
Modeling Software Specifications with Case Based
Reasoning

Nuno Seco1, Paulo Gomes2, and Francisco C. Pereira2

1 Department of Computer Science, University College Dublin,
Dublin 4, Ireland

2 CISUC - Centro de Inforḿatica e Sistemas da Universidade de Coimbra,
Departamento de Engenharia Informática, Universidade de Coimbra,

3030 Coimbra, Portugal

Abstract. Helping software designers in their task implies the development of
tools with intelligent reasoning capabilities. One such capability is the integration
of Natural Language Processing (NLP) in Computer Aided Software Engineer-
ing (CASE) tools, thus improving the designer/tool interface. In this paper, we
present a Case Based Reasoning (CBR) approach that enables the generation of
Unified Modeling Language (UML) class diagrams from natural language text.
We describe the natural language translation module and provide an overview of
the tool in which it is integrated. Experimental results evaluating the retrieval and
adaptation mechanisms are also presented.

1 Introduction

Design is a complex task involving several types of reasoning mechanisms and knowl-
edge types [1]. The field of software design is no exception, especially if we consider
software design as a way of computationally modeling part of the real world. CASE
tools were developed some decades ago to help designers model software systems.
Many of these tools are only graphical editors that graphically assist the user design-
ing the system. Given this fact, these tools are bereft of capabilities other than simple
editing skills, one can suggest that the inclusion of intelligent reasoning capabilities
is a goal that must be attained in order to relieve the designer from tedious and time
consuming tasks.

We are developing a CASE tool with several functions that extend beyond these
mundane editing skills. One such function is the ability to translate textual descriptions
of a proposed system into the graphical formalism used by the CASE tool. This pro-
cess implies the three following steps: morphological analysis, syntactic analysis, and
semantic analysis. The morphological analysis identifies the lexical category of each
word. The syntactic analysis creates the parse tree of the text being analyzed. Finally,
semantic analysis associates meaning to text elements and converts them into the for-
malism used in our CASE tool. For the initial steps, there are well established methods
to perform these analysis stemming from the NLP community [2, 3]. The semantic anal-
ysis is domain dependent and requires thoroughly developed approaches to cope with

Seco N., Gomes P. and C. Pereira F. (2004).
Modeling Software Specifications with Case Based Reasoning.
In Proceedings of the 1st International Workshop on Natural Language Understanding and Cognitive Science, pages 135-144
DOI: 10.5220/0002670701350144
Copyright c© SciTePress



the complexity of natural language. In this paper, we propose a new approach to se-
mantic analysis of texts and analyze means of converting them into a formal software
specification language. The proposed approach for semantic analysis is based on the
CBR paradigm [4, 5] and converts textual software descriptions into UML class dia-
grams3.

The immense number of syntactical and semantic relations which are possible in
natural language jeopardizes the development of a theoretical framework for transla-
tion. The lack of an aligned corpus containing software requirements and their respec-
tive software designs, precludes the possibility of using corpus based strategies, such
as Example Based Machine Translation (EBMT). The above reasons lead us to believe
that CBR is a suitable approach. Another advantage of a CBR approach, is that it al-
lows the system to evolve in time by learning new cases and by adapting itself to the
linguistic modeling preferences of its users. We have dubbed our NLP module NOESIS,
which is an acronym forNatural LanguageOrientedEngineeringSystem forInteractive
Specifications.

The next section describes the CASE tool where NOESIS is integrated. The NOE-
SIS module is detailed in section 3 where we focus on the NLP steps of the translation
process, the case representation, retrieval and finally the adaptation mechanisms. Sec-
tion 4 presents experimental work. Finally, we bring our analysis to a conclusion and
offer some ideas for future work.

2 REBUILDER

The main goals of REBUILDER are to create and manage a repository of software
designs and to provide the software designer with a set of functions which are necessary
in promoting the reuse of previous design experiences.

Figure 1 illustrates the architecture of REBUILDER. It comprises of four main mod-
ules: the UML editor, the knowledge base manager, the knowledge base (KB), and the
CBR engine. It also depicts the two different user types: software designers and KB
administrators. Software designers use REBUILDER as a CASE tool and subsequently
reuse the software design knowledge it has previously stored. The KB administrator
keeps the KB updated and consistent. The UML editor serves as the intermediary be-
tween REBUILDER and the software designer while the KB manager is the interface
between the KB administrator and the system.

