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Abstract: Since many Decision Support Systems (DSS) in the area of causal strategy planning methods incorporate
techniques to draw conclusions from an underlying model but fail to prove the implicitly assumed hypotheses
within the latter, this paper focuses on the improvement of the model base quality. Therefore, this approach
employs Artificial Neural Networks (ANNs) to infer the underlying causal functions from empirical time
series. As a prerequisite for this, an automated proof of causality for nomothetic cause-and-effect hypotheses
has to be developed.

1 INTRODUCTION

The main task of corporate strategy planning is the
construction of a variety of decisions which are highly
interrelated and characterized by a rather complex
informational background. In order to reduce this
complexity, the raw data originating from operational
databases or Management Information Systems has
to be arranged within decision models which be-
comes the principal issue of Decision Support Sys-
tems (DSS). Hence it can be observed that the archi-
tecture of any DSS necessarily incorporates the notion
of a mental model underlying the respective decision
theory as well as appropriate decision techniques.

A considerable number of recent approaches within
the domain of strategic decision making propose to
organize business indicators in the form of causal
models. The main task of these models is to visu-
alize the cause-and-effect hypotheses between given
variables (Hillbrand and Karagiannis, 2002). Well-
known examples for this type of strategic decision
methodologies are the Balanced Scorecard technique
(Kaplan and Norton, 2004), the tableau de board
methodology (Mendoza et al., 2002), as well as cy-
bernetic concepts like VESTER’s Biocybernetic Ap-
proach (Vester, 1988) or the St. Gallen Management
Model (Schwaninger, 2001).

Although these managerial approaches for strategic
decision support provide some practical aspects for
the reduction of complexity, the implementations of

these ideas in the form of DSS are rather weak (Hill-
brand and Karagiannis, 2002, p. 368): The model
base, however, usually remains unproven with respect
to the empirical evidence of the hypothetic cause-and-
effect relations. Moreover these techniques are not
able to provide quantitative forecasts for future im-
pacts of an analyzed strategic scenario.

The discussion in this area restricts to the concept
of correlation to prove causal relations. As this tech-
nique fails to sufficiently explain the phenomenon of
causality, the relevant literture predominantly shares a
rather dogmatic conception that it is not admissible at
all to assess relations of this type (Hillbrand, 2003a,
pp. 6ff.).

However, if we abandon the restriction to corre-
lation as a concept for the proof of causality and a
measure of association, it seems to be possible to in-
fer further causal knowledge from empirical data and
therefore improve the quality of the model base sig-
nificantly. Hence this paper proposes an approach to
automatically prove managerial cause-and-effect rela-
tions and to approximate the unknown causal function
underlying these associations.

Based on a brief overview of causality concepts in
section 2 this paper proposes a methodology to prove
the causality of nomothetic cause-and-hypotheses in
section 3 as well as to approximate the underlying
functions (section 4) based on empirical evidence.
The paper is concluded by the presentation of experi-
mental results in section 5.
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2 CAUSALITY CONDITIONS

As it has been outlined in the introduction, the mere
correlation of two variables seems to be insufficient
for the causal validation of associations between
them. Moreover, causality per se cannot be observed
or tested by objective means. According to KANT it
is a synthetic judgment a priori (Schnell et al., 1999,
p. 56). Causality must therefore be regarded as an as-
sumption about the connection between cause and ef-
fect made by the human mind and based on a variety
of experiences rather than some kind of natural phe-
nomenon which can be observed in an objective man-
ner. Therefore some notions of causality incorporate
the interventionistic idea which suggests the admis-
sibility of experimental results as the only proof for
causality. In an enterprise, however, there is hardly
any situation where an experiment-like situation can
be created because the trial-and-error manner of these
settings usually would inflict losses for the business
and the response time of basic cause-and-effect rela-
tions can be rather long.

Applied to managerial cause-and-effect relations,
an appropriate concept of causality must restrict itself
to observational studies in terms of empirical data as a
consequence. Therefore a first necessary but not suffi-
cient criterion (conditio sine qua non) for causality is
that a cause provides information which can be used
to (partly) explain its effects. In case of linear cause-
and-effect relations this property of informational re-
dundancy is also known as correlation or covariance.
However, as it has been shown in the introduction,
these concepts fail to fully explain causality. Accor-
ding to HUME, there has to be a temporal precedence
relation between a cause and its effects additionally to
informational redundancy. Regardless of the ability of
these two necessary properties to fully explain many
causal relations, there still remains the problem of an
exogenous common cause to induce spurious associa-
tions between presumably causal variables. Therefore
the definition of causality has to be enhanced by the
postulate to control for this type of association.

