
Efficient Tree Search in Encrypted Data

R. Brinkman, L. Feng, J. Doumen, P.H. Hartel, and W. Jonker

University of Twente, Enschede, the Netherlands

Abstract. Sometimes there is a need to store sensitive data on an un-
trusted database server. Song, Wagner and Perrig have introduced a way
to search for the existence of a word in an encrypted textual document.
The search speed is linear in the size of the document. It does not scale
well for a large database. We have developed a tree search algorithm
based on the linear search algorithm that is suitable for XML databases.
It is more efficient since it exploits the structure of XML. We have built
prototype implementations for both the linear and the tree search case.
Experiments show a major improvement in search time.

1 Introduction

Nowadays the need grows to store data securely on an untrusted system. Think,
for instance, of a remote database server administered by somebody else. If you
want your data to be secret, you have to encrypt it. The problem then arises
how to query the database. The most obvious solution is to download the whole
database locally and then perform the query. This of course is terribly inefficient.
Song, Wagner and Perrig [1] have introduced a protocol to search for a word in
an encrypted text. We will summarise this protocol in section 2.

In this paper we propose a new protocol that is more suitable for handling
large amounts of semi-structured XML data. This new protocol exploits the
XML tree structure. XPath queries can be answered fast and secure.

We have built prototype implementations for both the linear and the tree
search protocol (section 3). We use these prototypes to find optimal settings
for the parameters used within the protocols and to show the increase in search
speed by using the tree structure. We did some experiments (section 4) for which
the results can be found in section 5.

2 Search Strategy

Before we describe our tree search strategy (section 2.2) we will give a short
summary of the original linear search strategy of Song, Wagner and Perrig [1].

2.1 Linear Search Strategy for Full Text Documents

Song, Wagner and Perrig [1] describe a protocol to store sensitive data on an
untrusted server. A client (Alice) can store data on the untrusted server (Bob)

Brinkman R., Feng L., Doumen J., H. Hartel P. and Jonker W. (2004).
Efficient Tree Search in Encrypted Data.
In Proceedings of the 2nd International Workshop on Security in Information Systems, pages 126-135
DOI: 10.5220/0002664201260135
Copyright c© SciTePress

and search in it, without revealing the plain text of either the stored data, the
query or the query result. The protocol consists of three parts: storage, search
and retrieval.

Storage Before Alice can store information on Bob she has to do some calcu-
lations. First of all she has to fragment the whole plain text W into several
fixed sized words Wi. Each Wi has a fixed length n. She also generates en-
cryption keys k′ and k′′ and a sequence of random numbers Si using a pseudo
random generator. Then she has or calculates the following for each block
Wi:

Wi plain text block
k′′ encryption key
Xi = Ek′′(Wi) = 〈Li, Ri〉 encrypted text block
k′ key for f
ki = fk′(Li) key for F
Si random number i
Ti = 〈Si, Fki(Si)〉 tuple used by search
Ci = Xi ⊕ Ti value to be stored (⊕ stands for xor)

where E is an encryption function and f and F are keyed hash functions:

E : key × {0, 1}n → {0, 1}n

f : key × {0, 1}n−m → key
F : key × {0, 1}n−m → {0, 1}m

The encrypted word Xi has the same block length as Wi (i.e. n). Li has
length n−m and Ri has length m. The parameters n and m may be chosen
freely (n > 0, 0 < m ≤ n

2). Section 5.1 gives guidelines for efficient values of
n and m. The value Ci can be sent to Bob for storage. Alice may now forget
the values Wi, Xi, Li, Ri, ki, Ti and Ci, but should still remember k′, k′′

and Si.
Search After the encrypted data is stored by Bob in the previous phase Alice

can query Bob. Alice provides Bob with an encrypted version of a plain text
word Wj and asks him if and where Wj occurs in the original document.
Note that Alice does not have to know the position j. If Wj was a block in
the original data then 〈j, Cj〉 is returned. Alice has or calculates:

k′′ encryption key
k′ key for f
Wj plain text block to search for
Xj = Ek′′(Wj) = 〈Lj , Rj〉 encrypted block
kj = fk′(Lj) key for F

Then Alice sends the value of Xj and kj to Bob. Having Xj and kj Bob is
able to compute for each Cp:

Tp = Cp ⊕Xj = 〈Sp, S
′
p〉

IF S′p = Fkj (Sp) THEN RETURN 〈p, Cp〉

127

If p = j then S′p = Fkj (Sp), otherwise S′p is garbage. Note that all locations
with a correct Tp value are returned. However there is a small chance that T
satisfies T = 〈Sq, Fkj (Sq)〉 but where Sq 6= Sp. Therefore, Alice should check
each answer whether the correct random value is used or not.