3 NOESIS

The aim of NOESIS is to assist the designer in the creation of the initial UML class
diagram. Consequently, the diagram may be passed along to the other reasoning mod-
ules capable of completing it. At the present stage, NOESIS focuses on the structural
requirements of the desired system salient in the software specification documents. A
possible passage could be:

3 UML is the design language used by the CASE tool that we are developing (see [6])

136



Manager Client

UML
Editor

CBR
Engine

KB Manager Module

Knowledge Base
WordNet Server

WordNet
Case

Indexes

File Server

Design
Cases

Data Type
Taxonomy

Designer Client

UML
Editor

CBR
Engine

Software DesignersKB Administrator

Fig. 1. REBUILDER’s Architecture.

A BankingCompany has many Customers. These Customers may have several
BankAccounts. A Customer can request a BankCard for each BankAccount.

These texts are subject to some peculiarities and simplifications [7], which some-
what eases the difficulty in understanding them. Of these peculiarities,explicitnessis
probably one of the most significant. It is useful in reducing to a minimum, the amount
of unexpressed information in the specifications, thus avoiding potential disputes over
what the software should or should not do.

NOESIS, similar to any other NLP system, is aware of the knowledge categories
identified in [2] which include Phonetics, Phonology, Morphology, Syntax, Semantics,
Pragmatics and Discourse. However, due to the specific nature of the problem, phonetic
and phonological knowledge is absent. We assume, for the moment, that the require-
ments are fed to NOESIS in the form of digitalized texts. The other omitted knowledge
category is pragmatic knowledge. As stated above, we assume that these texts are ex-
plicit. Therefore, implicit information is avoided, thus relieving the system of dealing
with pragmatic issues.

Figure 2 illustrates the main modules that are elements of the NLP engine of NOE-
SIS and the processes that each sentence undergoes. Sentences from the original text are
queued and posted individually to the NLP engine. Each word in the sentence is tagged
with a label that identifies the grammatical class of that word. The tagged sentence is
then sent to a syntactic parser which derives the possible parse trees of the sentence.
One of these trees is then selected as the best derivation and is passed on to thecase-
based semantic analyzerwhich outputs a meaningful representation (e.g. UML Class
Diagram). This representation is a diagram that corresponds to the sentence, yet it is
only a partial solution to the initial text. As a result, it is necessary to merge these par-
tial diagrams together before being presented as a candidate solution to the user. The use
of sentences as the basic unit of processing is arguable. Obviously, by breaking the text
into sentences we loose implicit paragraph-level or text-level relations, but on the other
hand, we are also able to make more detailed similarity judgments. Nevertheless, as
will be stated in section 3.2, during semantic analysis we capture these coarser grained
relations (text-level) by including a context and discourse evaluation component in our
similarity metric.

137



Sentence
POS Tagger

MORPH Analyzer
Tagged

Sentence
Syntactic Parser

Parse Tree
Case-Based

Semantic Analyzer
Partial

Diagram

NOESIS

Fig. 2. NOESIS’s Architecture.

3.1 Morphological and Syntactic Analyzer

The first phase of processing is Part-Of-Speech tagging. The tagger used in NOESIS
is a purely stochastic tagger called QTAG4. The tagset used by NOESIS is a simple
and reduced form of the original tagset. If the sentence is successfully tagged and all
nouns and verbs exist in the WordNet lexicon, then the tagged sentence is passed on
to the next analyzer. Otherwise, the sentence will undergo morphological processing in
order to identify inflected words. These inflections are removed from the sentence and
the tagger is asked to process the sentence again. If the sentence is still not correctly
tagged then the user may tag the problematic word(s) manually or rephrase the specifi-
cation. It should be noted that the reduced tagset that we are using is not fine grained,
so distinction between plural and singular forms, which would be an obvious indicator
of cardinality of the relations, is not possible at this point.

The objective of the syntactic analyzer is to discover all valid syntactic parse trees
for a given sentence. A very simple context free grammar for the English language is
used. The parsing algorithm used is known as the Earley algorithm [8]. After parsing,
the resulting derivation is passed on to the semantic analyzer which produces the corre-
sponding meaning representation.

3.2 Semantic Analyzer

The semantic analyzer receives a syntactic parse tree as its input and produces an UML
class diagram that partially models the requirement text. Our analyzer uses a CBR
mechanism to produce a plausible diagram.

