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Abstract: For an analyst who tries to extract class structures from given requirements specifications for an application 
area with which he/she is not familiar, it is usually easier first to extract analysis elements, such as attributes, 
methods, and relationships, then to compose classes from those elements, than to extract entire classes at the 
same time.  This paper demonstrates how to define the set of operations that can be used to derive lifetime-
based class structures, provided that methods, including their identification names and lifetimes, can be 
extracted from given requirements specifications.  The latter part of this paper describes an experiment that 
validates the defined operations by deriving typical design patterns, and also describes the differences 
between my approach and Pree's meta-pattern approach.  Finally, it discusses the important role of lifetime 
analysis and an effective style of requirements specifications for object-oriented system development.

1 INTRODUCTION 

In the domain of developing enterprise information 
systems, since the quality of the systems depends on 
the quality of the underlying database, many efforts 
have been made to develop effective criteria for 
decision-making which can assist in extracting 
proper instances of ER (Entity Relationship) model.  
For example, DATARUN (D. Pascot,1996),a data-
centered modeling methodology, uses PDG (Primary 
Data Generator), which is "a trigger to determine 
actual values of data items," as the criterion for 
decision-making in order to extract entity types from 
the data items gathered from business list forms and 
slips.  Based on the criterion, primitive data items 
with the same PDG, which cannot be produced from 
operations on other data items, are classified in the 
same entity type of data set. At that time, attribute 
names are used to extract actual entity type names.  

The author has devised the decision criterion for 
ER modeling, which is based on the generalized 
PDG concept and incorporates the multiplicity of 
produced instances (i.e. the number of 
simultaneously determined values) and the number 
of situations in which instances are determined.  The 
author also executed experiments on students in his 
conceptual data modeling class, for comparison and 
validation of the decision-making criteria.  The 
result of experiments showed statistically significant 

differences between two groups of students.  A 
larger percentage of students who used the decision-
making criteria reached the proper ER model than 
those who did not.  However, using these criteria 
alone cannot assist well in extracting ER models that 
include recursion or method-centered class 
structures.  

To address these problems, this paper introduces 
the concept of software field and lifetime into the 
decision-making criteria. It also shows that method-
centered class or recursive class structures can be 
extracted through the use of decision-making criteria 
formalized as operations, by demonstrating the 
results of extraction experiments on "the design 
pattern of structures."   

This paper consists of five major sections.  
Section 2 describes the concept of software filed 
which provides the underlying bases of decision-
making criteria developed from the fundamental 
features of class analysis.  Section 3 discusses the 
concept and rules of construction operations to 
provide the mathematical base for the decision-
making criteria used in class analysis.  Section 4 
validates the construction operations by showing 
that the operations between the analysis elements 
extracted from requirement specifications and the 
construction operations can produce the 
representative "design patterns for structures" of 
GoF (Gamma,Helm,Johnson&Vissides,1995). 
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Section 5 compares the methodology with Pree's 
meta-pattern approach and the final section 
describes the conclusion and the future direction of 
the methodology. 

2 MODELING CLASS ANALYSIS 
PROCESS 

2.1 Features of Analysis Process  

With the bottom-up approach of class analysis, the 
analyst usually uses the data items on list forms, 
CRC (Class Responsibility Collaborations) card 
items, or use-case scenarios to pick up the 
candidates for basic data names (attribute names), 
function names (method interface names including 
parameter parts, hereafter simply referred to as 
"method"), then properly groups them and gives 
those groups appropriate names.  Finding candidates 
and grouping them can be characterized as follows. 
(1) The only trigger to find analysis elements is the 

relationship between meanings of responsibility 
names, method names and class names.  

(2) The names of attributes, methods and classes are 
nothing more than candidates and are not yet 
definite.  They show ambiguous existence, and 
several objects with an identical concept might be 
referred to as different names. 

(3) Since an object necessarily has its lifetime (a 
period from its creation to destruction), the 
analyst implicitly uses it to recognize an object.  
Among the features mentioned above, (3) plays an 

especially important role in extracting class 
structures from found attributes and methods.  As 
mentioned in the first part of this paper, identical 
"triggers," which are recognized from the temporal 
view in the ER model comparison experiment, can 
be good decision-making criteria for extracting 
entities, and in the same sense, identical lifetimes 
can be effective decision-making criteria for 
extracting class structures from found attributes and 
methods.  However, no analysis method that 
positively makes use of lifetime has not been 
proposed so far. 

