
A Computational Psycholinguistic Model of Natural
Language Understanding

Jerry T. Ball

Air Force Research Laboratory, 6030 S. Kent Street, Mesa, AZ 85212-6061

Abstract. Double R Model (Referential and Relational Model) is a computational
psycholinguistic model of natural language understanding founded on the linguistic
principles of Cognitive Linguistics and implemented using the ACT-R cognitive
architecture and modeling environment

1 Double R Grammar

Double R Grammar [1] is the Cognitive Linguistic theory [2,3] underlying Double R
Model. In Cognitive Linguistics, all grammatical elements have a semantic basis,
including parts of speech, grammatical markers, phrases and clauses. Our
understanding of language is embodied and based on experience in the world [4].
Categorization is a key element of linguistic knowledge, and categories are seldom
absolute—exhibiting, instead, effects of prototypicality, family resemblance [5], base
level categories [6], fuzzy boundaries, and radial structure [7]. Our linguistic abilities
derive from basic cognitive abilities—there is no autonomous syntactic component
separate from the rest of cognition. Knowledge of language is for the most part
learned and not innate. Abstract linguistic categories (e.g. noun, verb, nominal,
clause) are learned on the basis of experience with multiple instances of words and
expressions which are members of these categories, with the categories being
abstracted and generalized from experience. Also learned are schemas which abstract
away from the relationships between linguistic categories. Over the course of a
lifetime, humans acquire a large stock of schemas at multiple levels of abstraction and
generalization, representing knowledge of language and supporting language
understanding. These schemas constitute what might be called grammatical
semantics [8] in contrast to the lexical semantics of individual lexical items,
although the schemas are, for the most part, associated with specific lexical items.

Two key dimensions of meaning that get grammatically encoded are referential
meaning and relational meaning. Double R Grammar is focused on the representation
and integration of these two dimensions of meaning within the wider scope of
Cognitive Linguistics. Consider the expressions

1. The book on the table
2. The book is on the table

T. Ball J. (2004).
A Computational Psycholinguistic Model of Natural Language Understanding.
In Proceedings of the 1st International Workshop on Natural Language Understanding and Cognitive Science, pages 3-14
DOI: 10.5220/0002667400030014
Copyright c© SciTePress

These two expressions have essentially the same relational meaning. They both
express the relation “on” existing between “a book” and “a table”. However, their
referential meaning is significantly different. Expression 1, as a whole, refers to an
object and is called an object referring expression. In referring to an object, 1 uses
the determiner “the” to specify that the object is salient in the context of use of the
expression (and may have previously been referred to). Expression 1 also uses the
word “book” to indicate the type of object being referred to, with “book” functioning
as the head of the expression. Further, the phrase “on the table” refers to a location
with respect to which the object can be identified and functions as a modifier in the
expression. In referring to a location, the expression “on the table” refers to a second
object “the table” and indicates the location of the first object with respect to the
second object. Within the modifying expression, the relation “on” functions as the
relational head with the object referring expression “the table” functioning as a
complement. In expression 1, the relational meaning of “on” is subordinated to
referential meaning with the modifying function of “on the table” dominating the
relational meaning of “on”. That is, although “on” is the relational head of the
prepositional phrase “on the table”, it is not the head of the overall expression and
does not determine the semantic type of that expression.

Expression 2 refers to a situation and is called a situation referring expression.
The auxiliary “is” provides a temporal specification for the situation, fulfilling a
referential function similar to that of the determiner “the” in “the book” and “the
table”. The relational meaning of 2 is about “being on” and not just “being”, with
“on” functioning as the relational head of the situation referring expression. The
relational head of a situation referring expression is called a predicate—reflecting the
assertional function of the relational head. Note that “on” in 1 is not functioning as a
predicate, since it is presupposed and not asserted. That is, relational heads of
modifying expressions are not predicates, they are (modifying) functions. In
expression 2, the object referring expression “the book” functions as the subject
(argument) of “being on” with “the table” functioning as the object (argument).
Referentially, there is also a reference to a location “on the table”, which competes
with the expression of the relational meaning of “on” as reflected in the difference
between:

3. What is the book on?
4. Where is the book?

where 3 highlights the relation “on” in asking about the object of that relation and 4
highlights the reference to a location using “where” to do so.

