
AN EXPERIENCE WITH THE NEURAL NETWORK FOR  
AUTO-LANDING SYSTEM OF AN AIRCRAFT 

Dr. Sreenatha G. Anavatti  
School of Aerospace, Civil and Mechanical Engineering, University of New South Wales at ADFA, Canberra, Australia 

Dr. Choi J. Young 
School of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea 

Mr. Francois Pischery 
Laboratoire d’Automatique, Industrielle Institut National des Sciences Appliquees, de Lyon, Villeurbanne, France 

Keywords: Auto-landing, Robust Control, Neural Network, Aircraft Dynamics 

Abstract: Generalization by the Neural Networks is an added advantage that can provide very good robustness and 
disturbance rejection properties. By providing a sufficient number of training samples (inputs and their 
corresponding outputs), a network can deal with some inputs it has never seen before. This ability makes 
them very interesting for control applications because not only they can learn complicated control functions 
but they are able to respond to changing or unexpected environments.  Aircraft landing system provides one 
such scenario wherein the flight conditions change quite dramatically over the path of descent.  The present 
work discusses the training of a neural network to imitate a robust controller for auto-landing of an 
aircraft. The comparisons with the robust controller indicate the additional advantages of the neural 
network 

1 INTRODUCTION 

Auto-landing is a requirement in the modern aircraft 
due to the necessity for operations under all weather 
conditions, whether it is civilian aircraft or military 
aircraft. Considerable efforts have gone in designing 
suitable control systems for enhancing the auto-
landing capability[1,5]. The auto-landing consists of 
the two phases, the descent phase and the flare. 
During the descent phase, the glide slope control 
system guides the aircraft down a pre-determined 
glide-slope. When the aircraft reaches a pre-selected 
altitude, the flare control system reduces the rate of 
descent and causes the aircraft to flare out and touch 
down with an acceptably low rate of descent.  The 
control system achieves this by the control of the 
flight path angle γ. It is shown in reference (John H. 
Blakelock, 1991) that the automatic control of the 
flight path angle without simultaneous control of the 
airspeed (either manual or automatic) is practically 
not possible.  The combination of these three 

systems provides the full longitudinal control of the 
aircraft.   

The dynamics of the aircraft is governed by 
stability derivatives which are functions of flight 
regime (speed, altitude, density, temperature, etc.).  
Due to the variations in the flight regime during 
landing, the dynamics of the aircraft change 
considerably over the entire flight regime.  Hence, a 
time varying mathematical model is required.  Due 
to the difficulty in handling time-varying differential 
equations, mathematical models at a number of 
points in the descent are considered simultaneously.  
This adds a large amount of uncertainty in modelling 
employed in the design of flight control systems.  In 
addition, disturbances in terms of gusts and sensor 
and actuator noise can alter the performance of 
control system considerably.  Hence, there is a 
necessity for having robust control systems that can 
handle parameter variations along with good 
disturbance rejection properties.  H-infinity(Ching-
Fang Lin, 1995) controller provides one such 
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alternative.  However, the complexity of the 
controller can deter the implementation in practical 
uses.  

The present paper looks at the alternate way of 
implementing the H-infinity controller by training a 
neural network[2,3] to imitate this.  In addition to 
the imitation, the neural network is shown to have 
additional properties like generalization with inputs 
and better robustness properties. 

Section 2 discusses the auto-landing and the 
equations governing the dynamics of the aircraft.  
Section 3 discusses the design of neural network to 
imitate the H-infinity controller.  The details of the 
design of H-infinity controller are avoided to reduce 
the mathematical complexity of the paper.  Section 4 
presents the comparison between the H-infinity and 
the neural network controllers under various 
conditions. The paper is concluded in section 5. 

2 AIRCRAFT DYNAMICS AND 
AUTO-LANDING SYSTEM 

The linearized equations describing the longitudinal 
motion of the aircraft are: 
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where, u is the change in airspeed (ft/sec),  α is the 
angle of attack (deg), θ is the pitch angle (deg), δe is 
the elevator angle (deg), δrpm is the change in the 
rpm of the engine (rpm), and Θ0 is the initial Euler 
angle relative to the horizontal plane. Xu, Xα, Zu, Zα, 
Zα, Mu. Mα, Mα , Mq,, Mδe, Zδe are known  as the 
stability derivatives.  These are functions of the 
flight regime like the speed, density, altitude, etc.  
These equations can be set in the State-Space form  
given by, 
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where X is the state vector, U is the input vector and 
Y is the output vector. 

2.1 Basic Autopilot Model 

The basic autopilot is actually the pitch angle control 
system. The error on θ goes through a transfer 
function that stands for electronics and hydraulics. 
The result is δe, the elevator deflection. Then the 

aircraft equations compute the associated reaction. 
The outputs of the aircraft block are the change in 
airspeed (u) and the pitch rate (q). 