2.2 Software Field Meta-model 

This paper introduces the concept of "software field" 
to naturally describes the above features and to 
formally handle the decision-making criteria for 
class extraction. The software field represents the 
concept introduced to model the process in which 
the analyst extracts class structures from the 
attributes and methods found in the given 

requirements specifications according to the bottom-
up approach.  (Since found attributes and methods 
are basic elements to construct classes, they are 
referred to as "constructors" hereafter.) Figure 1 
illustrates these software fields as a meta-model 
diagram. Underlined items can be used as the 
primary key. The meanings of the names of meta-
classes and meta-attributes shown in Figure 1 are 
described in detail in the following sections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3 Coordinate System as Meta-
attribute  

The software field is a meta-object introduced to 
depict the behaviors in which the class structures are 
created based on the constructors.  Since the 
software filed can be more easily understood as an 
image of space in which constructors are disposed, I 
consider it a space of the following coordinate 
system with meta-attributes.  
(1) Identifier Axis χ 

During analysis, the most basic task is to assign 
specific identification names to the constructors 
found through domain analysis or defined in the 
requirements specifications.  The identification axis 
χ is used to dispose the terms found in each domain 
according to their "names as nominal 
measurements" on a one directional axis.  
(2) Event Time Axis τ 

This axis represents the generalized concept of the 
timing along which the attribute values discovered 
by the analyst are assigned or the "triggered" time at 
which a specific method is requested.  An event that 
works as a trigger has its own event name such as 
"Order Placed," "Lack of Inventory" and so forth.  
The event names and the timings at which 
constructors are created or destroyed are combined 
as couples and disposed along the event time axis τ 
according to their topologically sorted time values.  
Therefore, what are disposed on the τ axis are event 
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Figure 1: The software field meta-model  
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names.  The time span that begins when a 
constructor is created and terminates when the 
constructor is destroyed is referred to as a lifetime 
hereafter.  That is, a lifetime represents the number 
of events it contains. 
(3) Inheritance Level Axis ν 

This coordinate axis corresponds to the 
inheritance hierarchy of classes.  The constructors 
with the same lifetime, discovered through analysis, 
are placed on the same inheritance level.  The top 
level of the inheritance hierarchy has an inheritance 
level of 0, and a lower level has a higher value 
which is increased by 1 whenever the inheritance 
level descend by one step.   

2.4 Constructor as Distribution 
Function 

This paper assumes that the constructors extracted as 
ambiguous objects through analysis can be defined 
by a probabilistic distribution function in the three 
dimensional χ-τ-ρ space.  Based on the above 
discussion, the following is assumed;  
(1) An identification name is unique.  That is, 

objects with the same meanings are treated by an 
identical identification name.  

(2) A constructor has one of two states at any time 
during its lifetime, one of which indicates that it 
exists and the other indicates that it does not exist.  
It has no undetermined state. 
Based on these assumptions, a constructor has an 

identification name χ, and is defined by a 
distribution function ϕ(χ, τ; τ1, τ2), which has a 
lifetime of which event interval is [τ1, τ2].  Here, τ1 
and τ2 represents the points of time at which the 
event is created and destroyed respectively, and the 
axis ρ represents the probability of existence (0 or 1) 
of the constructor.   

The basic concept of my research, in which not 
only identification names of constructors but also 
their lifetimes are retrieved from the given 
requirements specifications, is realized in the 
formula that expresses a constructor as a distribution 
function of axis τ.  The lifetime incorporated in the 
distribution function plays an important role in 
defining operations that comprise the class structure. 

2.5 Meta-characteristics of 
Distribution Function 

The distribution expression represents the existence 
state of a constructor, but it does not represents an 
instance of a constructor.  That is, it does not 
represent an instance of an attribute or the existence 
state of the execution process of an implemented 

method.  An instance generated from a constructor 
is placed on a different χ-τ-ρ space and has a 
different lifetime from those of the original 
constructor, although it shares the axes χ and τ with 
the distribution function of the constructor.  Based 
on the distribution of those instances of a 
constructor, the following meta-characteristics are 
defined for each constructor. 
(a) Multiplicity µ 