The Case Base and IndexesPrevious requirements are stored and indexed as cases
in the case base. Cases in NOESIS are composed of a single parse tree (the leaves are
the words of the sentence), a corresponding class diagram and a mapping tuple that
establishes the coupling between nouns in the sentence and the entities in the diagram.
These cases are then indexed according to the verbs present in the sentence. Each verb
is attributed a synset5 from WordNet, then an index representing the case is created and
attached to the corresponding synset node in WordNet. The use of verbs for indexing
is twofold; firstly verbs provide a relational and semantic framework for sentences [9],
therefore, the verb occupies a core position and no valid sentence may exist without a

4 More information can be obtained at http://www.clg.bham.ac.uk/tagger.html
5 A synset identifies the intended meaning for a word.

138



verb. The second reason is concerned with performance reasons. There are many more
nouns than verbs in the English language [9], which means that searching in Word-
Net’s noun graph is much more demanding than searching in it’s verb graph. The most
relevant types of relations used to connect noun synsets are hypernym and meronym
relations. Regarding verb synsets, meronym relations do not exist. These were replaced
by entailment relations (specific verb clustering relations were also added) [9].

Attaching indexes to WordNet helps evaluate semantic similarity, but portrays noth-
ing regarding syntax which is also a very important facet of sentence interpretation.
In order to close this gap we have created a second structure that is also used for in-
dexation. This means that every index is simultaneously attached to these two different
structures. Figure 3illustrates how this syntactic indexation tree is organized. The root
of the tree has no syntactic meaning. It simply exists for the sake of simplifying the
algorithms that manipulate these data structures.

Root

S1

S2

S3

Fig. 3. Syntactic index tree.

Imagine that the nodess1 ands2 correspond to the parse trees in figure 4, these
trees could represent the syntactic derivation of the sentences”Book that flight.” and
”John ate the pizza.”, respectively. As can be seen, each node of the tree in figure 3
syntactically subsumes every other descending node. This kind of structure facilitates
the assessment of syntactic similarity. We assert thats1subsumess2when every branch
of s1is contained ins2. This indexation tree is dynamically rearranged when new cases
are added to the case base.

S1

VP

NP

Verb Det Noun

S2

VP

NP

Verb Det NounNoun

Fig. 4. Example parse trees.

139



Retrieval Our retrieval algorithm comprises of two steps. Firstly, we look for relevant
candidates through the use of indexes and then select the most promising candidate that
maximizes our similarity metric.

The first substep takes advantage of the implemented indexing scheme where both
WordNet and the syntactic index tree can be used. This flexibility enabled the imple-
mentation of several algorithms that use both structures simultaneously or individually
(giving preference either to semantics or syntax).

Four retrieval algorithms were implemented which combined the use of these struc-
tures. The algorithms are all very similar to the one encountered in [6], except that all
relations between verb synsets are used during the search. The algorithm is based on
spreading activation, which expands the search to neighbor nodes until some condition
is attained and the search terminates. All algorithms commence by finding a list of entry
points into to the relevant structure(s). The verbs’ synset is used as the entry point into
WordNet. Regarding the syntactic index tree, the entry point is the node representing
the same syntactic derivation as our target sentence. If no such node exists then a list of
entry points is created which contains the nodes that directly subsume and are subsumed
by our target sentence. The four algorithms used by NOESIS are:

1. Semantic Retrieval— Only uses the WordNet verb graph.
2. Syntactic Retrieval— Only uses the syntactic index tree.
3. Semantic Filtering Retrieval — Uses the syntactic index tree but eliminates in-

dexes that have a semantic distance above some user defined threshold.
4. Conjunctive Retrieval — Uses both structures simultaneously. Only intersecting

indexes that are reached during the search on both structures are considered valid
and may be returned.

Similarity Assessment The second substep ranks each of the indexes returned by the
retrieval algorithm. These indexes contain the parse tree for the case they represent
which is then used for similarity assessment. We use four different measures for ranking
indexes:

– Syntactic Similarity is given by:

1

2
× (

#intersect(target, source)

#nodes(target)
+

#intersect(target, source)

#nodes(source)
) (1)

where intersectcomputes a list of nodes that are syntactically common in both
parse trees andnodesreturns a list of nodes contained in the tree. Since there is no
obvious reason to normalize the intersection in relation to either thesource or the
target, we consider both with equal importance.