The basic autopilot includes a velocity control 
system (VCS). It uses the throttle to correct the 
change in airspeed (Fig. 2).  The input is the change 
in airspeed (u) and the output is the engine rpm 
correction. 

In the following, γ (deg) is the flight path angle. 
It is actually the parameter that is being controlled 
but it is never measured directly. It is linked to θ  
and α by: 

αθγ −=  

The following simulation results were obtained 
with a 1 deg step command input on θ. The velocity 
control system ensures that the direction of the flight 
path angle is in the same direction as the pitching 
angle (otherwise, when the aircraft is commanded to 
descend, it would actually have a shallow glide up). 

2.2 Glide slope control system 

The glide slope controller surrounds the basic 
autopilot. It computes the right input θcomm for the 
basic autopilot so the aircraft stays on the predefined 
flight path.  The task of the glide slope control 
system is to keep Γ = 0 so that the aircraft descends 
along the desired path. 

2.3 Flare Control System 

As the glide slope controller, the flare controller 
surrounds the aircraft/autopilot model and computes 
the input θcomm so the aircraft sticks with the 
predetermined flight path. 

Flight test data has shown that when a pilot 
performs the flare from the approach glide to the 
final touchdown he generally decreases his rate of 
descent in an exponential manner, thus tending to 
make the aircraft fly an exponential path. 

For the automatic flare control, then, the aircraft 
is commanded to fly an exponential path from the 
initiation of the flare until touchdown. The height 
above runway (h) is given by : 

τ/
0

tehh −=  

h is the height (ft). 
h0 is the height at the start of the flare (ft). 
τ is the time constant (sec). 
τ and h0 are calculated by making assumptions on 
the distance between the touchdown point and the 
transmitter and on the time the aircraft will take to 
reach to touchdown. 
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Figure 1: Basic autopilot block diagram 

 
Figure 2: Velocity control system. 

 

 
 

Figure 4: Geometry of Glide Slope Problem 
 

 
 

Figure 3: Simulation Results of basic autopilot 
 

AN EXPERIENCE WITH THE NEURAL NETWORK FOR AUTO-LANDING SYSTEM OF AN AIRCRAFT

395



 

 
Figure 5: Geometry of the Glide Slope 

 

As the path equation is known, the value of h&  
(rate of descent) is known at any time : 

ττ
τ h

e
h

h t −=−= − /0&  

This is the command signal for the outer loop. 
The coupler shown above is a conventional one that 
does not have the properties of robustness.  One can 
design a better controller that has better robustness 
properties.  One such controller is the H-infinity 
controller. 

The H∞ control design approach consists in 
modeling uncertainties as a separate transfer 
function that is combined with the plant model in a 
multiplicative or additive way. This way the H∞ 
controller is able to stabilize not only the nominal 
model but a whole family of systems which exist in 
the uncertainty region around the nominal model. 
However, the complexity of the controller deters the 
implementation in the practical systems. 

3 NEURAL NETWORK 

A feedforward network is employed in the present 
work. The training of the network was performed 
using the back propagation algorithm.  
MATLAB(Howard Demuth  et al., 2000) was 
employed for doing the same.  For the sake of 
completeness, the training algorithm is summarized 
below; 

The backpropagation algorithm used in this 
study was the Levenberg-Marquardt algorithm 
(trainlm in MATLAB). It is one of the many 
variations of the backpropagation algorithm. It was 
chosen for its speed of convergence in function 
approximation problems. It is inspired by the 
Newton method for which the basic step is: 

kkkk gHxx 1
1

−
+ −=  

where H is the Hessian matrix of the performance 
index at the current values of the weights and biases 
and g is the current gradient of the performance 
function. 

It is often complex and expensive to compute the 
Hessian matrix. The Levenberg-Marquardt 
algorithm avoids this calculation by approximating 
the Hessian matrix as: 

JJH T=  

and by computing the gradient as: 

eJg T=  

where J is the Jacobian matrix that contains first 
derivatives of the network errors with respect to the 
weights and biases, and e is a vector of network 
errors. The Jacobian matrix can be computed 
through a standard backpropagation technique 
(much less complex than computing the Hessian 
matrix). 

The Levenberg_Marquardt algorithm then uses 
this approximation in the following Newton-like 
update; 

[ ] eJIJJxx TT
kk

1

1

−
+ +−= µ  

When the scalar µ is zero, this is just Newton’s 
method, using the approximate Hessian Matrix.  
When µ is large, this becomes gradient descent with 
a small step size. Newton’s method is faster and 
more accurate near an error minimum, so the aim is 
to shift towards Newton’s method as quickly as 
possible.  Thus, µ is decreased after each successful 
step and increased only when a tentative step would 
increase the performance function. 
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Figure 6: Flare control system 

 

3.1 First attempt in training 

Since, the network is supposed to imitate the H-
infinity controller, the training data employed was 

the input and out of the H-infinity controller,as 
shown in the block diagram (Figure 7). 
 