The multiplicity µ indicates the number of 
simultaneous instances existing at the same time, 
when instances (ie. implemented values) of a 
constructor is generated at an event time.  That is, if 
the constructor is an attribute, the multiplicity 
indicates the "number of attribute values."  If the 
constructor is a method, the multiplicity indicates 
the "number of methods implemented (or required) 
with the same interface name."  For example, if 
multiple instances are implemented with the same 
interface name at an event time, the multiplicity is 
more than one.  
(b) Independent Key κ 

If the lifetime of the constructor B is determined 
depending on that of the constructor A, the 
constructor B is considered to be dependent on the 
constructor A.  Set of constructors that do not 
depend on any other constructors have a meta-
attribute value of "independent key."  When a 
constructor is an attribute, the independent key 
meta-characteristic is nothing more than 
paraphrasing the concept of the primary key of data 
model.  When a constructor is a method, a method 
that is modified and defined corresponding to 
changes is dependent on the existence of the caller-
side method.  When such a relationship takes place 
between methods, the caller-side method has a meta-
attribute value of "independent key." 

2.6 Constraints of Constructor 

A constructor has the following two constraints that 
stem from the nature of the object-oriented approach. 
(1) Exclusive Constraint π 

This constraint defines the number of constructors 
that can be placed on the location with the same 
identification coordinate value when a set of 
constructors is grouped to form a class.  The actual 
exclusive constraints vary depending on whether the 
constructors are attributes or methods.  In practice, if 
the constructor is an attribute, other constructors 
with the same identification name cannot have any 
values other than 0 or 1 in the software field.  This is 
a direct result of the fact that no more than one 
attribute with the same identification name cannot 
reside in the inheritance hierarchy based on the 
constraint of the Private attribute.  On the other 

FORMALIZATION OF CLASS STRUCTURE EXTRACTION THROUGH LIFETIME ANALYSIS

637



 

hand, if the constructor is a method, multiple method 
interface names with the same identification name 
can be placed on the location with the same 
identifier coordinate value only if the inheritance 
levels are different.  This corresponds to redefinition 
of methods.  
(2) Multiplicity Constraint υ 

This constraint indicates that a constructor that 
have multiple instances, in other words, an attribute 
that has more than one values or an method that has 
multiple implementations at the same time, cannot 
be used to compose a class with other constructors 
that has only one implementation value.  This 
constraint is the result of the fact that every 
implementation value of constraints should be 
uniquely defined when generating instanced from 
classes.   

3 EXTRACTING AND 
COMPOSING A CLASS  

3.1 Extraction Operation of Class  

The following operations are defined based on the 
fact that a constructor is a distribution function. 
(1) Aggregation Operation of Distribution Function  

Formula 1 defines Fab as the strength of the force 
between two distribution functions ϕa and ϕb that 
correspond respectively to two constructors placed 
in the software field.  Here, as shown in Figure 2,  ϕa 
represents an abbreviated form of the function ϕ 
(χ,τ; τ1, τ2) that has an value 1 during the event 
interval (= lifetime τa) that begins at the event 
creation time value τ1 and terminates at the event 
destruction time τ2.  ϕb is also an abbreviation form 
of the function ϕ (χ,τ; τ3, τ4) that has an value 1 
during the lifetime τb.  Then, as shown in Figure 2, 
Fab represents the ratio of the area where the 
distribution functions ϕa and ϕb overlaps, with the 
value between 0 and 1.  Here, the absolute values of 
the lifetime τa and τb represent the numbers of events 
during the lifetimes.  Hereafter, subscripts to τ 
written in alphabetic character indicate the 
identification sign of lifetime.  

Formula 1 shows that the operation to aggregate 
constructors to compose a class can be defined as an 
operation to select constructors of which Fab is 1, in 
other word their lifetimes are completely identical, 
from the set of constructors. 

 
Fab ::=  fab(τa; τb)  ≡  2 * ϕa(τa) *  ϕb(τb)  / {  |τa|+ |τb|  }  

                   provided that a ≠ b           (Formula 1) 
 
 

 
 
 
 
 
 

 
(2) Algebraic Sum Operation of Distribution 
Function  

Formula 2 uses the aggregation operation shown 
in Formula 1 to define the operation to produce an 
algebraic sum of two constructor distribution 
functions.  For example in Figure 2, Sab which has 
the lifetime of [min(τ1, τ3),max(τ2, τ4)] is produced 
from ϕa(τa) and ϕb (τb).  This operation plays an 
essential role in constructing the inheritance 
structure of the class later.  

