
MEASURING REQUIREMENT EVOLUTION
A Case Study in the E-commerce Domain

Päivi Ovaska
Lappeenranta University of Technology, P.O. BOX 20, FIN-53851, Lappeenranta , Finland

Keywords: Requirement evolution, requirements creep, systems development prediction

Abstract: Although requirement evolution is a widely recognized phenomenon, there are only a few approaches for
measuring it. These existing approaches are based on the assumption that all the requirements exist and can
be seen in the requirement elicitation and analysis phases. They do not include provisions for the emergence
during systems development of new requirements, which cannot be anticipated in the requirement elicitation
and analysis phase. This paper shows how the concept of requirements creep is adopted for the
measurement of emergent requirement evolution. We use a case study in the E-commerce domain to
illustrate the use of this measure in the prediction of systems development. The findings of this study
suggest that requirement evolution can be measured in a practical software project, and the findings
demonstrate the strong influence of requirements creep on the systems development effort. The findings of
our study encourage us to undertake further studies involving other organizations and projects.

1 INTRODUCTION

Changing requirements and requirement evolution
are recognized as being a difficult and major source
of risks in the systems development projects.
Requirement evolution may lead to increasing costs,
schedule overruns as well as to system evolution in
software projects (Harker, Eason and Dobson, 1993;
van Lamsweerde, 2000). There are many reasons for
these changing requirements: stakeholders may
change their minds about the functionality of the
proposed system; new or modified requirements
may emerge during the design, implementation and
testing processes; analysts and designers may not
understand the requirement etc.

Although requirement evolution is a widely
recognized phenomenon, only a few approaches
have been developed to quantitatively measure it.
These approaches assume that all the requirements
are gathered and documented in the beginning of the
development of a systems and that the only changes
and additions to these initial requirements are made
during the systems development process. The
objective of this paper is to study how requirement
evolution can be measured in a situation, in which
requirements are not known in the requirement
specification stage but, rather, emerge during the
course of the development of the system. This
approach is based on the notion that the

requirements for system development do no exist a
priori but are, rather, socially constructed through
interactions among the participants in system
development (Davidson, 2002; Curtis, Krasner and
Iscoe, 1988; Ovaska, 2003).

This paper presents the early results of an
ongoing study into how requirement evolution
should be measured. This information can be used to
aid the prediction of system development in
organizations through the collection of history
information on completed projects. The collected
history information can then be used to support the
development of the prediction effort in future
projects. The aim of this paper is to present ways of
measuring requirement evolution using the concept
of requirements creep, to demonstrate the use and
importance of requirements creep in the case study
as well as to gain an insight into how to further
develop our approach.

The rest of the paper is structured as follows.
Section 2 presents previous research into
requirement evolution. Section 3 discusses a case
study and an example of the use of requirements
creep in the prediction of systems development.
Section 4 presents the conclusions and discusses the
research results along with topics for further studies.

669
Ovaska P. (2004).
MEASURING REQUIREMENT EVOLUTION - A Case Study in the E-commerce Domain.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 669-673
DOI: 10.5220/0002628806690673
Copyright c© SciTePress

2 APPROACHES FOR
REQUIREMENT EVOLUTION

There are at least two different approaches to
managing requirement evolution. The requirement
engineering approach (Wiegers, 1999; Kotonya and
Sommerville, 1998; Jarke et. al, 1999) attempts to
manage requirement evolution using process-
oriented activities that try to eliminate the
phenomena. The other approach (Jarke et. al, 1999,
van Lamsweerde, 2000; Tomayko, 2002; Lehman,
1998; Lehman, Perry and Ramil, 1998) considers
requirement evolution as a natural and inevitable
feature of systems development instead of an issue
that has to be solved or eliminated. Software
lifecycle models and methodologies, such as
prototyping (Kotonya and Sommerville, 1998) and,
more recently, different kinds of agile methods
(Cockburn, 2001), are examples of the latter
approach to requirement evolution.

One way of understanding requirement evolution
is to measure it quantitatively, as in (IEEE Std
982.1, 1988; IEEE Std 982.2, 1988; Andersson and
Felici, 2002). These IEEE standards propose a
Requirement Maturity Index (RMI); the RMI metric
attempts to quantify the readiness of requirements.
In (Andersson and Felici, 2001), the metric is
extended by taking into account historical
information on change, as a result of which a
Historical Requirements Maturity Index (HRMI) is
proposed. The above-mentioned approaches measure
RMI or HRMI over all the software releases and
quantify the readiness of requirements over time.
These metrics are calculated on the basis of
requirement specification, which is performed as a
result of requirement elicitation and analysis.