– Semantic Similarity is given by:

dist(n(target), n(source)) + dist(v(target), v(source))

2×MSL
(2)

wheredist computes the average semantic distance between noun synsets or verb
synsets.n and v return a list of the nouns or verbs contained in the parse tree.
MSL (Maximum Search Length) defines the maximum number of arcs that the
search may transverse. If the distance can not be computed the value of the MSL is
returned.

140



– Contextual Similarity is given by:
{

1 if source belongs to a text from which a sentence was previously used

0 otherwise
(3)

– Discourse Similarity is given by:

1

(snum(target)− snum(source))2 + 1
(4)

wheresnumreturns the absolute position of the sentence in the original text. Hence,
we try to match sentences that occur in similar positions in both texts, allowing us
to capture text-level relations.

These four formulas are normalized which will produce values between[0..1]. After
the computation of each of these components, a weighted sum is used to evaluate the
overall similarity between the target and the source. The indexes are then ranked and
the index that maximizes expression (6) is considered for reuse.

sim(target, source) = ω1 · SyntacticSimilarity + ω2 · SemanticSimilarity + (5)

ω3 · ContextSimilarity + ω4 ·DiscourseSimilarity

Adaptation After all sentences of the target text have been mapped with a similar
source sentence the adaptation phase begins. Adaptation starts by loading the diagrams
specified by the selected indexes into memory. Then the names of the entities from the
source diagrams are replaced with the nouns encountered in the target sentence. This
replacement of names is possible because each case holds the mapping (see section
3.2) between the nouns in the sentence and the entities of the diagram. This mapping is
denoted by (6).

Υ : Sourcesentence −→ Sourcediagram (6)

Having defined the correspondence function between nouns and entities, we now
need a function that can map nouns from the target sentence with nouns apparent in
the source sentence. A naive mechanism is used to accomplish this task; basically the
isomorphism between nouns is established on the basis of their relative positions in
each sentence. This means that the first noun in one sentence will be isomorphic with
the first noun of the second sentence and so on, so forth. The correspondence is denoted
by (7).

Γ : Targetsentence −→ Sourcesentence (7)

Obtaining a diagram for the target sentence is now a matter of discovering the map-
pings betweenTargetsentence andSourcediagram. This is easily accomplished by ap-
plying (8) and replacing the names of the entities in the diagram with the nouns in the
target sentence.

141



Υ ◦ Γ : Targetsentence −→ Sourcediagram (8)

Applying the above process will yield a several diagrams; there will be as many
diagrams as target sentences. It frequently occurs that each diagram has entities with
the same name (some simple inflections may exist). These entities are merged resulting
in a single diagram that is presented to the user.

Retain The proposed diagram may be adapted by the user in the way he or she thinks
adequate. If many modifications are made on the suggested diagram, it may be due to
a lack of coverage of the case base. In other words, the case base fails to hold the nec-
essary knowledge to satisfactorily solve the problem. Confronted with such a situation,
it is reasonable for the user to submit the altered case to the case base. Then, it is up
to the KB administrator to decide if the submitted case should be indexed and made
accessible to the retrieval component.

4 Preliminary Experimental Studies

In this section, we present some results of preliminary experiments. The aim of these
experiments is to compare the output of NOESIS’s solution with that of a software
designer. We are vividly aware of the subjectivity involved in these experiments and
hold the view that the only reliable experiment to assess the proposed strategy, is one
where the tool is used in a real software production environment and is evaluated by its
users.

The results presented here are based on a case base comprising of 62 cases, which
corresponds to 12 different texts (an average of 4 sentences per text). A set of 22 prob-
lems (an average of 3 sentence per problem) were used for testing the overall accuracy
of the system.

For each problem text a corresponding UML class diagram was designed by the
authors. The same problems were given to NOESIS and the two solutions were com-
pared using a class diagram comparison metric yielding a number ranging from 0 to
1, where 1 represents an identical match and 0 represents two completely different di-
agrams. This metric is actually part of a larger evaluation component which computes
the similarity between two packages (each package may contain a diagram and several
other packages. A detailed explanation can be found in [10].

The four retrieval algorithms presented in section 3.2 along with different weighting
schemes were combined resulting in 60 distinct configurations. The weight combina-
tions used are evident in table 1. The Semantic Filtering Retrieval algorithm was used
with a predefined threshold of 5 (see section 3.2). Each problem was solved using each
of the configurations presented in table 1.

