
A REQUIREMENT FOR A XML WEB SERVICES SECURITY
ARCHITECTURE

Luminita Vasiu, Cristian Donciulescu
Middlesex University, London, UK

Keywords: XML Web Services, Internet security, Web Services Architecture

Abstract: Lately, XML Web Services are emerging as a dominant platform in the computing world. At the moment,

the web has evolved into an active medium for providers and consumers of services. One of the major
problems for XML Web Services is the related with security. The paper describes a comprehensive XML
Web Services Management Architecture that supports, integrates and unifies several security models,
mechanisms and technologies in a way that enable a variety of systems to securely interoperate in a
platform independent, comprehensive manner.

1 SECURITY ISSUES SPECIFIC

TO XML WEB SERVICES

In order to provide a comprehensive security model
for Web services, it is required to integrate the
currently available processes and technologies with
the evolving security requirements of future
applications. There are a big number of similarities
between security issues raised by a normal web
environment and those posed by a XML Web
Services Environment. However, due to the
particular nature of XML Web Services, some of
these issues are more complex and new problems
arise. As the technology becomes adopted on the
market on a wider scale, there will be a need to
integrate more and more services under the same
environment. This integration, which has to be
seamless in order to take advantage of what XML
Web Services have to offer, poses the biggest
security problem. Different security contexts must
be able to talk to each-other without any security
compromise.

The XML Web Services environment has the
following defining characteristics (Yang, 2002):

• It is highly decentralised in architecture and
administration;

• It is implemented in different technologies,
from different vendors and with different
tools;

• It is spread over multiple enterprises,
contexts, etc;

• It must have parts that are accessible to
everybody on the Internet and parts that are
restricted to authenticated users. These parts
often collaborate with one-another;

In the recent period, there have been many
malicious attacks on several high-profile Web
servers, hosting applications used by millions of
computers throughout the world. Attacks like those
performed by Nimda, Code-Red, MSBlaster and
Sobig have produced huge damages and there are
fears that due to their specific nature, XML Web
Services will become favourite targets for such
attacks if they will not be properly protected.

As with regular web applications, major areas
that have to be addressed to achieve a secure
environment are authentication, access control, data
privacy (encryption), non-repudiation, etc. In each of
these areas there are specific problems to be
addressed when dealing with XML Web Services
(Stencil Group, 2003). The main issues are discussed
briefly below:

• Authentication. In regular web applications,
usually clients have to be authenticated
when requesting to use a service. This is
usually done using passwords, certificates or
infrastructures like Kerberos and LDAP.
However, in the case of a XML Web
Service, the server has to be identified to the
client as well, considering that in a SOAP
request/response pair, both messages
(including the request) can contain very
sensitive information. That would require

60
Vasiu L. and Donciulescu C. (2004).
A REQUIREMENT FOR A XML WEB SERVICES SECURITY ARCHITECTURE.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 60-66
DOI: 10.5220/0002619400600066
Copyright c© SciTePress

the XML Web Service to have a security
certificate attached to its contract that can be
interrogated by a client before sending a
request, to prevent talking to a spoofed
XML Web Service.

• Access control. With XML Web Services,
controlling authorisation rights is a difficult
task, because not only the client has to have
access to the specific service, but also to the
specific operations that service performs.
There can be instances where different
levels of access to a service’s functions must
be assigned to users. It is also difficult to
monitor attempts of illegal use of the
service, since usually these types of
applications serve other applications, so
there is no human involvement in the entire
process. The administration of such an
environment with multiple types and levels
of access rights is not an easy task. There
are issues here as well (Yang, 2002),
considering that having a single
administrator over the entire web service
environment is a security threat in itself.
Having multiple administrators with
different privileges is an option, but this
triggers the need for an administrative
platform for XML Web Services. And due
to the very diverse nature of XML Web
Services, such a platform should be very
open, allowing for all kinds of security
policies to be integrated in it, as well as
multiple and diverse administrative
schemes.

• Data privacy. A SOAP message between a
client and a service can be encrypted to
protect its content, however, unlike regular
web applications, where usually a client and
a server communicate with each-other and
the client trusts the server, with XML Web
services, the trust has to be reciprocal. Also,
although a client may trust a service and
send sensitive encrypted content to it, the
service may act as a client to other services.
How can a client trust that a service will
protect their information properly while
communicating to other services?