Retrieval Alice can also ask Bob for the cipher text Cp at any position p. Alice,
knowing k′, k′′ and the seed for S, can recalculate Wp by

p desired location
Cp = 〈Cp,l, Cp,r〉 stored block
Sp random value
Xp,l = Cp,l ⊕ Sp left part of encrypted block
kp = fk′(Xp,l) key for F
Tp = 〈Sp, Fkp(Sp)〉 check tuple
Xp = Cp ⊕ Tp encrypted block
Wp = Dk′′(Xp) plain text block

where D is the decryption function D : key × {0, 1}n → {0, 1}n such that
Dk′′(Ek′′(Wi)) = Wi.

This is all Alice needs. She can store, find and read the text while Bob cannot
read anything of the plain text. The only information Bob gets from Alice is Ci

in the store phase and Xj and kj in the search phase. Since Ci and Xj are
both encrypted with a key only known to Alice and kj is only used to hash one
particular random value, Bob does not learn anything of the plain text. The only
information Bob learns from a search query is the location where an encrypted
word is stored.

2.2 Tree Search Strategy for XML Documents

So far, we considered only text files. Using structured XML data can improve
efficiency.

Torsten Grust [2, 3] introduces a way to store XML data in a relational
database such that search queries can be handled efficiently. An XML document
is translated into a relational table with a predefined structure. Each record
consists of the name of the tag or attribute and its corresponding value. The
information about the tree structure of the original XML document is captured
in the pre, post and parent fields. All fields can be computed in a single pass over
the XML document. The pre and post fields are sequence numbers that count
the open tags respectively the close tags. The parent value is the pre value of
the parent element (see figure 1(a)).

The XPath axes like descendant, ascendant, child, etc can be expressed as
simple expressions over the pre, post and parent fields. For instance:

– v is a child of v′ ⇐⇒ v.parent = v′.pre
– v is a descendant of v′ ⇐⇒ v′.pre < v.pre ∧ v′.post > v.post
– v is following v′ ⇐⇒ v′.pre < v.pre ∧ v′.post < v.post

128

pre post parent

<a> 1 0
 2 1
 1
<c 3 1

d=”. . . ”> 4 2 3
<e/> 5 3 3

</c> 4
 5
(a) Pre/Post/Parent calculation (b) Visualisation of XPath Axes in a

Pre/Post Plane

Fig. 1. Calculation and Usage of Pre, Post and Parent fields

Some XPath axes can also be drawn in a pre/post plane (see figure 1(b)). Each
element can be drawn as a dot in the graph. The solid circle indicates just one of
them. Taking the solid circle as starting element, the quadrants indicate where
its ascendants, descendants and siblings are located.

Not all updates are efficient. Modification and deletion are no problem, but
element insertion causes the need to recalculate the pre, post and parent values
for all following elements. The number of recalculations can be reduced by an
initial sequence with a larger step (100, 200, 300, . . .).

Torsten Grust aims at storing XML data in the clear. To protect the data
cryptographically we combine his strategy with the linear search approach of
Song, Wagner and Perrig (SWP) [1]. Only some slight modifications to the SWP
approach are necessary:

1. The input file is not an unstructured text file but a tree structured XML
document. The division of the data into fixed sized blocks does not seem
natural. Therefore, we use variable block lengths that depend on the lengths
of the tag names, attribute names, attribute values and the text between
tags.

2. The sequence number of a block is no longer appropriate to define the loca-
tion within a document. We use the pre value instead.

The equations of section 2.1 can be rewritten to the equations below. Note that
all subscripts have changed. For simplicity we only describe the encryption of
tag names. Exactly the same scheme is used for attribute names (prefixed with
a @ sign) or the data itself by simply substituting value for tag.