Based on an extensive research of causality con-
cepts within the relevant literature (Hillbrand, 2003a,
pp. 152 – 170) the following definition of an appro-
priate concept of causality to analyze associations be-
tween managerial variables can be derived:

Theorem 1 (managerial causal relation): A causal
relation between variables of a managerial system ex-
ists if and only if there exist appropriate nomothetic
(i.e. unproven) cause-and-effect hypotheses based on
causal a priori knowledge where the following condi-
tions are fulfilled:

• The empirical observations of a potential cause
provide informational redundancy regarding its po-
tential effect.

• The variation within the time series of the poten-
tial cause must always precede the response of this
variation within the time series of the potential ef-
fect.

• The three causality properties as defined above
(causal a priori knowledge, informational redun-
dancy and temporal precedence) must not originate
from the influence of a known or unknown cause,
common to the potential cause and the potential ef-
fect. ¤

As it is obvious from the above theorem, the under-
lying notion of causality follows the ideas of logical
empirism which regards a hypothesis as true as long
as it cannot be falsified. Therefore it is the task of
a causality proof to rule out non-causal associations
according to the above criteria from a given strategy
model consisting of nomothetic cause-and-effect hy-
potheses. The next section develops an appropriate
approach for the automated proof of causality.

3 PROOF OF CAUSALITY
BETWEEN BUSINESS
VARIABLES

The analysis and definition of a homogeneous notion
of causality in the preceding section of this paper rep-
resents the conceptual basis for the construction of
proven causal models for strategic decision support.
A set of nomothetic cause-and-effect hypotheses con-
tained in a rudimentary cause-and-effect model has to
be given by strategic decision makers and represents
the first necessary causal property of a priori know-
ledge.

As HILLBRAND proposes in his meta-model (Hill-
brand, 2003b), the key modeling element of this
model-type is an indicator which can be of crisp or
fuzzy type. These indicators are linked by either un-
defined or defined influence relations, where the latter
is described by axiomatically determined rules (e.g.:
ROI, ROCE, etc.).

Consequently it is the focus of this section to pro-
vide appropriate methods in order to analyze the hy-
pothetically established undefined influences within
a strategic DSS with respect to their causal validity.
This task of the proposed approach is to detect so-
called α-errors of undefined nomothetic cause-and-
effect hypotheses between variables. Therefore the
starting point for the reconstruction of a proven causal
model is a rather overdefined rudimentary model as
described above.

In order to analyze the causality criterion of infor-
mational redundancy it seems to be suitable to re-
strict to the linear case as this proof per se does not
build the model base but is used to select variables for
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the following approximation of arbitrary causal func-
tions. The admissibility of this theory for different
types of causal functions has been shown by HILL-
BRAND (Hillbrand, 2003a, pp. 299ff.).

When considering the third necessary condition for
causality of temporal precedence between cause and
effect, the inadequacy of the concept of correlation
alone to prove cause-and-effect relations becomes ob-
vious: The correlation of two time series would show
that the variations of an independent and a dependent
variable are similar and that they take place contem-
poraneously. As this is mutually contradictory to the
notion of causality as defined in the previous section,
the concept of correlation has to be adopted to mea-
sure temporally lagged responses of the variation of
an independent factor within the time series of the
dependent variable. Therefore the cross-correlation
ρX,Y (∆t) implies a time lag ∆t between a cause X
and an effect Y in the following form:

ρX,Y (∆t) =

T
∑

t=1

(yt−Ȳ )(xt−∆t−X̄)

T

σX · σY

(1)

Where yt and xt stand for the values of the vari-
ables Y and X at time t, X̄ and Ȳ for the average
values and σX as well as σY for the standard devia-
tion of the respective time series.