• Digital signatures. To ensure data integrity
between clients and web services digital
signatures have to be employed.
Fortunately, the XML Signature standard
has been designed exactly for that purpose.
Digital signatures also provide a
non-repudiation mechanism, to verify that
an action really took place.

2 CURRENT SECURITY
STANDARDS

The expectations of the developer community with
regard to XML Web Services technology and its
implications on the development of the Internet were
very big when the WS specification was first made
public two years ago. There were voices that argued
XML Web Services to be the “biggest step forward
in the development of the Internet since the advent
of the browser”(Iona Software, 2001).

However, although there is still great enthusiasm
in the developer community and there are attempts
made by big companies to use the technology, the
development expected in the beginning is far behind
what was imagined. That is mainly because the
original XML Web Services standard did not include
any security specification; so serious projects using
XML Web Services were not undertaken. Web
Services have been used until now mainly in small
undertakings and in applications designed to run
behind company firewalls and intranets. The few
examples where big companies used Web Services
for their commercial (such as British Telecom in the
UK) products rely on custom security
implementations. Out of experience, custom security
implementations are much more subject to errors
and security holes than standardised security
platforms.

To cover the lack of security specifications in the
original Web Services platform, several important
companies are working together, trying to develop a
security specification for XML Web Services. The
results are several standards that are either in the
final stages of development or have been recently
approved by organisations such as OASIS or W3C.

However, as key personalities involved in the
development of these standards readily admit, “the
implementation of a particular spec will [not] make
everything completely interoperable and secure”
(Maler, 2003). In order to have a (reasonably)
complete secure XML Web Services environment,
several standards must be implemented. This shows
the need for the development of security
architectures that combine the standards into a
comprehensive security framework.

• WS-Security: The main security
specification that deals with the security of
XML Web Services is WS-Security,
developed by a collaboration between
Microsoft Corporation, IBM and Verisign
Inc., under the coordination of OASIS.
WS-Security is the most comprehensive
security standard to-date defining how to
manage and coordinate aspects such as
message integrity, authentication and

A REQUIREMENT FOR A XML WEB SERVICES SECURITY ARCHITECTURE

61

confidentiality and specifying how to
include features such as digital signatures
and encryption in SOAP documents
(Stanton, 2003). Although dealing with
many important aspects in defining how
security architecture should work, the
specification fails to address other vital
issues with XML Web Services, such as
fail-over, backup, redundancy, etc.
However, this standard is the basis for a
security infrastructure that is being
developed by the same organisation. This
security infrastructure contains other
developing standards, such as: WS-Policy,
WS-Trust, WS-Privacy,
WS-SecureConversation, WS-Federation,
WS-Authorisation. These standards are now
in a drafting stage and are not yet being used
in security implementations.

• Shortcomings of current standards. With
all the standards being proposed, drafted and
approved, there are many people that feel
that developers will soon face another
hurdle: making all of them work together
smoothly. And still, there are unanswered
questions regarding many issues with
security. How will and outside, potentially
weak, system be integrated within an
already secured environment? How do you
perform a security audit, to test that a XML
Web Services environment is secure, when
it is spread over different networks and
administrative domains? (Yang, 2002) What
happens to its clients when a Web Service is
offline, either for maintenance or due to a
malicious action? How will the applications
using that particular service work around the
problem? How does someone prevent
malicious clients from initiating attacks on a
XML Web Service? There are fears that
XML Web Services, in particular
high-profile ones, will become favourite
targets for attackers. There is no way at the
moment to discover a XML Web Service
dynamically and there is also no way of
identifying web services that perform
identical tasks. It becomes obvious that an
attack on a XML Web Service, which might
very well serve thousands or millions of
clients, would become much more damaging
that present-day attacks on web application
servers, which only have the potential to
take down applications running on that
particular server. To address these particular
issues, related specifically to XML Web
Services, a specific kind of security
architecture would have to be designed.

3 ATTACKS ON WEB SERVICES

The main benefit of the XML Web Services
technology is that it exposes functionality,
sometimes critical functionality through standard
HTTP protocols. XML Web Services traffic usually
flows through port 80, such as regular HTTP traffic.
However, as opposed to HTML and regular web
sites, the functionality exposed by a XML Web
Service is much more sensitive. Firewalls can be
configured to intercept SOAP traffic, but most of
them can only block it. If you allow SOAP traffic
through the firewall, there is no way to interpret the
contents of the SOAP messages outside of the XML
Web Service itself, thus a malicious request can
easily go undetected.