A phenomenon called ‘requirements creep’
(Ryan et. al, 2001; Wiegers, 1999) takes into
account new emerging requirements which do not
necessarily exist in the requirement specification
document but have emerged during the course of the
development process. In (Wiegers, 1999),
requirements creep refers to the ”difference between
the requirements specification developed after the
requirements procedure and the requirements at the
time when the actual product is built”. In (Ryan et.
al, 2001), requirements creep is referred as
”significant additions or modifications to the
requirements of a software system throughout the
lifecycle, resulting in extensions to and alteration of
the software’s functionality and scope”.

3 CASE STUDY

3.1 Project Description

This study was carried out in the systems
development department of an international ICT
company. The project involved the development of
an E-commerce mobile service platform. The system
was intended to enable organizers or their sponsors
to promote their products in different kinds of
happenings, such as ice hockey and football games.
The system was composed of two subsystems, a
platform in which the services were running
(Subsystem A) and a toolbox, which permitted
addition, configuration and simulation services
(Subsystem B). This toolbox was intended to run on
a PC in the Windows environment and the platform
in the UNIX environment.

The project employed the object-oriented
approach for systems development and was
implemented in 2001.The project was divided into
the following phases on the basis of the company’s
process model: pre-study, feasibility study, project
execution and piloting and maintenance. The
requirements were collected and analyzed during the
pre-study and feasibility study phases. One of the
first activities in the project execution phase was to
design the software architecture, in which the system
was divided into the respective modules and their
interfaces. This was followed by the detailed design,
implementation and integration and system testing
phases. After the system testing showed the quality
of the software to be acceptable, the product went
onto the piloting and customer approval phases.

A process-oriented approach was taken to
managing requirement evolution in the project. A
requirement specification document was formulated,
and the requirements were ‘frozen’ in this document
upon completion of the requirement elicitation and
analysis phases. After requirement freezing,
requirements were managed through a strict
requirement changing procedure. This requirement
changing procedure was intended to be specified in
each development project, but the spirit of the
changing procedure was such that every single
change to the requirements had to be analyzed and
handled by the project steering group.
Unfortunately, in most of the projects this did not
work, as was the case in this E-commerce project.
This project, involved an entire subsystem,
Subsystem B, for which only four requirements were
specified in the requirement specification document.
Nevertheless, at the end of the development project,
Subsystem B was 60 % of the size of the whole
software application in terms of code size and the
required development effort. The new requirements

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

670

for Subsystem B emerged iteratively during the
systems development through more than twenty
prototypes made for Subsystem B (Ovaska, 2003).

3.2 Requirements Creep

We used the notion of requirements creep (Ryan et.
al, 2001; Wiegers, 1999) and the conceptual
modelling technique widely used in the database
(Chen, 1976) and object-oriented approaches
(Rumbaugh, 1990; Jacobson, 1992; Booch, 1993) to
measure requirement evolution. In database
modelling, conceptual modelling is called entity-
relationships modelling and in the object-oriented
approach it is known as object modelling. This

conceptual modelling approach is a natural approach
for object-oriented systems as it is an essential part
of the object-oriented methodology.

We used two conceptual models of the system:
an analysis model that described the domain
concepts after requirement specification and an
implementation model that described domain
concepts after the implementation of the actual
system. Based on these models, the number of
different concepts between these models was
calculated (requirements creep) (Table 1).

The analysis model was extracted from the
project documentation and the implementation
model was re-engineered from the source code after
the completion of the project.

Table 1: The concepts found in the analysis and implementation models

Module Analysis model Implementation model
M1
(Subsys-tem
A)

Alarm, Logging,
Localisaction, Billing,
Message, User, Service

Alarm, Logging, Localisaction,
Billing, Message, User, Service

M2 (Subsys-
tem A)

Messaging, Counting,
Timing, Message, User

Messaging, Counting, Timing,
Message, User, Simulation

M3 (Subsys-
tem A)

Service control,
Localization, Message,
User, Service

Service control, Localization,
Message, User, Service,
Simulation

M4
(Subsys-tem
A)

UI, Message, User,
Service

UI, Message, User, Service

M5
(Subsys-tem
B)

Service, Simulation Service, Simulation,
Messaging, Authentication,
Localization, UI, Message,
User

3.3 Prediction Model

The aim of this prediction model is to analyze the
significance of the requirements creep (the
correlation between the requirements creep and
working hours) and demonstrate the use of the
requirements creep.

