by choosing a random matrix

M =
(

m1 m2

m3 m4

)
∈ GL(2, R) with m1 = m. After that the encryption function

Inn(gab) is applied to M .
In [8] it has been shown that MOR using SL(2, ZZp)×θZZn is insecure even if the
randomised padding scheme is used: Two pairs consisting of plaintext and cor-
responding ciphertext are sufficient to calculate Inn(gab). The same techniques
can be applied to step 1 of our attack to calculate an element x̄ ∈ GL(2, R) with
Inn(x̂) = Inn(x̄).

The first part of step 2 also works if the described padding scheme is used, i.e.
φaby(p1) · z−1 · φc2(z) can be calculated. The second part of step 2 has to be
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changed slightly: On input (c3, c2) the decryption oracle outputs only the (1, 1)-
component of m̂. The other entries of matrix m̂ are not known to the attacker.
Since Z(GL(2, R)) = {c · Id | c ∈ R, c invertible}, the value z−1 · φc2(z) is of the

form z−1 · φc2(z) =
(

r 0
0 r

)
for an invertible r ∈ R. In particular z−1 · φc2(z) ∈

Z(GL(2, R)). For m̂ =
(

m̂1 m̂2

m̂3 m̂4

)
we get

x̄−1 · c3 · φaby(x̄) = (z−1x̂−1) · (x̂φaby(m̂)φc2(x̂−1)) · (φc2(x̂z))
= φaby(m̂) · z−1 · φc2(z)

=
(

r · m̂1 r · m̂2

r · m̂3 r · m̂4

)

The value m̂1 can be obtained by sending (c3, c2) to the decryption oracle. If r
cannot be calculated given m̂1 and r · m̂1 this process has to be repeated with a
different value c3.

Step 3 also works when the randomised padding scheme is used but has to
be carried out for every single component, i.e. to compute the preimage of

φaby(p1) =
(

Φaby(p11) Φaby(p12)

Φaby(p13) Φaby(p14)

)
step 3 is used to find preimages of di ∈ GL(2, R),

1 ≤ i ≤ 4, where the (1, 1)-component of di equals Φaby(p1i).

5 Conclusion

We showed that MOR using GL(2, R) ×θ ZZn with fixed encryption exponent
is vulnerable to chosen ciphertext attacks if the computational Diffie-Hellman
Problem is easy in < Φ >. The presented attacks still work if the randomised
padding scheme of [6] is used. They do not work if the encryption exponent b is
randomly chosen for every plaintext to be encrypted. However, in this case two
exponentiations in < Inn(g) > have to be calculated during the encryption and
one during the decryption process. The resulting cryptosystem is too inefficient
to be of practical interest.
Our results show that the hardness of the discrete logarithm problem (DLP) in
< Φ > is essential for the security of all modes of MOR (even when the encryp-
tion exponent b is chosen randomly and independently for every plaintext to be
encrypted). The DLP in < Φ > is much easier than the DLP in < Inn(g) >
(which has to be solved to calculate the secret key given the public key). It may
be more appropriate to use a variant of the ElGamal cryptosystem [4] using the
cyclic group < Φ >. The resulting cryptosystem would be provable secure and
more efficient than MOR using GL(2, R) ×θ ZZn.
All attacks are generic attacks, i.e. they work for every ring R and every homo-
morphism Φ. For certain choices of R and Φ there may be even stronger attacks.
It is a task for future reserach to find a non-abelian group suitable for the use
with the MOR cryptosystem.
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A The Special Conjugacy Problem in GL(2, R)

Let Inn(g) : GL(2, R) → GL(2, R) be a public inner automorphism. We assume
that Inn(g) is given as a black box, i.e. an attacker is able to calculate images
under Inn(g) but does not know the used g ∈ GL(2, R). This approach assures
that our calculations are independent of the presentation of Inn(g). We now
show that the special conjugacy problem is efficiently solvable in GL(2, R).

Let B, C, X ∈ GL(2, R) and B, XBX−1 = B̂ =
(

b̂1 b̂2

b̂3 b̂4

)
and C,XCX−1 = Ĉ =

(
ĉ1 ĉ2

ĉ3 ĉ4

)
be two simultaneous instances of the conjugacy problem in GL(2, R).