Also, and even more dangerous, XML Web
Services are self-descriptive. The contract (WSDL)
file of the service contains detailed information
about the behaviour of the service, from which an
attacker can know exactly what the vulnerabilities of
the service are. This makes attacks much more likely
to succeed than on regular web applications.

Unencrypted or poorly encrypted, SOAP
messages can easily be intercepted and tampered
with. For these reasons, until now, there are no
big-scale implementations using XML Web
Services. The following types of attacks are most
likely to be performed on XML Web Services:

• Denial of service. This is a common attack
on a regular web server that will take the
server down immediately. An attack on a
XML Web Service will take down the Web
Service and the applications that use it. Such
an attack on a XML Web Service is
obviously much more damaging than on a
web server. The problem is even bigger than
it seems (Yang, 2002), because in the case
of Web Services a firewall cannot always
handle the problem. Due to the fact that a
XML Web Service might work a lot to
satisfy a single request, the service can be
easily overwhelmed by legitimate and not
fake requests. This will still take down the
service and the firewall cannot prevent it
without denying legitimate users from
accessing the service.

• Replay attack. A replay attack consists in
recording legitimate requests to the XML
Web Service and then transmitting them
over and over again to the service. However,
this kind of attack can be detected easier by
analyzing and denying identical requests to
the XML Web Service inside a safety time
interval. Still, this attack, combined with a

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

62

distributed denial of service attack will be
very difficult to contain.

• Buffer overflow. A buffer overflow attack
consists of sending a request longer in size
than the service is expecting. This can cause
the service to crash, or, worse, allows the
attacker to execute code on the server
machine, with disastrous results. Due to the
fact that XML Web Services are ideal to
expose functionality offered by old legacy
systems that do not have any protection to
this kind of attack, there might be a big
problem with protecting such systems using
XML Web Services from it.

4 THE XML WEB SERVICES
MANAGEMENT
ARCHITECTURE (WSMA)

XML Web Services are very complex and they have
unlimited application areas. In this context, it is very
difficult to create a comprehensive management
architecture that should be easy to administer and
maintain throughout multiple domains, security
policies and administrative rights (Stencil Group,
2002).

A Web Services Management Architecture
(WSMA) should be able to handle administrative
tasks without any need for customizing it for
specific clients or web services:

Some of the requirements imposed for the
WSMA are:

• To control authorisation of incoming
requests;

• To maintain access rights for clients;
• To verify the identity of a client;
• To allow the deployment of a XML Web

Service without any downtime;
• To manage situations where a Web service

may become unavailable;
• To manage data integrity tasks such as

encrypting and signing outgoing messages;
• To maintain information about the

functionality of managed Web services;
• To be able to inherit permissions and

settings from other trusted environments and
have the possibility to trust other
environments.

The WSMA architecture will create a sort of a
“bubble” around the XML Web Services managed.
It will be able to isolate them from the outside world
and act as a kind of intermediary between the clients
and the managed services. This could be
accomplished by a mechanism similar to a firewall

that intercepts all incoming SOAP requests. When
receiving a message, the WSMA will perform the
following steps:

• Decrypt the message using a private key
(assuming the client had the message
encrypted);

• Verify the identity of the client;
• Identify the service for which the client

made the request. If the service resides
within the current context, verify if the
client has the rights to access that service (or
even the particular method within the
service).If the service is not found within the
current context the architecture should pass
the SOAP request to all the other trusted
contexts;

• Allow the service to run or wait for the other
contexts to return a response and grab the
result (the response SOAP message);

• Encrypt the response for the client if
necessary;

• Send the response back;
The above sequence of events is based on the

following assumptions:
• There is a possibility to administer the

individual local security context completely
independent from the others;

• The local context can inherit all or some
security settings from another context and
from only one other context;

• The local context can trust any number of
other contexts and can lend some or all its
settings to those contexts;

• There is a mechanism that allows a client to
address a request for a service to a parent
context that will redirect it to its destination.
Such a mechanism is possible to be
established by providing each context with
the possibility to publish the WSDL
contracts of the XML Web Services
managed on its parent.