 
Sab ::= ϕa(τa) + ϕb(τb) – fab(τa; τb)      (Formula 2) 

3.2 Operation for Class Construction 

This section defines operations used to compose the 
extracted classes into a structure.  Notations used in 
expressions are defined as follows. 
<For a set of constructors>: 
(a) { τaa, τbb } : Is a set of constructors, of which 

elements “a” and “b” have the 
lifetime of τa and τb respectively.  
Here, the identification symbol τa is 
the lifetime of the constructor “a”. 

(b) τa{ a, b } : Is a set of constructors, of which 
elements “a” and “b” have the same 
lifetime of τa.  It is identical to {τaa, 
τab}. 

(c) { a* }  :  Is a constructor “a” of which 
multiplicity is more than 1.  

(d) τbb ∈ τaa : The constructor “a” contains the 
constructor “b” as its element. 

(e) { a | b }: Is a set of constructors of which 
elements are separated to the sets 
“a” and “b” for attributes and 
methods respectively.  

<For class structures>: 
(f)  ⇒   : Is the operator that converts a constructors 

set to a class structure. 
(g) ( τa ∨ τb ) : Is the algebraic sum of two lifetimes 

τa and τb. 
(h) τa[a]  : Is a class of constructors “a” of which 

lifetime identification symbol is τa.  
The lifetime of this class is 
identical to that of constructors.  

 (i) [b] ∆ [a] : Indicates that the class [a] of the 
constructors “a” is an super-class of 
the class [b] of the constructors “b”. 

(j) [b] ◊ [a] : Indicates that the class [a] of the 

ϕa ϕb 

   Figure 2: Definition of the algebraic product operation 

τ2 τ3 τ4 τ1 

τb = [τ3, τ4] 
τ a= [τ1, τ2] 

ρ 
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constructors “a” has the composition 
relationship with the class [b] of the 
constructors “b”.  [a] is referred to as 
a basis term of composition and [b] 
is referred to as a non-basis term.  

(k) [b]*  : Is a class that generates multiple instances.  
(l) [a] + [b] : Is a class of which elements are the 

constructors “a” and “b”. The 
classes [a] and [b] is mutually 
independent. 

3.2.1 Fundamental Composition Rules 

The following sub-sections define the rules to 
convert the class structures based on the meta-
characteristics of constructors and the constraints on 
the relationships between constructors.  
(1) Rules for Composing A Class from A Set of 
Constructors 

i) Composing A Class from Constructors of 
Higher Than Multiplicity 1 

When a class is composed from the constructors 
of higher than multiplicity 1, based on the 
multiplicity constraint (Formula 3), the class is 
converted to the one that have only the constructors 
of multiplicity 1 and produce multiple instances 
simultaneously.  Such a class is identified with an 
asterisk (*) at the upper right corner of the [] 
symbol.  

{ τaa*  } ⇒ τa[a]*                             (Formula 3) 
ii) Composing A Class Based on The 

Characteristics of Elements in A Set 
Even if more than one constructors with the same 

identification name exists, only one class is 
composed as shown in Formula 4.  

{ τaa, τaa } = τaa 
⇒ ( τa[a]  + τa[a] ) = τa[a]                   (Formula 4) 

(2) Generalization Operation Based on Exclusive 
Constraint 

When more than one constructors with the same 
name are found in the constructors set that are to be 
aggregated to a class, the exclusive constraint π does 
not allow them to be placed on the same hierarchy 
level.  In this case, a new distribution function is 
created by producing the algebraic sum of the two 
distribution functions that correspond to the 
constructors with the same name, and the newly 
produced constructor is placed as an element on the 
super-class.  Since the resultant class exists as long 
as one of the original classes exists, the lifetime of 
the super-class generated through the generalization 
operation is identical to the logical summation (or 
logical summation of the corresponding distribution 
functions) of the lifetimes of the lower original 
classes.  As the result, the lifetime of generalized 

class is longer than each of the lifetimes of pre-
generalized classes. 