The terms specifier, head, modifier and complement are borrowed from X-Bar
Theory [9]. It is acknowledged that X-Bar Theory captures an important grammatical
generalization, with the distinction between specifiers and modifiers representing a
significant advance, but X-Bar theory is in need of semantic motivation, which, when
provided, necessitates certain modifications to the theory [10]. For example, the
combination of a specifier and a head results in a maximal projection which
corresponds to a referring expression. However, the specifier determines the type of
referring expression, not the head, with referential type corresponding most closely to
the syntactic type of a maximal projection in X-Bar Theory. The head, on the other
hand, determines the relational type of the expression (where “relational”

4

encompasses objects). Both referential type (from the specifier) and relational type
(from the head) project to the expression as a whole. Consider the referring
expression

5. The kick

in which the specifier “the” determines the expression to be an object referring
expression, whereas, the head “kick” determines the expression to be a type of action.
In 5, the specifier has the effect of objectifying the action expressed by “kick”,
allowing it to be referred to as though it were an object. Note that since the inherent
relational meaning of “kick” is not affected (only its function), there is no need to
assume that the part of speech of “kick” is a noun instead of a verb (i.e. the head does
not project the “syntactic” type of the referring expression, the specifier does). And if
we allow verbs (especially action verbs) to function as heads of object referring
expressions (i.e. noun phrases), then one of the primary syntactic arguments against
the meaning based definition for parts of speech is nullified. That the head of an
object referring expression need not be a noun is further demonstrated by the
following examples:

6. The cheering up (present participle + verb particle) of the crowd
7. She is an Audrey Hepburn (proper noun) in the rough
8. The up and down (conjoined prepositions) of the elevator
9. Your giving money to strangers (participial phrase) is very generous

Besides demonstrating that the head of an object referring expression need not be a
noun, these examples show the importance of distinguishing the form of an
expression from its function in a particular context.

2 Double R Process

Double R Process is the psycholinguistic theory of language processing underlying
Double R Model. It is a highly interactive theory. Representations of referential and
relational meaning are constructed directly from input texts. There is no separate
syntactic analysis that feeds a semantic interpretation component. The processing
mechanism is driven by the input text in a largely bottom-up, lexically driven manner.
There is no top-down assumption that a privileged linguistic constituent like the
sentence will occur. There is no phrase structure grammar and no top-down control
mechanism. How then are representations of input text constructed? Operating on the
text from left to right, schemas corresponding to lexical items are activated. For those
lexical items which are relational or referential, these schemas establish expectations
which both determine the possible structures and drive the processing mechanism. A
short-term working memory (STWM) [11] is available for storing arguments which
have yet to be integrated into a relational or referential structure, partially instantiated
relational and referential structures, and completed structures. If a relational or
referential entity is encountered which expects to find an argument to its left in the
input text then that argument is assumed to be available in STWM. If the relational or

5

referential entity expects to find an argument to its right in the input text, then the
entity is stored in STWM as a partially completed structure and waits for the
occurrence of the appropriate argument. When that argument is encountered it is
instantiated into the stored relational or referential structure. Instantiated arguments
are not separately available in STWM. This keeps the number of separate linguistic
units which must be maintained in STWM to a minimum.