By calculating the cross correlations for varying
time lags it is possible to identify a window of im-
pact between an independent and a dependent vari-
able (characterized by a minimum time lag and a
number of subsequent effects). For this purpose it is
necessary to determine the statistical significance of
a cross correlation at a given time lag. Therefore this
approach uses BARTLETT’s significance test (Bartlett,
1955) following the suggestions of the appropriate lit-
erature in this area (Levich and Rizzo, 1997, p. 6):
The null hypothesis that two given time series at a
certain time lag are independent has to be rejected if
the following constraint is satisfied:

|ρX,Y (∆t)| >
1

√

n− |∆t|
(2)

Where n stands for the number of samples in the time
series of X and Y , respectively.

By increasing the time lag ∆t by discrete steps be-
ginning at a lag of zero time periods, it is possible to
identify the minimum time lag by recording the first
significant cross correlation between the time series.

This approach is illustrated in figure 1 for the fol-
lowing synthetically generated time series:

xt = εU(0;1) (3)

yt = 0.2yt−1+0.5xt−2+0.2xt−3+0.1εU(0;1) (4)
Where εU(0;1) is a random variable uniformely dis-
tributed between zero and one.

As it is obvious from the above equations, the time
series yt of the independent variable Y incorporates
past values of the time series xt with a time lag of
two and three time periods, respectively. Therefore
the correct window of impact is [2, 3].
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Figure 1: Correlogram between two timeseries

Figure 1 shows the cross correlations computed
from the artificial time series xt and yt for the time
lags ∆t = 0, . . . , 9, as well as the bandwidth of
their standard deviation which lies between the dot-
ted lines. The clear consequence which can be drawn
from this correlogram is that the first significant cor-
relation starting from zero occurs at a time lag of
∆t = 2 which corresponds exactly to the generating
function of yt as stated above.

The first attempt to determine the appropriate
length of the window of impact using the correlo-
gram in figure 1 yields time lags between ∆t = 2
and ∆t = 4. Hence it can be shown that significant
autocorrelation of the independent time series leads to
the so-called echo effect (Hillbrand, 2003a, pp. 178f.)
which describes the indirect effects of independent
values prior to the window of impact through an au-
tocorrelated dependent time series: In the example of
figure 1 the term ”. . . 0.2yt−1 . . . ” leads to a reflec-
tion of xt−3 and xt−4 within the time series of yt.

Therefore it is crucial for a correct identification of
the impact window to eliminate any autocorrelation
within the time series to be analyzed. Since a disqui-
sition of these so-called prewhitening approaches ex-
ceeds the limits of this paper, it remains to refer to the
appropriate literature (Hillbrand, 2003a, pp. 181ff.).

Potentially causal relations which show a signifi-
cant window of temporally lagged impact are subject
to a further analysis of common causation by third
variables. For this purpose PEARL and VERMA pro-
pose an approach to identify spurious associations in-
duced by a common cause (Pearl and Verma, 1991):

Theorem 2 (Controlling for third variables): One
can assume a relation X → Y to be causal if

ICEIS 2004 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

180



and only if the time series of the potential effect Y
incorporates not only patterns of its direct potential
cause X but also those of the predecessors P of X
in the cause-and-effect model. If X and Y as well
as P and X are informationally redundant but P
and Y are not, an unknown third variable U rather
than a causal relation must be assumed to induce
informational redundancy between X and Y . ¤

As a consequence the patterns of P are reflected
within the time series of X but they are not inherited
on to Y due to the absence of a genuine cause-and-
effect relation X → Y .

A basic tool for the analysis of these assumptions
within causal graphs is the concept of conditional in-
dependence: Two variables A and B are conditionally
independent given a set of variables SAB - written as
(A ⊥ B | SAB) - if A and B are informationally re-
dundant. However, if the impacts of SAB on B are
eliminated, this property vanishes. Therefore SAB is
said to ”block” the causal path between A and B.

The theory to detect third variable effects as out-
lined in this paper is implemented by the IC1-
Algorithm. For reasons of lucidity, this paper dis-
penses with a detailed discussion of these proce-
dures but refers to the appropriate literature (Pearl and
Verma, 1991) or (Hillbrand, 2003a, p. 198).