We used a simple linear prediction model for the
analysis, for which we required four other
measurements (system properties) to characterize
our system. We chose a widely used coupling (Xia,
1996), size (in LOC) (Henderson-Sellers, 1996),
cohesion (Henderson-Sellers, 1996) and
complexity/communication (Chidamber and
Kemerer, 1994). The values of these system
properties are shown in Table 2.

Table 2: The system properties for the case study

Module M1 M2 M3 M4 M5
Working hours 107 300 304 378 1767
LOC 1011 2176 1970 2843 12986
Complexity/
communication 88 91 160 99 607
Coupling 12 20 37 18 54
Cohesion 78 85 93 84 100
Requirements creep 0 1 1 0 6

MEASURING REQUIREMENT EVOLUTION - A CASE STUDY IN THE E-COMMERCE DOMAIN

671

The model is based on the simple notion that the
development effort for a system can be expressed as
a linear function of the properties of each module
and coefficient values:

()

pnpnn

pnnnn

mamama
mmmC

,2,21,1

,2,1,

...
,...,,

+++

=
. (1)

In the formula, mn,q corresponds to the value of
property q in module n and ap is the linear
coefficient that corresponds this property.

To analyze the correlation between the system
properties and development effort, the problem
turned out to be a function optimization problem,
more precisely a non-negative least-square problem
(Lawson and Hanson, 1995). The unknown factors
of this model were the values of the coefficients. We
used the MATLAB® Optimization Toolbox
function lsqnonneg.m (Matlab, 2003) to solve the
coefficient values.

3.4 Findings

Table 3 shows the values of the coefficients that
were of some significance (value>0) in the model.
The information in the table illustrates that
requirements creep was the most significant
measurement for the system (with the value 19).
Coupling and Lines of Codes (LOC) also had some
significance but much less than did requirements
creep (with values 0.9 and 0.1).

Table 3: The values of the coefficients of the software
assesment model

The significance of LOC and coupling as cost

factors are line with the literature (Briand, Daly and
Wüst, 1999; Lionel et, al, 1998). Requirements creep
has such a strong impact on the development effort
that the other measurements are negligible.

4 DISCUSSION, CONCLUSIONS
AND FUTURE WORK

This study focused on using the concept of
requirements creep in measuring and introducing
requirement evolution in a case study in the E-
commerce domain. Requirements creep measures
new emerging requirements which do not exist at the

beginning of the development process but, rather,
emerge through interactions between the participants
in the development of the system.

The findings of this study suggest that
requirement evolution can be measured in a practical
software project and indicate the strong influence of
requirements creep on the systems development
effort.

It is not possible to generalize the results on the
basis of one case study. More studies must be
performed in other organizations and development
environments in order to obtain more evidence on
the applicability of our approach.

The main problem with measuring requirements
creep was that the concepts in the application
domain were slightly abstract and were not
necessarily at the same level. Measuring these
abstract concepts required a basic understanding of
the concepts in the application (application
knowledge) and definitions of these concepts during
the project.

In the analysis, we used a linear prediction
model that is too simple for real prediction purposes.
In our prediction model, we assumed that the system
development effort was a sum of the efforts of the
modules. It is well known that small changes in the
system size can have big effects on the development
effort. There are prediction methods and models,
such as case-based reasoning (Pedrycz, Peters and
Ramanna, 1999) and neural networks
(Venkatachalam, 1993), which take this non-linear
nature of systems development into account.

The results of this study have encouraged us to
analyse other industrial projects in order to collect
more evidence on the usefulness of measuring
requirements creep in other projects and domains.
We will develop our linear prediction model towards
a more non-linear approach in order for it to be
scalable for real-life prediction purposes.

LOC Coupling Requirements creep

0.1234 0.9164 19.2901

REFERENCES

Andersson, S., M. Felici, 2001. Requirements Evolution:
From Process to Product Oriented Management. In
3rd International Conference on Product Focused
Software Profess Improvement, Springer-Verlag.

Andersson, S. M. Felici, 2002. Quantitative Aspects of
Requirement Evolution. In 26th Annual International
Conference on Computer Software and Applications
Conference, Oxford, England, IEEE Computer
Society.