3 ACT-R

ACT-R is a cognitive architecture and modeling environment for the development of
computational cognitive models [12]. It is a psychologically validated cognitive
architecture which has been used extensively in the modeling of higher-level
cognitive processes (see the ACT-R web site for an extensive list of models and
publications). ACT-R includes symbolic production and declarative memory
systems integrated with subsymbolic production selection and spreading activation
and decay mechanisms. Production selection involves the parallel matching of the
left-hand side of all productions against a collection of buffers (e.g. goal buffer,
retrieval buffer, visual buffer, auditory buffer) which contain the active contents of
memory and perception. Production execution is a serial process—only one
production is executed at a time. The parallel spreading activation and decay
mechanism determines which declarative memory chunk is put into the retrieval
buffer for comparison against productions. The combination of symbolic and
subsymbolic mechanisms makes ACT-R a hybrid system of cognition. The noise
parameter used by these computational mechanisms adds stochasticity to the system.
ACT-R supports single inheritance of declarative memory chunks and limited,
variable-based pattern matching (including a partial-matching capability). ACT-R
incorporates learning mechanisms for learning both declarative and procedural
knowledge. Version 5 of ACT-R adds a perceptual-motor component supporting the
development of embodied cognitive models. With the addition of the perceptual-
motor component, and the use of buffers as the interface between various cognitive
modules (e.g. vision module, declarative memory), ACT-R is referred to as an
“integrated theory of the mind” [13].

4 Double R Model

Double R Model is the ACT-R based computational implementation of Double R
Grammar and Process (together called Double R Theory). Double R Model is
currently capable of processing an interesting range of grammatical constructions
including: 1) intransitive, transitive and ditransitive verbs; 2) verbs taking clausal
complements; 3) predicate nominals, predicate adjectives and predicate prepositions;
4) conjunctions of numerous grammatical types; 5) modification by attributive
adjectives, prepositional phrases and adverbs, etc. Double R Model accepts as input as
little as a single word or as much as an entire chunk of discourse—using the
perceptual component of ACT-R to read words from a text window. Unrecognized

6

words are simply ignored. Unrecognized grammatical forms result in partially
analyzed text, not failure. The output of the model is a collection of declarative
memory chunks that represent the referential and relational meaning of the input text.
Although Double R Model is essentially a computational psycholinguistic model, it is
intended to be used as the basis for development of large-scale, functional language
understanding systems and the current coverage of the model will need to be extended
significantly to support that objective.

4.1 Inheritance vs. Unification

Unification allows for the unbounded, recursive matching of two logical
representations and is an extremely powerful pattern matching technique used in
many language processing systems. Unfortunately, it is psychologically too powerful.
For example, the following two logical expressions can be unified:

p(a,B,c(d,e,f(g,h(i,j),K),l))
p(X,b,c(Y,e,f(Z,T,U),l))

where capitalized letters are variables and lowercase letters are constants. Humans are
unlikely to be capable of performing such unifications consciously or otherwise
without significant effort and an external scratch pad, since STWM does not have the
capacity to retain more than a few variable bindings simultaneously.

On the other hand, although extremely powerful, unification does not support the
matching of types to subtypes. Thus, if we have a verb type with intransitive and
transitive verb subtypes, unification cannot unify a chunk of type verb with a chunk of
type intransitive verb or transitive verb. Unification’s inability to match types to
subtypes often results in a proliferation of rules (or conditions on rules) to handle the
various combinations. For example, the verb type can be variableized and a test for
the valid types can be used to constrain the variable (e.g. Verb-Type equal verb or
Verb-Type equal intrans-verb or Verb-Type equal trans-verb). With inheritance, a
production that checks for a verb type will also match a transitive verb and an
intransitive verb type (assuming an appropriate inheritance hierarchy). Humans
appear to be able to use types and subtypes in appropriate contexts with little
awareness of the transitions. For example, when processing a verb, all verbs (used
predicatively) expect to be preceeded by a subject, but only transitive verbs expect to
be followed by an object. Thus, humans presumably have available a general
production that applies to all verbs (or even all predicates) which will look for a
subject preceding the verb, but only a more specialized production for transitive verbs
(or transitive predicates) which will look for an object following the verb.

Inheritance supports the matching of two representations without requiring the
recursive matching of their subparts so long as the types of the two representations are
compatible. Types are essentially an abstraction mechanism which makes it possible
to ignore the detailed internal structure of representations when comparing them. For
example, once the model has identified an expression as an object referring
expression, the model can match the object referring expression against productions
without consideration of the internal structure of the expression. Of course, there may
be productions that do consider the internal structure, but types are useful here as

7

well. Instead of having to fully elaborate the internal structure, types can be used to
partially elaborate that structure. For example, if a production is specifically
concerned with object referring expressions headed by a quantifier (e.g. “some” in
“some of the books”), the production can check to see that the head is of the
appropriate type, providing a (limited) unification like capability where needed. In
sum, inheritance and limited pattern matching provide a psychologically plausible
alternative to a full unification capability.

