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Abstract: Due to the necessity of new ways of energy producing, solar collector systems have been widely used 
around the world. There are mathematical models that calculate the efficiency of those systems; however 
these models involve several parameters that may lead to nonlinear equations of the process. Artificial 
Neural Networks have been proposed in this work as an alternative of those models. However, a better 
modeling of the process by means of ANN depends on a representative training set; thus, in order to better 
define the training set, the clustering technique called k-means has been used in this work. 

1 INTRODUCTION 

In a reality where natural resources are becoming 
scarce, associated with the population increasing, the 
traditional ways of energy producing (hydroelectric 
power plants) may not be sufficient. Therefore some 
alternative ways of energy producing are proposed; 
and among them, there are solar energy systems. 
Solar energy systems, specifically water heaters, 
have considerable importance in the substitution of 
traditional electrical systems. The most widely used 
solar energy systems are known as thermosiphon 
systems; which are cost competitive with those 
conventional energy systems available everywhere. 
In Figure 1, a schematic diagram of thermosiphon 
system is represented; its main component is the 
collector plate. Numerous researchers (Morrison & 
Ranatunga 1980; Huang 1984; Kudish, Santaura & 
Beaufort 1985) investigate the performance those 
systems, both experimentally and analytically. The 
efficiency of thermosiphon systems can be obtained 
by means of the equation 
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where η is efficiency, m, the flow rate, cp, the heat 
capacity of water, Tout, the output water temperature, 
Tin, the input water temperature, G, solar irradiance 
and Aextern is the area of the collector. 

 
Figure 1: Schematic diagram of thermosiphon system. 

The solar collector efficiency depends on some 
structural aspects like its position, the material of its 
components and thermal insulation. Efficiency is 
obtained by means of experiments that use some 
process parameters like output water temperature, 
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ambient temperature, input water temperature, solar 
irradiance and flow rate. Thus, for new operational 
conditions, new experiments must be made in order 
to recalculate the efficiency. There are mathematical 
models that avoid those experiments (Kudish, 
Santaura & Beaufort 1985), but they have the 
discouraging aspect of involving several parameters 
that may lead to non-linearity. 
Linear regression has been proposed as alternative to 
those complex mathematical models. However that 
technique may introduce estimative errors in actual 
and future values due to its limitation in better 
working with linearly correlated values. 
In the last years, Artificial Neural Networks (ANN) 
have been proposed as powerful computational tools 
due to their facility in solving non-linear problems, 
generalizing what they have learnt, besides the low 
time of processing that can be reached when the nets 
are in operation. Some researches discuss the use of 
ANN to represent termosiphon systems (Kalogirou 
2000; Kalogirou, Panteliou & Dentsoras 1999; 
Zárate et al. 2003a; Zárate et al. 2003b). In Zárate et 
al. 2003a, a net trained with 603 data has been 
presented, however the time spent to train this net is 
not satisfactory. In Zárate et al. 2003b, statistical 
analysis is adopted with the objective of building a 
reduced but better defined training set. In Moreira 
and Roisenberg 2003, an alternative solution, based 
in genetic algorithm, is presented as an alternative of 
reducing the training set; but the needed time to 
obtain the optimal training set makes this technique 
not satisfactory. 
The usage of ANN to model solar collectors has 
several advantages over other techniques, like not 
needing linearly correlated data and their capacity of 
generalization in order to deal of new data values. 
ANN are presented here, besides the clustering 
technique known as k-means, used to reduce and 
better define the training set. 
This paper is organized in six sections. In the second 
one, solar collectors are physically described. In the 
third section, the process of collecting data from the 
solar collector is presented. In the fourth one, 
clustering technique is presented. In the fifth section, 
modeling by means of ANN is discussed. And 
finally, conclusions are presented. 

2 PHYSICAL DESCRIPTION OF 
THE SOLAR COLLECTOR 

The working principles of thermosiphon systems are 
based on thermodynamic laws (Duffie & Beckman 
1999). In those systems water circulates through the 
solar collector due to the natural density difference 
between cooler water in the storage tank and warmer 

water in the collector. Although they demand larger 
cares in their installation, thermosiphon systems are 
of extreme reliability and lower maintenance. Their 
application is restricted to residential installations 
and to small commercial and industrial installations. 
Thermosiphon system structure is presented in 
Figure 1. 
Solar irradiance reaches the collectors, which heat 
up water inside them, decreasing the density of 
heated up water. Thus cooler and denser water 
forces warm water to the storage tank. Since this is a 
constant process, the water flow happens between 
the storage tank and the collector, resulting in a 
natural circulation called “thermosiphon effect”. 