The generalized operation can be defined in two 
ways, as shown in Formula 5 and 6, according to the 
fundamental features of the object-oriented approach.  
Underlined symbols in the formulas indicate the 
target constructors for generalization operation. 

i) Generalization 
    { τa{ a,b }, τc{ a,c } }={ τaa, τab, τca, τgc } 
 ⇒ ( ta[b] + tc[c ] ) ∆ (  ta ∨ tc  )[a]   
                                                            (Formula 5) 
ii) Generalization by Abstract Method 

{ τa{a,b}, τc{a,c} }={τaa, τaa, τab, τca, τca, τcc } 
⇒ ( τ a[ a,b ] + τc[ a,c ] ) ∆ ( τa ∨ τc  )[a]  

 (Formula 6) 
As the nature of generalization operation, 

generating a super-class propagates to further higher 
classes up to the highest class, and finally extends 
the lifetime of the highest class that represents the 
whole class structure. 
(3) Aggregation Operation Based on Multiplicity 
Operation 

This operation is used to compose a class 
structure that includes aggregation relationship 
based on the multiplicity constraint u when there are 
several sets of constructors that have the same 
lifetime but different multiplicities. The operation is 
defined as Formula 7. 

υ: τa { a, b* }= { τa{a} , τa{b*}  } 
⇒ τa[b]* ◊  τa[a]                                 (Formula 7) 
 
From the viewpoint of lifetime, since the 

aggregation operation compulsively isolates a 
specific class according to the multiplicity constraint 
υ, it can be regarded as an operation that extends the 
"total value of the lifetimes" of the class structure.  

3.2.2 Other Composition Classes 

The following sub-sections describe the other 
composition classes. 
(1) If there is an inclusion relationship between 
lifetimes, they can be simplified to the inclusive one.  

When τc  ⊂  τa 
∆( τa  ∨  τc  )[a] = ∆τa [a]               (Formula 8) 

(2) The exclusive constraint is applied prior to the 
multiplicity constraint.   
π:{ τb{ a*,b }, τc{ a*,c } } 

⇒ ( τb[a,b] + τc[a,c] ) ∆( τb  ∨  τc  )[a]*        (Formula 9) 
(3) If each of the elements of a constructors set has 
different lifetime, the basis element of the 
aggregation relationship is considered as the target 
of the operation.   

Since a non-basis term depends on basis terms, 
only the basis terms are considered to be the target 
of generalization operation.   
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{ τa[a] , τc[c]  ◊ τb[a] }     // intermediate state 
= τa[a] + τc[c] ◊ τb[a] ) ∆( τa  ∨  τb ) [a]  (Formula 10) 
(4) If each of the elements of a constructors set has 
different lifetime and has the inheritance 
relationship, the constructors on the upper level (or, 
the level with longer lifetime) are considered to be 
the target of generalization operation. Generalization 
is introduced to extend the lifetime. 

{ τa[a],  τc[c] ∆ τb[a] }    // intermediate state 
            = τa[a] + τc[c] ∆ τb[a] ) ∆( τa  ∨  τb ) [a]   

  (Formula 11) 
(5) If the constructors that provide the basis of 
aggregation relationship have an identical lifetime, 
they are aggregated based on the same reason for 
preference of basis term as (3).  

{ τbb  ∈ τa{ a, m1 }, τcc  ∈ τa{ a, m2 } } 
⇒{  τbb  ∈ { τa{ a, m1 }, τa{ a, m2 } }, 

τcc  ∈ { τa{ a, m1 }, τa{ a, m2 } }  }  
                                                      (Formula 12) 

3.2.3 Conversion Rule for Class Structure  

Specific types of class structures can be simplified 
by the following conversion rules.  
(1) Simplification of Self-evident Classes 

τa[a]  ∆ τa[a] = τa[a]                    (Formula 13) 
(2) Replacement Rule of Lower Classes 

If a lower class in the inheritance hierarchy has 
the elements that are generated as the result of 
aggregation operation of other classes, the 
aggregation relationship is transferred to its upper 
class, as shown in Formula 14.  The aggregation 
relationship between classes that have no inheritance 
relationship among them can be derived from the 
operations that maximize the total value of lifetimes.  

( τb [b] ◊ τc[a ] ) + τc[a] ∆ τa[a] 
=( τb[b] ◊ τc[a] ) + τc[a] ∆ τa[a]        (Formula 14) 

4 EXPERIMENT FOR 
VARIDATING COMPOSITION 
OPERATORS 

To validate the above described composition 
operations, I conducted experiments on description 
and extraction of design patterns for the structures 
that were generated by applying the composition 
operations on the identification names and lifetimes 
of various constructors, provided that they were 
extracted from requirements specifications.   