Figure 7: Block diagram for the first configuration 
 
At this stage, the neural network is a 3-layer 

feedforward network, with the hidden layer 
consisting of 5 and 3 neurons.  The training set 
consists of the input vector d, the distance between 
the aircraft center of gravity and the ideal glide slope 
and output vector, the H∞ controller output. 

The performance function did not achieve the 
targeted minimum with any number of epochs. 
Increasing the number of layers and neurons also did 
not help the cause.  Due to the ambiguity in the 
relation between the input and the output, this was 
happening.   

3.2 Second attempt in training:  

In order to remove the ambiguity, the network will 
now receive two inputs: u (the airspeed change) and 
γ (the flight path angle). θcomm (H∞ controller output) 
is still the target. In this configuration, the network is 
meant to replace both the “d” block and the H∞ 
controller. 

This time, convergence was achieved and the 
desired performance level was achieved during the 
training.   The numerical simulations with this 
network showed that the response matches very well 
with that obtained by the H-infinity controller. Since 
the network was trained for a particular  initial 
condition (distance between the aircraft centre of 
gravity and the ideal glide slope line)(in this case d0 
= 70m), when this initial condition was modified, 
the network did not perform according to the 
expectations. The graphs below show the evolution 
of d during the landing phase: the shape stays 
exactly the same and the error is brought back to 
zero in the first case; in the second case the aircraft 
flies along its glide slope but 30m away from it 
(Figure 8).  In order to correct this, the network has 
to be trained with not only one set of data but several 
data sets each corresponding to a different initial 
condition.  

As the final step in training, an extra input 
neuron for the initial condition with 9 and 7 neurons 
in the hidden layer were employed.

Inputs Targets 
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Figure 8: Neural Network behaviour for two different initial conditions 
 

This network was trained with three data sets 
corresponding to three different initial conditions: d0 
equals to 100, 50 and -20m.  After 500 epochs, the 
mean square error is equal to 2.4e-6. The simulation 

shows that the neural networks behavior is 
satisfactory for the initial conditions included in the 
training.  

Figure 9: Neural Network results for two different initial conditions (final network). 

However, when other initial conditions were tried 
out, the performance was not good.  Once again this 
is attributed to the ambiguity and hence, an 
additional input (the integrated value of distance, d) 
was employed.  With this, the final training was 
carried out with data for initial conditions of d0 = -
100, -90, -80, …, 90, 100m. The final network was a 
four layer network with 10 neurons per hidden layer.  
In addition, another network with 11 neurons per 
hidden layer was also trained.  The results of 
comparison of these two networks with H-infinity 
controller indicate the generalization property of the 
network as well as the effect of architecture on the 
robustness. 

4 PERFORMANCE AND 
ROBUSTNESS  

The performance of the controller for auto-landing is 
measured through the global accuracy of the landing 
system. Robustness evaluation is based on three 
tests: sensitivity to modeling errors, disturbance 
rejection and sensitivity to sensor noise.  The 
following paragraphs compare the results for the 

three controllers. For convenience, the H-infinity 
controller and the neural networks will respectively 
be called H∞, NN10 and NN11 here afterwards. 

 4.1 Accuracy 

The neural networks were trained for initial 
conditions varying within [-100;+100]. For several 
initial conditions from this range and for each 
controller, dtouchdown is measured (Figure 10). For 
each controller, the maximum gap, the average gap 
and the standard deviation of the values were 
computed. The results are given by; 

 Hinf NN10 NN11 
Maximum (m) 0.272 0.346 0.209 
Average (m) -0.042 0.038 -0.148 
Stand. Dev. 0.101 0.146 0.078 

 

These values show that even though NN11 has 
the highest average gap, it is the most interesting 
controller here. It is very constant (low standard 
deviation) and its maximum error is smaller. 
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Figure 10 Controller Accuracy as a function of simulation initial conditions.

4.2 Sensitivity to uncertainty and 
modeling errors 

Modeling errors arise due to the simplifying 
assumptions in mathematical modelling.  Along with 
this, due to the variations in the flight conditions, the 
stability derivatives governing the dynamics of the 
aircraft change.  Hence, there is a necessity to 
validate the controller against these.  

Numerical simulations were carried out by 
varying all the parameters of the A matrix by a 
certain percentage indicating the worst case scenario 
The controllers were tested in the following 
configurations: 

 the stability derivatives are 5, 8, 10 and 11% 
bigger, 

 the stability derivatives are 10, 15, 16 and 
17% smaller. 