The architecture described above is in fact a tree
of contexts that trust their parents and can be
managed locally by independent administrative
entities. Each context can manage any number of
XML Web Services. A context has total control over
all the services it manages. The administrative entity
of a context it is able to manage at least the
following aspects for the services it controls:

• Two configurable levels of authentication
for clients: at the XML Web Service’s level
and at the method level for each particular
XML Web Service;

• Whether or not the SOAP requests should
be accepted unencrypted for each particular
managed XML Web Service;

A REQUIREMENT FOR A XML WEB SERVICES SECURITY ARCHITECTURE

63

• Whether the SOAP responses should be sent
encrypted all the time, only on request, only
to specific clients or never

• the possibility to build contingency plans for
the situation when a XML Web Service
becomes unavailable.

These plans could include a standard SOAP
response that the client can handle within the
parameters expected for each request or the
possibility to specify alternative hosts for the same
XML Web Service or even alternative services
performing the same task. This could be taken
forward in the future by creating a possibility to
specify equivalence between different XML Web
Services that perform similar tasks. For now,
specifying alternative services could be
accomplished by building interfaces between them.
An interface language based on XML of course
could be beneficial at this point. The context should
allow adding, removing or modifying information
about the managed XML Web Services on-the-fly,
without the need to take the context down at any
time.

A possible solution for allowing contexts to trust
one-another thus allowing for a trust tree to be built
is based on providing each management context with
the possibility to build a proxy XML Web Service
for itself or for each of its managed XML Web
Services. These proxy XML Web Services would
have to be automatically published by the WSMA
on the parent context, without any outside
intervention. At the moment, the second alternative
seems more feasible. Each proxy service would just

be a skeleton of the original service and it would be
under the total control of the parent context.

Therefore, apart from the XML Web services
each context manages, it would also manage a
number of special Web Services that represent the
trusted (“child”) contexts’ XML Web services.
Because each of these particular Web Services are
part of the “parent” context, the administrative entity
has close control upon the activity of each “child”,
thus on the level of trust each “child” is allowed to
have. This in turn allows for a unified management
scheme both for the XML Web Services managed
and for the other web management contexts. Such
architecture is presented in Figure 1.

The architecture presents three management
contexts with their managed XML Web Services
represented by ovals. WSMA 2 and 3 trust WSMA
1. Each WSMA has an access control list (ACL)
with the permissions specified in parenthesis. Thus,
ACL 1 gives full access to Client 1 and ACL 2
allows full access to Client 2.

There are three scenarios (A, B, C) depicted in
the diagram. Each scenario is represented by a set of

different styled arrows and the associated actions are
numbered with the scenario letter followed by a
number representing the order in which the action
takes place.

• Scenario A: Client 1 makes a request to
a Web Service (A1) located in WSMA
2. However, the client addresses the
request through WSMA 1 to which it
has full access rights given by ACL 1. The
client is therefore authenticated via ACL1

Figure 1 - Web Services Management Architecture (WSMA)

WS WS WS

WS WS WS

WS

WS

WS

WS

Client 1

WSMA 1 + ACL1 (Client 1)

WSMA2 + ACL2 (Client 2, ACL1) WSMA 3 + ACL (ACL1)

Client 2

A1
A2 A3

B1

B2

B3

WS

A4 C1

C2

C3

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

64

and its request is allowed to go to the
destination Web Service. The service it
requested is only a proxy in WSMA 1, so
the proxy will call the corresponding Web
Service in WSMA 2 (A2). Since the request
comes from WSMA 1, that WSMA 2 trusts,
the request is let through and the business
process executes. The response is relayed
back to the proxy in WSMA 1 (A3). The
proxy responds to the client with the SOAP
message expected (A4).

• Scenario B: In this case, Client 1 has called
directly the service running in WSMA 2
(B1). However, Client 1 has no local rights
specified in ACL 2, therefore the request
cannot be allowed through. WSMA 2 will
interrogate its parent context (B2) to check
the access rights from ACL 1. ACL 1 gives
full access to Client 1, therefore Client 1 has
full access rights on WSMA 2 (since there is
no other rule that overrides the inherited
ACL1 rule). Client’s 1 request is then
cleared to run in WSMA 2. The Web
Service called will respond to Client 1 (B3).

• Scenario C: Client 2 makes a request to a
Web Service managed by WSMA 3 (C1).
Client 2 has no access rights specified in
ACL 3 so WSMA 3 will interrogate its
parent (WSMA 1). ACL 1 gives no rights to
Client 1 and since WSMA 1 has no other
parent to which to relay the authentication
request, it will answer to WSMA 3 that
Client 2 has not been authenticated (C2). At
this stage, WSMA 3 will refuse to execute
the request placed by Client 2.