Let X̂ ∈ GL(2, R) be a solution of these two instances. Then X̂ = Z · X with(
z1 z2

z3 z4

)
= Z ∈ Z(B̂)∩Z(Ĉ). By comparing the components of Z · B̂, B̂ ·Z and

Z · Ĉ, Ĉ · Z we get:1

1 Since X̂ could also be expressed as X̂ = X · Ẑ for a Ẑ ∈ Z(B)∩Z(C), the following
paragraph is also true if b̂i and ĉi are replaced by bi and ci. In particular B ∈
Z(C) ⇔ B̂ ∈ Z(Ĉ).
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– z2(ĉ3b̂2 − b̂3ĉ2) = 0 and z3(ĉ3b̂2 − b̂3ĉ2) = 0
– z2(ĉ2(b̂1 − b̂4) − b̂2(ĉ1 − ĉ4)) = 0 and z3(ĉ2(b̂1 − b̂4) − b̂2(ĉ1 − ĉ4)) = 0
– z2(ĉ3(b̂1 − b̂4) − b̂3(ĉ1 − ĉ4)) = 0 and z3(ĉ3(b̂1 − b̂4) − b̂3(ĉ1 − ĉ4)) = 0

If ĉ3b̂2 = b̂3ĉ2, ĉ2(b̂1 − b̂4) = b̂2(ĉ1 − ĉ4) and ĉ3(b̂1 − b̂4) = b̂3(ĉ1 − ĉ4), then
B̂ ∈ Z(Ĉ). Therefore, were B̂, Ĉ ∈ GL(2, R) chosen such that B̂ /∈ Z(Ĉ), one of
the equations has to be false and z2 and z3 are zero divisors.

If B̂, Ĉ ∈ GL(2, R) where chosen such that ĉ3b̂2− b̂3ĉ2, ĉ2(b̂1− b̂4)− b̂2(ĉ1− ĉ4) or
ĉ3(b̂1 − b̂4)− b̂3(ĉ1 − ĉ4) is no zero divisors it further follows that z2 = z3 = 0. If

one of the ring elements b̂2, b̂3, ĉ2 or ĉ3 is no zero divisor, then Z =
(

z1 0
0 z1

)
for a

z1 ∈ R. Since Z ·M = M ·Z for all M ∈ M(2, R), we get that Inn(X) = Inn(X̂),
i.e. X̂ ∈ GL(2, R) is a solution of the instance Inn(X) of the special conjugacy
problem in GL(2, R).

We now show that a simultaneous solution of these two instances can be calcu-
lated efficiently. The equations XBX−1 = B̂ and XCX−1 = Ĉ are equivalent to
XB = B̂X and XC = ĈX. If B /∈ Z(C) this yields to a system of three linear
equations. In the presented attack in section 4 the elements B̂, Ĉ ∈ GL(2, R)
can be chosen freely. If b̂3 is invertible, the obtained system of linear equations
is equivalent to:

x1 + b̂4−b1
b̂3

· x3 − b3
b̂3

· x4 = 0

x2 − b2
b̂3

· x3 + b̂4−b4
b̂3

· x4 = 0

(ĉ4 − c1 − ĉ3 · b̂4−b1
b̂3

) · x3 − (c3 − ĉ3 · b3
b̂3

) · x4 = 0

For arbitrary r ∈ R this system is solved by x1 = k1 ·r, x2 = k2 ·r, x3 = k3 ·r and
x4 = k4 ·r where k4 = ĉ4−c1−ĉ3 · b̂4−b1

b̂3
, k3 = (c3−ĉ3

b3
b̂3

)·k, k2 = b2
b̂3
·k3− b̂4−b4

b̂3
·k4

and k1 = b3
b̂3

· k4 − b̂4−b1
b̂3

· k3.

If either b̂3c3 − ĉ3b3 or b̂3(ĉ4 − c1) − ĉ3(b̂4 − b1) is no zero divisor,
(

k1 k2

k3 k4

)

∈ GL(2, R) and
(

rk1 rk2

rk3 rk4

)
�=

(
r̂k1 r̂k2

r̂k3 r̂k4

)
for r, r̂ ∈ R with r �= r̂, i.e. we get | R |

distinct solutions. In this case we further know that
(

rk1 rk2

rk3 rk4

)
∈ GL(2, R) if

and only if r ∈ R is no zero divisor.
Since X ∈ GL(2, R), the equation XB = B̂X is equivalent to B̂ = XBX−1. For
an element X̂ ∈ M(2, R) with X̂B = B̂X̂ we get that (X−1X̂)B = B(X−1X̂)
holds, i.e. X̂ = X · Z with Z ∈ ZM(2,R)(B).
Thus, the simultaneous solutions (in M(2, R)) of the equations XB = B̂X and
XC = ĈX are of the form Z · X where Z ∈ ZM(2,R)(B̂) ∩ ZM(2,R)(Ĉ). If
B̂, Ĉ ∈ GL(2, R) were chosen such that ZM(2,R)(B̂)∩ZM(2,R)(Ĉ) = Z(M(2, R)),
there are | Z(M(2, R)) |=| R | many solutions, i.e. all solutions are given by
x1 = k1 · r, x2 = k2 · r, x3 = k3 · r and x4 = k4 · r with r ∈ R.
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