129

Storage

Wtag plain text block
k′′ encryption key
Xtag = Ek′′(Wtag) = 〈Ltag, Rtag〉 encrypted text block
k′ key for f
ktag = fk′(Ltag) key for F
Spre random number pre
Tpre,tag = 〈Spre, Fktag (Spre)〉 tuple used by search
Cpre,tag = Xtag ⊕ Tpre,tag value to be stored

Note that the random value Spre does not depend on the tag name but on
the location (expressed in the pre field) because all elements with the same
tag name should be stored differently.

Search An XPath query like /tag1//tag2[tag3 = ”value”] is encrypted to
/〈Xtag1 , ktag1〉//〈Xtag2 , ktag2〉[〈Xtag3 , ktag3〉 = ”〈Xvalue, kvalue〉”] before send-
ing it to the server. The server calculates the result traversing the XPath
query from left to right. Each step consists of two or three sub steps:
– Evaluating the XPath axis /, //, [and] using the pre, post and parent

fields. It is possible to find all children (/) or all descendants (//) of
elements found in a previous step by just using the pre, post and parent
field. See section 3.2 for an example.

– Filtering out the records that do not satisfy S′p = Fktag
(Sp) in Tp,tag =

Cp,tag ⊕Xtag = 〈Sp, S
′
p〉.

– Eventually filtering out the records with an incorrect value field.
Retrieval

k′ key for f
k′′ encryption key
pre desired location
Cpre,tag = 〈Cpre,tag,l, Cpre,tag,r〉 stored block
Spre random value
Xtag,l = Cpre,tag,l ⊕ Spre left part of encrypted block
ktag = fk′(Xtag,l) key for F
Ttag = 〈Spre, Fktag

(Spre)〉 check tuple
Xtag = Cpre,tag ⊕ Ttag encrypted block
Wtag = Dk′′(Xtag) plain text block

3 Implementation

For each search strategy a prototype has been developed. Each prototype consists
of two tools: one for encryption and one for searching. All tools use the standard
crypto packages shipped with JDK 1.4.

3.1 Linear Search Prototype

Section 2.1 introduces three functions: E, f and F . E should be a block cipher
in ECB mode and f and F keyed hash functions. For our prototype we chose

130

DES for all three of them. E is exactly DES in ECB mode. Since DES works on
blocks of 64 bits n should be a multiple of 64 bits.

f and F are keyed hash functions with variable sized hash values. Standard
hash functions like SHA-1 have a fixed sized hash value. It is possible to use the
last (or the first) m bits of the hash value, but then m should be less than the
size of the hash value (160 bits for SHA-1). To allow a larger value for m our
prototype uses DES in CBC mode. To hash a data block of length n −m to a
hash value of length m the block is encrypted with the specified key (56 bits
DES key) but only the last m bits are used as hash value. The only restriction
for m is that n − m ≥ m and thus n ≥ 2m. See Menezes et al [4] for a more
detailed description of the used hash algorithm.

The search algorithm implements the protocol described in [1] as summarised
in section 2.1. The program takes the whole cipher text along with the query as
input and produces the 〈i, Ci〉 pairs as output.

3.2 Tree Search Prototype

Like the linear prototype the tree search prototype is split into two parts: one
for encryption and one for searching.

The Encrypt tool uses a SAX parser to read the input XML document.
In one pass over the input, the pre, post and parent values can be calculated.
When an end tag is encountered all the information to encrypt the element is
available. Attributes are handled as tags with a leading @ sign. A new record
〈pre, post, parent, Cpre,tag, Cpre,value〉 is inserted into the relational database,
where Cpre,tag and Cpre,value are calculated as in section 2.2. In our prototype
we use a MySQL database to store the encrypted document.

In contrast with the linear prototype there are no predefined block sizes n
and m. Instead of using a fixed sized block, n is simply set to the length of the
tag name. m is a predefined fraction of n (for example 0.5).

In order to speed up the search process, indices are added to the MySQL
table for the pre, post and parent fields.

The XPath expression is evaluated step by step. Preliminary results are
stored in a result table. Each step consists of two or three sub steps:

1. Carry out the path delimiter (/, //, [or]). For this step only the pre, post
and parent fields are needed. For example // (descendants) is translated into
the SQL query:

CREATE TABLE new_result
SELECT data.*
FROM data, previous_result
WHERE data.pre > previous_result.pre AND

data.post < previous_result.post

2. Filter out the records in the preliminary result with the wrong tag/attribute
names. In this step we use the original linear search method.