Some of the advantages for the WSMA are
presented bellow:

• It allows for complete delimitation of
administrative rights over local XML Web
Services

• It allows the possibility for a client to have
access to an entire environment or business
process rather than having access to each
service that is part of that business process;

• It allows a chain of trust to be built, which
in turn allows a client to have access to
XML Web Services for which specific
security settings have not been specified;

• It is completely separated from the XML
Web Services implementation, thus being
able to handle any service;

• There is no single administrative entity that
manages security issues;

• A service can be easily plugged into a
management context without affecting its
functionality;

• It allows for alternating Web services to be
specified by a management context, thus
creating a way to handle situations where
the main service is unable to respond;

• A load balancing mechanism can be easily
implemented because the SOAP messages
are intercepted by the management
architecture and dispatched to the
destination XML Web Service;

However, there are a few open questions about
the WSMA. It is unclear how WSMA would behave
when the trust tree becomes big. The main problem
is that once the trust tree gets beyond a certain size,
publishing a new XML Web Service in the WSMA
would require a big effort of propagating the new
Web Service contract up the tree. However, it is not
clear now what the procedure for publishing a new
Web Service would be, so it is impossible to
establish what the feasible June 2001 size for a
WSMA is (Stencil Group, 2003).
There is still uncertain whether the XML Web

Services visibility system within management
contexts should be simple (visible externally/not
visible externally) or a more complex one, such
as the one used for setting member visibility in
object-oriented programming
(public/private/protected – with the same
meaning as in OOP).

Further testing will take place to establish various
mechanisms and standards required to implement
the architecture requirements.

5 CONCLUSION

A key benefit of the emerging XML Web Services
architecture is the ability to deliver integrated,
interoperable solutions. Ensuring the integrity,
confidentiality and security of Web services is
crucial both for the organisations and their
customers. By leveraging the natural extensibility
that is the core of the XML Web services model, the
specification build upon functional technologies
such as SOAP, WSDL, XML Digital Signatures,
XML Digital Signatures, XML Encryption and
SSL/TLA allows XML Web service providers and
users to develop solutions that meet the individual
security requirements of their applications. The
paper has presented a XML Web Services
management architecture that is able to handle
administrative tasks without any need for
customizing it for specific clients or Web Services.
The architecture presented has definitely a lot of
advantages such as allowing the complete
delimitation of administrative rights over local Web
services, the possibility of building a chain of trust,

A REQUIREMENT FOR A XML WEB SERVICES SECURITY ARCHITECTURE

65

the capability to handle any services and so on.
However, further work will be carried on in order to
prove the complete viability of the WSMA.

REFERENCES

Iona Technologies website, 2001, http://www.iona.com
Maler E. inverview, 2003 -

http://java.sun.com/features/2003/03/webservices-
qa.html

Stanton, D., 2003. “The Differentiation Of Web Services
Security” – Web Services Journal

Yang, A., 2002. “XML Web Services Security Issues” –
article,
http://www.xwss.org/articlesThread.jsp?forum=34&th
read=648

The Stencil Group, 2003. “Web Services Rules: Lessons
learned from early adopters”

The Stencil Group, 2002. “Understanding Web Services
management”

Robins B., 2003. “There is no Web Services yellow brick
road”
http://searchwebservices.techtarget.com/originalConte
nt/1,289142,sid26_gci883333,00.html

Thelin, J., 2002. “Web Services and remote references –
an intimidating task?”,
http://www.webservicesarchitect.com/content/articles/
thelin01.asp

Samtani, G, Sadhwani, D, 2003. Web Services and Peer to
Peer computing”,
http://www.webservicesarchitect.com/content/articles/
samtani05.asp

Ozu N., Duckett J., Watt A., Mohr S., Williams K.,
Gudmundson O. G., Marcus D., Kobak P., Lenz E.,
Birbeck M., Zaev Z, Livingstone S., Pinnock J., Visco
K., May 2001. “Professional XML (Programmer to
Programmer)”, Wrox Press, ISBN:1861005059

Jorgansen D, June 2001: “Developing Web Services with
XML”, Syngress, ISBN: 1-928994-81-4

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

66