Figure 5 purveys the average similarity of NOESIS’s diagrams in relation to the hu-
man generated solutions for every problem description in each of the 15 configurations.
In figure 5, SemR, SynR, SemFR and ConR correspond to Semantic Retrieval, Syntac-
tic Retrieval, Semantic Filtering Retrieval and Conjunctive Retrieval, respectively.

142



ω C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15
ω1 1 0 0 0 0.5 0.5 0.5 0 0 0 0.33 0.33 0.33 0 0.25
ω2 0 1 0 0 0.5 0 0 0.5 0.5 0 0.33 0.33 0 0.33 0.25
ω3 0 0 1 0 0 0.5 0 0.5 0 0.5 0.33 0 0.33 0.33 0.25
ω4 0 0 0 1 0 0 0.5 0 0.5 0.5 0 0.33 0.33 0.33 0.25

Table 1. The fifteen configurations used for experimental evaluation. Theω’s represent the dif-
ferent weights given to the overall similarity metric presented in section 3.2.

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

2 4 6 8 10 12 14

 A
ve

ra
ge

 S
im

ila
rit

y 

 Weight Configuration 

Accuracy Results

SemR SynR SemFR ConR

Fig. 5. Average similarity between NOESIS’s solutions and human generated solutions.

These results show us that configuration C03 (where only context is used for simi-
larity assessment) has inferior similarity for all four retrieval algorithms. The Semantic
Filtering Retrieval algorithm performs worse than all other algorithms. This may be a
result of the low threshold value used. This plot also indicates that the adaptation mech-
anism, independent of the retrieval algorithm, is able to adapt the retrieved cases to the
target situation.

5 Conclusions and Future Work

This paper presents a case-based reasoning system capable of translating textual soft-
ware descriptions into UML class diagrams. One advantage of using CBR to perform
semantic analysis of sentences is that CBR does not need a domain theory in which to
work. In software design, it is very difficult to come up with a domain theory because
the designer is modeling an aspect (or a view) of the real world. It is impractical to cope
with all possible views. Another advantage of CBR is that it retains new knowledge in

143



the form of cases. This not only allows the system to evolve but also makes it possible
for the system to adapt itself to the designers’ modeling preferences.

The experimental results shown in section 4 are not conclusive but they encourage
further research using CBR as the main reasoning mechanism for translation of software
descriptions into UML class diagrams. This work has raised several issues that require
further research and improvement. One of these issues is the extension of the system to
deal with attributes and methods. The linguistic processing mechanism would also im-
prove if issues like, selecting the correct syntactic derivation, the resolution of anaphora
and the detection of compound nouns were solved internally by NOESIS. The use of a
complete tagset should also allow the system to make better similarity judgments.

References

1. Tong, C., Sriram, D.: Artificial Intelligence in Engineering Design. Volume I. Academic
Press (1992)

2. Daniel Jurafsky, J.H.M.: Speech and Language Processing. Prentice Hall (2000)
3. Manning, C., Scḧutze, H. In: Foundations of Statistical Natural Language Processing. The

MIT Press, Cambridge, US (1999)
4. Aamodt, A., Plaza, E.: Case–based reasoning: Foundational issues, methodological varia-

tions, and system approaches. AI Communications7 (1994) 39–59
5. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo, California (1993)
6. Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P., Ferreira, J.L., Bento, C.: Case

retrieval of software designs using wordnet. In Harmelen, F.v., ed.: European Conference on
Artificial Intelligence (ECAI’02), Lyon, France, IOS Press, Amsterdam (2002)

7. Ambriola, V., Gervasi, V.: Processing natural language requirements. In: Proc. of the 12th In-
ternational Conference on Automated Software Engineering, Los Alamitos, IEEE Computer
Society Press (1997) 36–45

8. Earley, J.: An efficient context-free parsing algorithm. Communications of the ACM13
(1970) 94–102

9. Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to wordnet: an
on-line lexical database. International Journal of Lexicography3 (1990) 235 – 244

10. Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P., Ferreira, J.L., Bento, C.: Exper-
iments on case-based retrieval of software designs. In Craw, S., Preece, A.D., eds.: 6th
European Conference on Case-Based Reasoning (ECCBR’02). Volume 2416., Aberdeen,
Scotland, UK, Springer (2002)

144