A design pattern does not provide classes or 
constructors' lifetimes that are essential for 
composition operations.  Therefore, several 
assumptions should be set for the lifetimes of 

constructors from the viewpoint of the objectives 
and motivation of the target design patterns.  To 
avoid the probability to extract a class structure that 
is intentionally designed to match a prepared design 
pattern, I clearly specified the identification names 
and lifetimes of the initial constructors as well as the 
requirements to them to facilitate validation of the 
extracted set of initial constructors. 

4.1 Composing Composite Patterns 

(1) Anticipated Set of Initial Constructors 
An instance structure (sample) is used as the 

trigger for the set of initial constructors of composite 
patterns.  As shown in Figure 3, the instance 
structure of composite patterns includes other 
instances recursively.  The identifiers found based on 
an instance structure are written in the rectangular 
area of the corresponding instance, and the lifetime 
is written at the outside of the upper left corner of 
the instance.  The method Draw() is represented by 
“a”, and Add(), Remove() and GetChild() are 
represented by “m1…mn”.  The initial constructors 
set is represented by Formula 15a, provided that the 
lifetimes of the instances aline, aRectangle,aPicture 
are  τa, τb, τc. 

(2) Requirements on Constructors Set 
The class structure should be designed to match 

the conditions of the instance structure. 
(3) Sample of Composition Operations 

Applying the class composition operation to 
Formula 15a generates Formula 15b.   
Ψ0 = { τaa, τba, Ψ0  ∈ τc{a, m1.. mn } }  (Formula 15a) 

/* Generate an inheritance structure by factoring 
out the term of the common identifier “a” */ 
⇒ ( τa[a], τb[a] ,Ψ0 ◊ τc[a, m1.. mn] )  

∆( τa ∨  τb ∨  τc ) [a] 
/* Expand the super-class.  Ψ0 indicates the 

structure itself of which highest super-class is   ∆(τa 

∨ τb ∨ τc) [a] */ 

aRectangle aLine

aPicture

aPicture

aLine aRectangle 

Draw() Draw() 

Draw() 

aComponent2 

aComponent3 

aComponent4 aComponent5  

Draw() 

Draw() 
Add() 
Remove() 
GetChild() 

Figure 3: The initial instance structure for the Composite 
pattern 

aComponent1 
τb  

τa 

τa   
τc  

τa  τb

Draw() 
Add() 
Remove() 
GetChild()
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=τa[a] ∆ ( τa ∨τb ∨ τc )[a] + τb[a] ∆ ( τa ∨ τb ∨ τ c ) [a]  
+ [Ψ0]  ◊  τc[a, m1.. mn] ∆ (τa ∨ τb ∨ τc ) [a]  
                                                         (Formula 15b) 

(4) Extracted Class Structure 
Formula 15b corresponds to the Composite 

pattern shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 Composing Decorator Patterns 

(1) Assumed Initial Composition Set 
The initial constructors set of the Decorator 

pattern is also constructed using the instance 
structure (= sample) shown in Figure 5 in the same 
way as the Composite pattern.  The method Draw() 
is represented by “a”, and DrawScrollTo() and 
DrawBorder() are represented by “m1” and “m2” 
respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
The initial constructors set is represented by 

Formula 16a, since the lifetime τb of Draw() 
possessed by the instance aTextView is clearly 
different from the lifetime τa of aScrollDecorator or 
aBorderDecorator.  
(2) Requirements on Constructors Set 

The class structure is required to meet the 
conditions of the instance structure. 
(3) Sample of Composition Operations 

Formula 16b can be finally derived by simplifying 
the constructors set of 16a and applying the class 
composition operator.  
Ψ0  = {τba, τa{a, m1} ∈  τa {a, m2 },τba ∈ τa{a, m1} } 

(Formula 16a)  
/* Factoring out terms that have τ=τa and χ=a 
commonly */ 

= { τba, τa{a, m1}  ∈ { τa{a, m1}, τa{a, m2} }, 
τba  ∈{ τa{ a, m1 }, τa{ a, m2 }} }  

/* Generalize the common term {τa{a, m1}, τa{a, m2} 
}, and replace the basis terms with the super-class 
τa[a] generated in Formula 14. */ 
⇒{ τb[a],  (τa[a,m1] +  τa[a, m2] ) ∆ τa[a], 

τa[a, m1] ◊ τa[a],    τb[a] ◊ τa[a] }  
= τb[a] ∆ (τa ∨ τb) [a]   