To take advantage of inheritance, Double R Model incorporates a type hierarchy (a
tangled hierarchy or lattice, with multiple inheritance, is preferred, but ACT-R
currently only supports single inheritance). Representative elements of the top levels
of the current hierarchy of types (below top-type) are shown below:

 Lexical-type
 Noun Adjective Verb Preposition Adverb Determiner

Quantifier Auxiliary
 Referential-type
 Head Specifier Modifier Complement
 Referring-expression-type
 Object-refer-expr Situation-refer-expr Predicate-refer-

expr
 Location-refer-expr Direction-refer-expr
 Relation-type
 Relation (with subtypes: Predicate Function) Argument

The more specialized a production is, the more specialized the types of the chunks in
the goal and retrieval buffers to which the production matches will need to be. The
most general productions match a goal chunk whose type is top-type and ignore the
retrieval buffer chunk.

4.2 Default Rules

ACT-R’s inheritance mechanism can be combined with the subsymbolic production
utility parameter—which influences production selection—to establish default rules.
Since all types extend a base type, using the base type as the value of the goal chunk
in a production will cause the production to match any goal chunk. If the production
is assigned a production utility value that is lower than competing productions, it will
only be selected if no other production matches. A sample default production is
shown below:

(p process-default--retrieve-prev-chunk
 =goal> ISA top-type
 =context> ISA context
 state process
 chunk-stack =chunk-stack
 =chunk-stack> ISA chunk-stack-chunk
 this-chunk =chunk
 prev-chunk =prev-chunk
 ==>
 =context>

8

 state retrieve-prev-chunk
 chunk-stack =prev-chunk
 +retrieval> =chunk)

where the parentheses reflect the underlying Lisp implementation, p identifies a
production, process-default--retrieve-prev-chunk is the name of the
production, =goal> identifies the goal chunk, ISA top-type is a chunk type,
=context> identifies a context chunk, state is a chunk slot, process is a slot
value, ==> separates the left-hand side from the right-hand side and variables are
preceded by = as in =chunk. This default production causes the previous chunk to be
retrieved from declarative memory (using the +retrieval> form) if no other
production is selected.

4.3 The Context Chunk and Chunk Stack

The current ACT-R environment provides only the goal and retrieval buffers to store
the partial products of language comprehension, although earlier versions of ACT-R
provided a goal stack. The lack of a stack is particularly constraining, since a stack is
the primary data structure for managing the kind of (limited) recursion that occurs in
language. There needs to be some mechanism for retrieving previously processed
words from STWM in last-in/first-out order during processing (subject to various
kinds of error that can occur in the retrieval process). A stack provides this
(essentially error free) capability. It is expected that a capacity to maintain about 5
separate linguistic chunks in STWM is needed to handle most input—supporting at
least one level of recursion (and perhaps two for the more gifted). The goal chunk
could be adapted for this purpose, except that it is also the basis for creation of new
declarative memory chunks and activation spread and these architectural needs would
conflict. Further, it would be difficult to get the kind of stack like behavior needed out
of the slots in the goal chunk.

To overcome these problems, Double R Model introduces a context chunk
containing a bounded, circular stack of links to declarative memory. As chunks are
stacked in the circular stack, if the number of chunks exceeds the limit of the stack,
then new chunks replace the least recently stacked chunks (supporting at least one
type of STWM error). The actual number of chunks allowed in the stack is specified
by a global parameter. This parameter is settable to reflect individual differences in
STWM capacity. Chunks cannot be directly used from the stack. Rather, the chunk on
the stack provides a template for retrieving the chunk from declarative memory. Since
the chunk must be retrieved from declarative memory before use, the spreading
activation and partial matching mechanisms of ACT-R are not circumvented and
retrieval errors are possible—unlike the goal stack of earlier versions of ACT-R
(which was criticized for this reason). Thus, the bounded, circular stack of links to
declarative memory avoids the arguments against the goal stack of earlier versions of
ACT-R, adds the insight of activated pathways to declarative memory, and retains the
insights that motivated the inclusion of a goal stack in the earlier versions.