131

3. When the step consists of an equation expression the previous step is re-
peated but now for the value instead of the name.

4 Experimental Data

The two prototypes give us the opportunity to experiment with the parameters
used in the protocol and, more importantly, compare the linear search approach
with the tree search approach. We are especially interested in the influence the
approach and the parameters n and m have on the encryption and search speed.
We used the XML benchmark1 [5] to generate three sample XML files of sizes
1 MB, 10 MB and 100 MB. Although the linear approach does not use the
structure of these XML files the benchmark is used in both cases to compare the
results with the tree search approach.

Also the number of collisions has been measured (see figure 2(a)). Collisions
are the false hits that occur because of the collisions in the hash function F . F
hashes the random value Si of size n−m to a hash value of length m, where n−
m ≥ m. Therefore collisions are unavoidable (collisions are avoidable when n−
m = m and F is bijective, but bijective functions are not good hash functions).

4.1 Experiments with the Linear Search Prototype

For the linear prototype both n and m may be chosen freely. Tests are carried
out ∀n ∈ {8, 16, 24, 32, 40, 48, 56, 64} where these values are the number of bytes
and not bits. Because we use DES in ECB mode for the encryption function
E, we only use multiples of 8 bytes. m should be less than or equal to n

2 so
m ∈ {1, 2, . . . , n

2 } (also in bytes). Measurement results of the 100 MB case are
plotted in figure 2(b). Tests with data inputs of 1 MB and 10 MB showed that
the number of collisions, the search and the encryption times are proportional
to the data size. In our technical report [6] more experimental data is provided.
All tests were carried out on a Pentium IV 2.4 MHz with 512 MB memory.

For the search query a word guaranteed to be in at least one location was
chosen. The search engine does not stop when one occurrence is found; all the
text is scanned for each query.

4.2 Experiments with the Tree Search Prototype

For the tree search prototype the only configurable parameters are m and the
data size. The block length n depends on the tag names and values. Encryption
tests are carried out on the same XML documents as in the linear prototype. In
this case m is relative to n; m ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The encryption times for
the 1 MB, 10 MB and the 100 MB files were 21.5, 188 and 1195 s and did not
depend on m.

Search tests were carried out with a fixed m = 0.5 because m does not seem
to have much influence. Some queries are shown in table 1. Also the number of
1 http://www.xml-benchmark.org

132

Collissions

1

10

100

1000

0000

0000

8 16 24 32 40 48 56 64

n

m=1

m=2

m=3

(a) Number of Measured Collisions

Linear Search Approach

0

00

00

00

00

00

00

00

8 16 24 32 40 48 56 64

n

Encryption

Search

(b) Encryption and Search Search Times

Fig. 2. Measurement Results of Linear Search Prototype for the 100 MB Case

elements in the result is shown for each query. All three files have approximately
the same tree depth but have different branch factors (average number of sub
children per element).

Table 1. Search Times Calculated for Search Queries with Different Depth and Branch
Factor

t (ms) t (ms) t (ms) query count count count
1 MB 10 MB 100 MB 1 MB 10 MB 100 MB

1281 1506 1285 /site 1 1 1
1266 1380 1321 /site/regions 1 1 1
1358 1435 1342 /site/regions/asia 1 1 1
1409 1687 2464 /site/regions/asia/item 20 200 2000
1518 2030 4135 /site/regions/asia/item/description 20 200 2000
1376 1591 2442 /site/regions/africa/item/description 5 55 550
1448 2777 9059 /site/regions/europe/item/description 60 600 6000
1455 2098 4577 /site/regions/australia/item/description 22 220 2200
1654 3226 13672 /site/regions/namerica/item/description 100 1000 10000
1336 1817 3028 /site/regions/samerica/item/description 10 100 1000
1398 2382 18530 //* 21048 206130 2048180
3639 21775 191899 //item 217 2175 21750

5 Analysis of the Results

First we will analyse the results of the individual experiments in the first two
subsections. In subsection 5.3 we will compare the linear search approach with
the tree search approach.