+ ( (τa[a, m1] + τa[a, m2] ) ∆ τa[a] ) ∆ ( τa  ∨  τb ) [a] 
       +  ( τa[a, m1] + τb[a] ) ◊ τa[a] 

/* The upper-class τa[a] that is generated by 
generalizing the non-aggregate term τa[a,m1] is 
replaced. */ 
= τb[a] ∆ (τa ∨ τb ) [a]  

+ ( (τa[a, m1] + τa[a, m2] ) ∆τa[a] )∆( τa ∨ τb ) [a] 
+ ( τa[a]+ τb [a] ) ◊ τa[a] 

= τb[a] ∆( τa ∨ τb ) [a] + 
(  ( τa[a, m1] + τa[a, m2] ) ∆ τa[a] )∆ ( τa ∨ τb ) [a] 

+ ( τa[a] + τb [a] ) ∆ ( τa ∨ τb ) [a] ◊ τa[a] 
                                                         (Formula 16b) 
 

(4) Extracted Class Structure 
Formula 16b corresponds with the class structure 

of the Decorator pattern shown in Figure 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 SIMILAR WORKS 

One of the similar works is the research on meta-
patterns proposed by Pree( W.Pree,1994,1996). The 
concept of meta-pattern based on the composing 
relationship has the following similar points and 
differences from my approach.  

<Differences>: 
i) The concept of meta-pattern is essentially based 

on the design pattern and its extension.  It's focus is 

( τa ∨ τb ) 
 

Decorator 
Draw() 

VisualComponent 
Draw()

TextViews 
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Decorator

Figure 6: The class structure extracted by applying the 
configuration operation that corresponds to the Decorator 

pattern 
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Figure 4: The class structure extracted by applying the 
configuration operation that corresponds to the Composite 

pattern 
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Figure 5: The initial instance structure for the Decorator 
pattern 

τb 

τa 

τa 

FORMALIZATION OF CLASS STRUCTURE EXTRACTION THROUGH LIFETIME ANALYSIS

641



 

mainly on developing patterns for phenomena, but is 
not on investigating the composition process of class 
structures in depth to the basic characteristics of the 
object-oriented approach such as lifetime.  In 
contrast, my approach focuses on deriving the 
composition process of class structures from the 
basic characteristics of the object-oriented approach.  

ii) The meta-pattern approach sets the 
prerequisites that the Template class and the Hook 
class are derived in advance.  It does not mention 
anything about the difficult method to derive classes.  

iii) The meta-pattern approach tries to compose 
class structures only from the relationship of 
meanings of classes.  The validity of inheritance 
relationship, such as ascendant or descendant, is 
judged based on ambiguous criteria, for example, 
"The Template method uses the Hook method, it is 
more practical than the Hook method." 

iv) The meta-pattern approach does not provide 
the idea to use instance structures of practical issues 
as the trigger for analysis.  

<Similarity>: 
Both the meta-pattern approach and my approach 

specify the structural attributes as the met-attributes 
to provide the class composition process with 
theoretical bases.  However, whereas the former 
provides the class with the meta-attributes, the latter 
provides the attributes and methods with the meta-
attributes. 

6 CONCLUSION AND FUTURE 
DIRECTION 

This paper discussed the extraction method of class 
structures that requires deep experience in the 
object-oriented analysis.  Since the constructors to 
be analyzed can be easily extracted from list forms, 
slips, and use-case scenarios, I tried to translate the 
"inspiration" dependent extraction of class structures 
into the application of composition sequence on the 
software field.  Furthermore, to verify the validity 
and possibility of composition operations, I 
conducted a desk experiment that applied a sequence 
of composition operations to the constructors set of 
design patterns of GoF structure, and observed the 
number of class structures that were extracted for the 
design patterns.  I showed, as the result, that 
extracting proper class structures can be translated 
into extracting proper identification names and 
lifetimes.  

Although the constructors set used in the design 
patterns extraction experiment is different from 
those actually encountered in practical system 
analysis both in size and complexity, they have 
common features in their structures.  (Not only 

design patterns but also analysis patterns are 
valuable in this sense.)  Since the logical base of the 
composition operations is found on the essential 
features of the object-oriented concept, I plan to 
conduct several larger object-oriented analysis 
experiments and to gather evidences for the 
usefulness of composition operations.  
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