Booch, G., 1993. Object-Oriented Analysis and Design
with Applications, Addison Wesley Pub Co, 2 nd
editions.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

672

Briand, L.,C., J. W. Daly, J. K. Wüst, 1999. A Unified
Framework for Coupling Measurement in Object-
Oriented Systems. In IEEE Transactions on Software
Engineering, 25(1).

Chen, P., P., 1976. The entity-relationship model: toward a
unified view of data. In ACM Transactions on
Database Systems.

Chidamber, S.,R. and Chris F. Kemerer, 1994. A Metric
Suite for Object Oriented Design. In IEEE
Transactions on Software Engineering, Vol. 20, No. 6.

Cockburn, A., 2001. Agile Software Development.
Addison-Wesley.

Curtis, B., H. Krasner, and N. Iscoe, 1988. A Field Study
of the Software Design Process for Large Systems. In
Communications of the ACM 31.

Davidson, E.J., 2002. Technology Frames and Framing: A
Socio-Cognitive Investigation of Requirement
Determination. In MIS Quarterly, Vol. 26, Issue 4.

Harker, S., K.Eason, and J. Dobson, 1993. The change and
evolution of requirements as a challenge to the
practice of software engineering. In IEEE International
Symposium on Requirements Engineering, pages 266–
272, IEEE Computer Society Press.

Henderson-Sellers, B.,1996. Object-Oriented Metrics:
Measures of complexity, Prentice Hall, New Jersey.

IEEE Std 982.1, 1988. IEEE Standard Dictionary of
Measures to Produce Reliable Software.

IEEE Std 982.2 , 1988. IEEE Guide for the Use of IEEE
Standard Dictionary of Measures to Produce Reliable
Software.

Jacobson, I., 1992. Object-Oriented Software
Engineering. Addison Wesley Pub Co, 1 st edition.

Jarke, C. Rolland, A. Sutcliffe, R. Dömges, 1999. The
nature of Requirements Engineering. Aachen: Shaker
Verlag GmbH.

Kotonya, G., I.Sommerville, 1998. Requirement
Engineering, John Wiley & Sons, NY.

Lawson, C.L., R. J. Hanson, 1995. Solving Least Squares
Problems. Society for Industrial & Applied
Mathematics.

Lehman, M.,1998. Software’s future: Managing evolution,
In IEEE Software, Jan-Feb, pages 40–44.

Lehman, M., D. Perry, and J. Ramil, 1998. On evidence
supporting the feast hypothesis and the laws of
software evolution. In Metrics ‘98, Bethesda,
Maryland.

MATLAB® the Language of Technical Computing, 2003.
The MathWorks, Inc., [URL:
http://www.mathworks.com/, Referred 20 Sep 2003].

Ovaska, P., 2003. On the Organizational Factors in
Understanding of Information System Requirements.
In Scandinavian Conference on Information Systems
(IRIS26), Finland August 9-12.

Pedrycz, W., J.F. Peters, S. Ramanna, 1999. A Fuzzy Set
Approach to Cost Estimation of Software Project.
(Editor: Meng, M.), In IEEE Canadian Conference on
Electrical and Computer Engineering.

Rumbaugh, J., 1990. Object-Oriented Modeling and
Design. Prentice Hall.

Ryan A. R. Carter, I. Annie, I. Antón, A. Dagnino, L.
Williams, 2001. Evolving Beyond Requirement Creep:
A Risk-Based Evolutionary Prototyping.In IEEE 5th
International Symposium on Requirements
Engineering.

Tomayko, J.E, 2002.Engineering an unstable requirements
using agile methods. In International Workshop on
Time Constraint Requirement Engineering.

van Lamsweerde, A., 2000. Requirements engineering in
the year 00: A research perspective. In International
Conference on Software Engineering (ICSE’2000),
pages 5–19, Limerick, Ireland.

Venkatachalam, A., R., 1993. Software Cost Estimation
Using Artificial Neural Networks. In International
Joint Conference on Neural Networks, October 25-29,
Volume 1, Pages: 987 – 990.

Wiegers, K.E., 1999. Software Requirements, Microsoft
Press.

Xia, F.,1996. Module Coupling: A Design Metric.In Asia-
Pacific Conference on Software Engineering. Seoul,
South Korea, 4-7 Dec. Pages: 44 – 54.

MEASURING REQUIREMENT EVOLUTION - A CASE STUDY IN THE E-COMMERCE DOMAIN

673