For a certain amount of change in the A matrix, 
the natural frequencies governing the dynamics of 
the aircraft change.   The aim is to define the range 
of natural frequencies in which each controller stays 
effective. Like before, the effectiveness is measured 
through dtouchdown. 

It is assumed that 50cm is the maximum 
acceptable dtouchdown. With a glide slope angle (Γ) of 
4°, that would mean a ground distance of about 7m 
between ideal and actual touchdown points. So the 
net would have to be 14m long which seems about 
right. The green zones indicate that according to this 
criteria, the controller kept the aircraft in the net. 
The red zones means the aircraft would have missed 
it. 

 Change -17% -16% -15% -10% 0% 5% 8% 10% 11% 
Max (m)   0.427 0.468 0.516 0.272 0.506 0.897 1.278 1.508 
Avg (m)  -0.017 -0.034 -0.088 -0.042 -0.062 -0.137 -0.223 -0.279 Hinf 

Std  0.122 0.132 0.144 0.101 0.133 0.215 0.302 0.356 
Max (m)  7.541 5.986 2.166 0.346 0.239 0.809 1.404 1.697 
Avg (m)  -4.895 -4.021 -1.610 0.038 -0.037 -0.115 -0.202 -0.259 NN10 
Std  1.659 1.344 0.299 0.146 0.090 0.140 0.266 0.343 
Max (m) 24.406 0.101 0.109 0.140 0.209 0.136 0.477 1.036 1.457 
Avg (m) 1.269 -0.009 -0.010 -0.028 -0.148 -0.084 -0.110 -0.166 -0.216 NN11 
Std 5.557 0.031 0.031 0.038 0.078 0.023 0.084 0.203 0.299 

These results show the superiority of NN11. Its 
maximum distances at touchdown are always 
smaller than the others and as shown by the green 
zones, its range of effectiveness is wider. NN11 is 
valid from –16% to +8%, which gives [1.922;4.303] 

as natural frequency validity range, whereas H∞ is 
not even valid from  –10% to +5%, which gives the 
validity range [2.059;4.184]. In addition

, NN11 average errors are very small and actually 
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improve a little bit with parameter variation. Finally, 
its standard deviation indicate that it is by far the 
most consistent of the tested controllers. 

The neural network was trained with samples 
created by H∞ only. So the neural network not only 
does the job of what H∞’s does, but does it better.  
The neural network is able to compensate for a 
bigger change. As this result was reached with a 
training set including only data for the ideal plant 
configuration, it is very possible that additional 
training (with data from several controllers and 
several plant configurations) enhances the 
robustness of NN11. 

4.3 Disturbance rejection 

In general, the disturbances can be on the actuator 
side or the sensor side.  Since the control surfaces (in 
this case elevator) are the actuators for an aircraft, 
the presence of atmospheric disturbances can be 
translated as equivalent disturbances on these 
aerodynamic control surfaces.  The aircraft should 
be able to withstand these disturbances.   To model 
external disturbances, random signals of various 

amplitude were added to δe, the elevator deflection 
and simulations were conducted.   Three cases of 
10%, 25% and 50% of δe curent amplitude are 
considered.  In each of these cases and for each 
controller, the entire flight path was compared to the 
clean flight path (without disturbances). For each 
time step, the difference between the clean and noisy 
flight paths was computed. Based on these 
difference numbers, an average difference and the 
standard deviation were computed. Because this 
time the entire flight path is monitored and not just 
the gap at touchdown, this test was not run for 
several initial conditions but just for d0 = 50m. The 
table below summarises  the results.   

H∞ appears to have a slightly better resistance to 
disturbances when their amplitude grows. But 
globally, NN11 does not have a bad behavior. Its 
numbers are very much comparable to those of H∞. 
We believe that by including noise or noisy inputs in 
the training set, the neural network should improve 
its filtering capabilities significantly. Unfortunately, 
the lack of time prevented us from going any further 
in this direction. 

 Hinf NN11 
 Difference (m) Difference (m) 
 10% 25% 50% 10% 25% 50% 

Average (m) 0,005 0,012 0,032 -0,002 0,016 0,120 
Stand. Dev. 0,124 0,294 0,832 0,098 0,329 0,836 

 

5 CONCLUDING REMARKS 

This paper discusses the experience in training a 
neural network to imitate a complex robust 
controller for auto-landing of aircraft, a major 
requirement for the present day aircraft. The various 
steps in achieving the desired training and the results 
of the comparison are presented in graphical as well 
as tabular form.  To verify the performance of the 
controller, both accuracy and robustness are 
considered.  The neural network seems to do a better 
job than the controller used for its training due to the 
generalization nature of these networks.  Additional 
training with noisy data can improve the filtering 
characteristics of these networks in a significantly 
thus combining the efforts of the filter and the 
controller in a single network.   
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