Summarizing this approach, the modeling of
nomothetic cause-and-effect hypotheses by decision
makers represents a prerequisite for their proof as
well as the first causality criterion. The second and
third condition for causality - informational redun-
dancy and temporal sequence - are tested by analyz-
ing the cross correlations between the prewhitened
time series of the respective variables connected by a
cause-and-effect hypothesis. To rule out a third vari-
able inducing informational redundancy between two
lagged variables, this analysis is completed by the ap-
plication of the IC-Algorithm as outlined above. Only
relations which pass all these tests satisfy the neces-
sary causality conditions and are therefore said to be
genuinely causal.

4 APPROXIMATION OF
UNKNOWN CAUSAL
FUNCTIONS

The proof of causality as proposed in the previous
section is the main prerequisite for the approximation
of the unknown causal function affecting the values
of any arbitrary business variable within a cause-and-
effect structure. This provides the necessary numeric
properties for the causal model base of a DSS to run

1IC = Inductive Causation

numeric analyses (e.g.: simulation, how-to-achieve or
what-if-analyses).

Many function approximation techniques either re-
quire a priori knowledge about basic functional de-
pendencies (e.g.: regression analysis) or their approx-
imation results are only valid within rather tight lo-
cal boundaries (e.g.: FOURIER or TAYLOR series ex-
pansion). Since the form of these cause-and-effect-
functions cannot be assessed a priori it is necessary
to employ so-called universal function approximators
for the purpose as described above (Tikk et al., 2001).
Hence these techniques are able to learn any arbitrary
function from mere empirical observations without
the need to narrow down some base function. As it
can be shown, microeconomic functions which usu-
ally underly strategic reasoning are almost never of
linear type (Hillbrand, 2003a, pp. 201ff.). The rea-
sons for this observation are manifold: Saturation as
well as scale effects or resource limitations are only
a few issues. One well-known example is the associ-
ation between the market price and the customer de-
mand for a certain product: Lowering prices will not
linearly result in an increasing demand. Rather this
association is expected to follow some S-shaped - also
known as sigmoidal or logistic - pattern (Allen, 1964).

For these reasons it is essential to abandon all re-
strictions regarding a priori assumptions about the
unknown function underlying a cause-and-effect re-
lation. Therefore this approach studies the potential
and limitations of Artificial Neural Networks (ANNs)
for universal causal function approximation. The cen-
tral theory in this area has been proposed by KOL-
MOGOROV who proved that any arbitrary unknown
function f can be approximated by two nested known
functions (Kolmogorov, 1957). Further enhance-
ments of KOLMOGOROV’s superposition theory have
been developed by several authors which lead to the
notion of ANNs as universal function approximators
(Hillbrand, 2003a, pp. 210 – 215).

Since this universal approximation property has
been proved for numerous of types of ANNs, this
approach focuses on the construction of MLPs out
of empirically proven cause-and-effect hypotheses.
Therefore the causal strategy model has to be sepa-
rated into causal function kernels (CFK). The latter
describe a set of variables and interjacent cause-and-
effect relations, each of which consists of a depen-
dent element and its direct predecessors. Following
the theory underlying this approach, the totality of
all cause-and-effect relations within a causal function
kernel represent the unknown causal function deter-
mining the values of the dependent variable.

Due to the possible existence of indirect associa-
tions between independent and dependent variables
within a CFK - also known as multicollinearity - it
is likely that the overall effect between two such ele-
ments has to be separated in order to obtain the direct
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share of influence. Hence it is necessary to extend the
causal function kernels for cause-and-effect relations
which directly and/or indirectly link two independent
variables Xi → Xj . These auxiliary cause-and-effect
relations accounting for multicollinearity can be dis-
covered by analyzing the transitive closure of each in-
dependent variable within the global causal system:
For every pair of independent variables Xi and Xj

within a causal function kernel KY there exists an
auxiliary cause-and-effect relation Xi Ã Xj if and
only if Xj is contained in the transitive closure of Xi

according to the global model G as shown in figure 2.