Besides storing the chunk stack, the context chunk is also used to separate out state
information from the goal chunk. Since the goal chunk is the basis for creating new
declarative memory chunks, storing the chunk stack in it would result in the chunk
stack being stored with each new declarative memory chunk. While this might be

9

used to support a kind of episodic memory where the context in which a word occurs
is stored with the declarative memory chunk created during the processing of the
word, ACT-R 5.0 does not currently provide a mechanism for transitioning episodic
memory into semantic memory (i.e. abstracting from the context of use), and storing
the context with a chunk has undesirable side-effects within the ACT-R environment
(e.g. it interferes with the spreading activation mechanism). To avoid such problems a
separate context chunk is maintained and made available to all productions. Although,
the existence of a separate context chunk that productions match to violates the ACT-
R 5.0 architecture where only the buffers are supposed to be used for this purpose,
earlier versions of ACT-R allowed multiple chunks to be matched on the left-hand
side of productions and this functionality is still available in ACT-R 5.0 environment.

The context chunk maintains several pieces of information in addition to the chunk
stack. Its definition (as specified by a chunk-type) in the model is shown below:

(chunk-type context state rel-context sit-context text-
context

 word prev-word-1 prev-word-2 repeat chunk chunk-stack)

In this chunk-type definition, context is the name of the chunk, state is a slot
that provides state information to guide production selection, rel-context is a slot
that identifies the current relational context, sit-context is a slot that contains
information about the current situation context, text-context is a slot that contains
information about the larger discourse context, word contains the lexical item being
processed, word-prev-1 and word-prev-2 contains the previous two words
processed, repeat is yes if the word has been attended to previously and no-more if
there are no more words in the input, chunk contains the most recently processed
chunk, and chunk-stack contains the entire chunk stack.

4.4 Lexical and Functional Entries

The lexical entries in the model provide a limited amount of information which is
stored in the word and word-info chunks. The definition of the word and word-
info chunk types are provided below:

(chunk-type word word-form word-marker)
(chunk-type word-info word-marker word-root word-type word-

subtype word-morph)

The word-form slot of the word chunk contains the physical form of the word
(represented as a string in ACT-R); the word-marker slot contains an abstraction of
the physical form. The word-root slot contains the value of the root form of the
word. The word-type slot contains the lexical type of the word and is used to
convert a word-info chunk into a lexical-type chunk for subsequent processing.
A word-subtype slot is provided as a workaround for the lack of multiple
inheritance in ACT-R 5.0. The word-morph slot supports the encoding of
morphological information

Sample lexical entries for a noun and verb are provided below:

10

 (cow-wf isa word word-form "cow" word-marker cow)
 (cow isa word-info word-marker cow word-root cow word-type

noun
 word-morph 3d-per-sing))
 (running-wf isa word word-form "running" word-marker

running)
 (running isa word-info word-marker running word-type verb

word-root run
 word-subtype intrans-verb word-morph pres-part)

Note that there is no indication of the functional roles (e.g. head, modifier, specifier,
predicate, argument) that particular lexical items may fulfill. Following conversion of
word-info chunks into lexical-type chunks, functional roles are dynamically
assigned by the productions that are executed during the processing of a piece of text.
Since functional role chunks are dynamically created, only chunk-type definitions
exist for functional categories prior to that processing. As an example of a chunk-
type definition for a functional category, consider the category pred-trans-verb
(transitive verb functioning as a predicate) whose definition involves several
hierarchically related chunk-types as shown below:

(chunk-type top-type head)
(chunk-type (rel-type (:include top-type)))
(chunk-type (pred-type (:include rel-type)) subj spec mod

post-mod)
(chunk-type (pred-trans-verb (:include pred-type)) obj)