5.1 Results from the Linear Search Approach

From the linear search prototype we can conclude the following:

133

– As expected the larger the dataset the larger the encryption and search times.
Encryption and search times grow linear in the size of the dataset. Therefore
the protocol does not scale well and can only be used for reasonable small
databases.

– The larger n is the shorter the encryption and search times gets (figure 2(b)).
This can be explained by looking at the number of blocks. The larger n is
the fewer blocks there are. For each block a fixed number of steps is taken.
Most of these steps do not depend on the length of the blocks. Therefore less
time is needed for the whole database.

– Searching is faster than encryption, because fewer operations have to be
calculated for each block.

– The larger n is the fewer collisions occur (figure 2(a)). This can also be
explained by the fewer blocks.

– For a fixed value of n the encryption and search times hardly depend on the
value of m.

– Collisions can be avoided by choosing a sufficiently large value of m. The
largest value for m = n

2 which is also the most optimal one. But also for
m > 2 the number of collisions is negligible.

5.2 Results from the Tree Search Approach

From the tree search prototype we can conclude that:

– The encryption time is linear in the size of the input.
– The search time depends both on the structure of the XML document and

the search query. The search time is of order O(p) where p is the number
of elements to be read. For queries without // this comes down to O(bd)
where b is the branch factor (the average number of sub elements) and d is
the depth in the tree where the answer is found.

5.3 Benefits of using Tree Structure

From the experiments with the linear search method we know that the encryption
time depends on the block size. Therefore, to make a fair comparison between
the linear text search and the tree search, we have to take into account the block
size of the tree search method. We analysed the XML documents and found the
data shown in table 2.

Comparison of the encryption speed in the tree search case (with an average
block size of around 18) with the linear case, shows that the tree encryption is
slightly faster than in the linear case. The reason for this is that there is no need
to encrypt the close tag.

The major benefit of using the tree structure is the increase in search speed.
Only a small part of the whole tree has to be searched. Because the search
time totally depends on the data and the query, a straight comparison between
the linear and the tree case is impossible. However, linear search is of order
O(n) = O(bd), whereas tree searching is of order O(bd).

134

6 Conclusions

We have implemented a prototype for the theory described in [1]. We showed
that the search complexity is linear in the size of the text. We have defined
a new protocol for semi-structured XML data that exploits the tree structure.
Experiments with the implementations of both protocols showed that the encryp-
tion speed remains linear in the size of the input, but that a major improvement
in the search speed can be achieved.

References

1. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In IEEE Symposium on Security and Privacy, pages
44–55, 2000. http://citeseer.nj.nec.com/song00practical.html.

2. Torsten Grust. Accelerating xpath location steps. In Proceedings of the 21st ACM
International Conference on Management of Data (SIGMOD 2002), pages 109–120.
ACM Press, Madison, Wisconsin, USA, June 2002. http://www.informatik.uni-
konstanz.de/∼grust/files/xpath-accel.pdf.

3. Torsten Grust, Maurice van Keulen, and Jens Teubner. Staircase join: Teach
a relational dbms to watch its (axis) steps. In Proceedings of the 29th Int’l
Conference on Very Large Databases (VLDB 2003), Berlin, Germany, Sep 2003.
http://citeseer.nj.nec.com/593676.html.

4. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, October 1996.
http://www.cacr.math.uwaterloo.ca/hac/.

5. A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. Manolescu, M. Carey, and
R. Busse. The xml benchmark project. Technical Report INS-R0103, CWI, April
2001. http://citeseer.ist.psu.edu/schmidt01xml.html.

6. R. Brinkman, L. Feng, S. Etalle, P. H. Hartel, and W. Jonker. Experimenting
with linear search in encrypted data. Technical report TR-CTIT-03-43, Centre for
Telematics and Information Technology, Univ. of Twente, The Netherlands, Sep
2003. http://www.ub.utwente.nl/webdocs/ctit/1/000000d9.pdf.

Table 2. Block Sizes

data avg tag standard avg text standard avg all standard
size length deviation size deviation blocks deviation

1 MB 9.8 3.4 28.0 70 18.2 48
10 MB 9.8 3.4 28.6 70 18.4 48

100 MB 9.8 3.4 28.9 70 18.6 49

135