AA BB

EE

HH
GG

FF

JJ

CC

II

DD

AA BB
CC

AA BB

EE
DD

BB

EE FF

II

DD
HH

JJ

II

KB

KD
KE

KG
KI

KJ

EE

HH
GG

FF

G

Figure 2: Separation of (extended) causal function kernels

Since an unknown causal function to be approxi-
mated does not exist between variables but rather be-
tween their lagged time series, the (e)CFKs have to
be temporally disaggregated. While the dependent
variable Y is represented by its instantaneous time se-
ries yt as an output node, each independent variable
leads to a number of input nodes corresponding to the
length of the appropriate window of impact (see sec-
tion 3). As far as eCFKs are concerned, it is necessary
to introduce a second input layer which accounts for
auxiliary cause-and-effect relations: The time series
of the second layer are derived by the same procedure
as described above taking the influenced indirect time
series of the auxiliary association as output node and
the influencing element as input node. Second input
layer elements which affect first layer time series and
the output node directly are of specific interest since
they combine direct and indirect influence as figure 3
shows for the extended causal function kernel KD.

As temporal disaggregation delivers the appropri-
ate input and output nodes for a neural function ap-
proximator in the form of temporally lagged time se-
ries there remains the issue to complete the model se-
lection of the ANN. This includes an adequate dimen-
sioning of the hidden layer(s) as well as the selection
of input and transfer functions for all ANN-nodes.

Since the universal approximation property pos-
tulates a limitation of the inner function of KOL-
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Figure 3: Temporal disaggregation of (e)CFKs

MOGOROV’s theorem, it is necessary to use so-called
squashing functions which encompass sigmoid as
well as logistic, sine or heaviside functions (Hill-
brand, 2003a, p. 214). For practical reasons the use
of an additive input function for hidden and output
neurons is recommended.

The selection of an appropriate number of hidden
neurons is directly related to the generalization abi-
lity of the ANN (i.e. to learn a certain function in-
stead of memorizing input-output mappings). As this
specific model selection task depends on a variety of
issues which cannot be analytically determined a pri-
ori, it is necessary to rely on heuristics (for details see
(Hillbrand, 2003a, pp. 226 – 230)) and evaluate the
prediction accuracy of the trained ANN by using a
validation data set.

As it follows from the temporal disaggregation of
eCFKs as discussed above, the resulting auxiliary
cause-and-effect relations between second-level and
first-level time series have to be incorporated into the
neural function approximator in order to account for
indirect effects. Therefore auxiliary sub-MLPs are in-
troduced as symbolized by dotted connectors in the
example of figure 4.

Figure 4: Neural function approximator for (e)CFKs

Before the training of the overall causal function
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approximator it is necessary to learn these correct-
ing functions, each of which has one first-level time
series (e.g.: et−2 and et−3) as output node and one
or more second-level time series as input nodes. Af-
ter the training of all correcting ANNs, their weights
are kept fixed and included in the main neuron model.
For the overall training of the causal function approx-
imator it is necessary to equip first-level nodes with a
specific input function since they are input and hidden
nodes in the same way. Consequently the input func-
tion of a first level node calculates the weighted output
sum of all preceding nodes plus the respective input
value of the node itself. The ratio between these two
shares of cumulative input is needed for training pur-
poses when employing an error backpropagating al-
gorithm: The same portion by which the overall input
for a first-level node consists of values from a lower
network layer is used to distribute the output error -
backpropagated from higher network levels - among
lower level neurons.

Since all further characteristics regarding layout
and training of neural causal function approximators
correspond with those of MLPs, they are not dis-
cussed in further detail.

Having determined the appropriate connection
weights for these neural function approximators re-
constructing a causal function , they can be used to ex-
plain the associations between business variables and
goals as well as for the prediction of future values for
dependent variables in a numeric way.

5 CONCLUSIONS

Experimental results with synthetically generated
time series of causally dependent business variables
have yielded the admissibility of the theoretic foun-
dations for this approach (Hillbrand, 2003a, pp. 288
– 319): All cause-and-effect relations implicitly con-
tained in the generating processes for five time se-
ries of an experimental case study could be recov-
ered from a fully interlinked causal system (i.e.: Ev-
ery variable is linked to all other elements) by analyz-
ing the four causality criteria and the falsification of
all spurious associations. Studying the relevance of
anomalies for the results of this causality proof shows
its robustness against nonlinearity, multicollinearity
as well as autocorrelation within the causal function
kernels. The exposure to highly noisy causal asso-
ciations is the only issue which remains for future re-
search in this context as this seems to affect the results
of this causality validation approach negatively. The
neural approximation of the causal functions underly-
ing these proven cause-and-effect relations results in a
significantly higher ex post prediction quality for the
validation set than various regression techniques.
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