The top-type chunk-type contains the single slot head. All types are subtypes of
top-type and inherit the head slot. Rel-type is a subtype of top-type that
doesn’t add any additional slots. Pred-type is a subtype of rel-type that adds the
slots subj, spec, mod, and post-mod. It is when a relation is functioning as a
predicate that these slots become relevant. Pred-trans-verb is a subtype of pred-
type that adds the slot obj. Summarizing, pred-trans-verb contains the slots
head, subj, spec, mod (pre-head), post-mod (post-head), and obj, all of which
are inherited from parent types except for the obj slot.

The following production creates an instance of a pred-trans-verb providing
initial values for the slots:

(p process-verb--pred-trans-verb
 =goal> ISA verb
 head =verb
 subtype trans-verb
 =context> ISA context
 state convert-verb-to-pred-verb
 ==>
 +goal> ISA pred-trans-verb
 subj none
 spec none
 mod none
 head =goal

11

 post-mod none
 obj none
 =context>
 state retrieve-prev-chunk)

In this production, a verb (subtype of lexical-type) whose subtype slot has the
value trans-verb is converted into a pred-trans-verb for subsequent
processing. The only slot of pred-trans-verb that is given a value other than
none is the head slot whose value is set to be the goal chunk (head =goal). This
production has the effect of assigning a transitive verb the functional role of predicate
(specialized as a transitive verb predicate). Its selection and execution is based on the
previous context which set the value of the state slot of the context chunk to
convert-verb-to-pred-verb and on having a goal chunk of type verb whose
subtype slot has the value trans-verb.

4.5 Productions

Sample productions were shown above in the discussion of default rules and in the
creation of functional roles. This section discusses the productions used in the
processing of the word “kick” following the word “the” in the expression “the kick”.
The read-next-word production initiates the find-attend-encode sequence for
reading the next word from the computer screen (using ACT-R’s perceptual
component). Following the read-next-word production, the retrieve-word-
info production retrieves the word-info chunk. The word-info chunk is then
used by the convert-word-to-verb production to create a verb lexical-type
chunk which becomes the goal. Then, the process-verb--obj-context--
convert-to-rel-head production matches a verb goal chunk and in the context
of an obj (object referring expression) converts the verb type into a rel-head type
(using the +goal> form)

(p process-verb--obj-context--convert-to-rel-head
 =goal> ISA verb
 head =verb
 =context> ISA context
 state retrieve-prev-chunk
 rel-context obj
 ==>
 +goal> ISA rel-head
 mod none
 head =goal
 post-mod none)

Rel-head (relational head) is a subtype of head. The process-head--prev-chunk-is-obj-spec
production matches a head goal chunk (which could be a rel-head) and an obj-spec
(object specifier) retrieval chunk and creates a new obj-refer-expr (object referring
expression) which becomes the goal. Together, these two productions support to use
of verbs as (relational) heads of object referring expressions following an object
specifier.

12

 (p process-head--prev-chunk-is-obj-spec
 =goal> ISA head
 =context> ISA context
 state retrieve-prev-chunk
 =retrieval> ISA obj-spec
 ==>
 +goal> ISA obj-refer-expr
 spec =retrieval
 mod none
 head =goal
 post-mod none
 referent none-for-now
 =context> state process
 rel-context none)

The creation of an object referring expression causes the value of the rel-context
(relational context) slot to be set to none indicating the end of the object referring
expression context.

4.6 Context Accommodation vs. Backtracking

Context accommodation is a mechanism for changing the function of an expression
based on the context without backtracking. For example, when an auxiliary verb like
“did” occurs it is likely functioning as a predicate specifier as in “he did not run”
where the predicate is “run” and “did not” provides the specification for that
predicate. However, auxiliary verbs may also function as predicates when they are
followed by an object referring expression as in “he did it”. Determining the ultimate
function of an auxiliary can only be made when the expression following the auxiliary
is processed. In a backtracking system, if the auxiliary is initially determined to be
functioning as a predicate specifier, then when the noun phrase “it” occurs, the system
will backtrack and reanalyze the auxiliary, perhaps selecting the predicate function on
backtracking. However, note that backtracking mechanisms typically lose the context
that forced the backtracking. Thus, on backtracking to the auxiliary, the system has no
knowledge of the subsequent occurrence of a noun phrase to indicate the use of the
auxiliary as a predicate. Thus, the system can only randomly select a new function for
the auxiliary which may or may not be that of a predicate.

A better alternative is to accommodate the function of the auxiliary in the context
which forces that accommodation. In this approach, when the noun phrase “it” is
processed and the auxiliary functioning as a predicate specifier is retrieved, the
function of the auxiliary can be accommodated in the context of a subsequent noun
phrase to be a predicate. Context accommodation avoids the need to backtrack and
allows the context to adjust the function of an expression just where that
accommodation is supported by the context. Of course, there may cases where the
context accommodation mechanism breaks down and some form of backtracking is
needed (e.g. garden-path sentences), but in such cases backtracking is likely to
involve a jump back to the beginning of a major constituent (e.g. clause) and some
contextual information will be carried back with the jump. In any case, a reverse-

13

depth-first, context-unraveling backtracking mechanism like that provided in Prolog
is psychologically implausible.

Context accommodation assumes the activation, selection and integration of the
most appropriate schema given the current context, subject to accommodation based
on the subsequent context. Context accommodation is highly compatible with
Preference Semantics [14], and naturally handles the cases where the initially
preferred choice turns out not to be appropriate in the wider context.

5 Summary

Double R Model may be the first attempt at the development of an NLU system
founded on the principles of Cognitive Linguistics and implemented using the ACT-R
cognitive architecture and modeling environment. In its current state it demonstrates
the possibility of building such a system. Much work remains to be done before the
feasibility of building functional NLU systems using this approach can be fully
demonstrated. For more details of the theory and the full source code, see the Double
R Theory web site at www.DoubleRTheory.com.

References

1. Ball, J. (2003). “Double R Grammar.” http://www.
DoubleRTheory.com/DoubleRGrammar.pdf

2. Langacker, R. (1987, 1991). Foundations of Cognitive Grammar, Vols 1 and 2. Stanford,
CA: Stanford University Press.

3. Talmy, L. (2003). Toward a Cognitive Semantics, Vols I and II. Cambridge, MA: The MIT
Press

4. Lakoff, G., & M. Johnson (1980). Metaphors We Live By. Chicago: The University of
Chicago Press.

5. Wittgenstein, L. (1953). Philosophical Investigations. New York: MacMillan.
6. Rosch, E. (1978). “Principles of Categorization.” In Cognition and Categorization. Edited by

E. Rosch & B. Lloyd. Hillsdale, NJ: LEA.
7. Lakoff, G. (1987). Women, Fire and Dangerous Things. Chicago: The University of Chicago

Press.
8. Nirenburg, S. & Raskin, V. (1995). “Ten Choices for Lexical Semantics”. Memoranda in

Computer and Cognitive Science, MCCS-96-304. CRL, NMSU, Las Cruces, NM.
9. Chomsky, N. (1970). “Remarks on Nominalization.” In R. Jacobs & P. Rosembaum, eds.,

Readings in English Transformational Grammar. Waltham, MA: Ginn.
10. Ball, J (2003). “Towards a Semantics of X-Bar Theory.”

http://www.DoubleRTheory.com/SemanticsOfXBarTheory.pdf
11. Kintsch, W. (1998). Comprehension, a Paradigm for Cognition. New York, NY:

Cambridge Univ Press.
12. Anderson, J. & Lebiere, C. (1998). The Atomic Components of Thought. Mahway, MJ:

LEA.
13. Anderson, J., Bothell, D., Byrne, M., LeBiere, C (in press). “An Integrated Theory of the

Mind” Psychological Review
14. Wilks, Y. (1975). “A preferential, pattern-seeking semantics for natural language

inference.” Artificial Intelligence, 6:53-74

14