3 COLLECTING DATA FROM 
THE SOLAR COLLECTOR 

Collected data refer to a typical solar collector and 
have been obtained by means of experiments in 
different ambient situations, under ASHRAE 
standards (ASHRAE 93-86 RA 91). During three 
days of a characteristic period of the year for those 
experiments, measurements have been realized 
several times per day. Figure 2 shows a graphic 
where the relation between output temperature of 
water (Tout) and the hours during the day (hours) can 
be observed. Notice that the collected data are 
representative for different operating points and 
output temperatures. 

 
Figure 2: Collected output water temperatures. 

In order to verify the non-linearity of the collected 
data, some graphics have been built, like the one 
presented in Figure 3, however linearity in those 
data has been noticed. Despite that linearity, ANN 
are presented here as an alternative to model solar 
collectors with more precision than other techniques 
like linear regression. 
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Figure 3: Solar irradiance X output water temperature. 

The total number of collected data equal 631; those 
data include values of solar irradiance (G), ambient 
(Tamb), input (Tin) and output (Tout) temperatures. 
Table I.1 (in the append) shows a sample composed 
by 15 of those collected data. A subset composed by 
30 data has been extracted from the original set in 
order to be used as validation set which is used later. 
Thus the new training set contains 601 data. 
A reduced and better-defined training set must 
continue representing the problem, maintaining the 
capacity of generalization of the net, tolerable errors 
and permitting the reduction of time spent in the 
training process. In Zárate et al. 2003b, statistical 
analysis has been used to reduce the training set, 
resulting in 84 data. The clustering technique called 
k-means has been used in this work to reduce the 
training set, maintaining its capacity of represent the 
problem. 

4 CLUSTERING WITH K-MEANS 

The k-means algorithm is one of the several 
techniques of clustering. It divides n data into k 
clusters, where k is a constant not defined by the 
algorithm. The result of this algorithm is a frame 
where all the objects present in a cluster have 
considerable similarity among them and a great 
dissimilarity to objects present in other clusters. 
Each cluster has a center point, which has the 
principal characteristics of the group. In the center 
point, the sum of distances of all objects in that 
cluster is minimized. 

4.1 Selecting data for the training 

In order to build a representative training set, the k-
means algorithm, described above, has been used in 
the set composed by 601 data. The technique has 
been applied identifying clusters in which data have 

similar characteristics. As the number k of clusters 
must be explicitly given to the algorithm, k value has 
been varied from 10 to 100. For each test with a 
different number of clusters, the distance between 
each point in data set to each cluster center point has 
been calculated. Figure 4 shows average distances 
between all points of each cluster and the center 
points of neighbor clusters, for all the tested 
quantities of clusters. 
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Figure 4: Average distances between the points of 

each cluster and the neighbor clusters. 

Higher average distances between the points of each 
cluster and the center points of neighbor clusters 
characterize better-defined clusters. Considering 
this, the set divided in 20 clusters has been chosen. 
After determining the optimal number k of clusters, 
a technique to select data present in the clusters has 
been applied. Although most representative 
characteristics are present in the center point of each 
cluster, this center point may not correspond to a 
real point in the data set. Thus, for each cluster, the 
point closest to the center point has been chosen 
resulting in 20 sets. Figure 5 shows, graphically, the 
data set divided in 20 clusters. 

Figure 5: Clusters centers points (●) and data values (+). 
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5 NEURAL REPRESENTATION 
OF SOLAR COLLECTOR 

Multi-layer ANN have been used in this work. The 
values of entries are presented to the hidden layer 
and satisfactory answers are expected to be obtained 
from the output layer. The most suitable number of 
neurons in the hidden layer is still a non-solved 
problem, although researches discuss some 
approaches. In Kovács 1996, the suggested number 
of hidden neurons is 2n+1, where n is the number of 
entries. In the other hand, the number of output 
neurons equals the number of expected answers 
from the net. 
Input water temperature (Tin), solar irradiance (G) 
and ambient temperature (Tamb) are variables used as 
entries to the ANN. The output water temperature 
(Tout) is the wanted output from the net. In this work, 
ANN represent the thermosiphon system according 
to the following formula 

out
ANN

ambin TGTTf ⎯⎯ →⎯),,(    (2) 

The structure of the ANN in this work is 
schematically represented as shown in the Figure 6. 
The net contains seven hidden neurons (i.e. 2n+1) 
and one neuron in the output layer, from which the 
output water temperature is obtained. 

 

Tamb

Tin

G

ToutANN

 
Figure 6: Schematic diagram of ANN. 

Supervised learning has been adopted to train the 
net, specifically, the widely used algorithm known 
as backpropagation. Nonlinear sigmoid function has 
been chosen, in this work, as the axon transfer 
function 

∑−
+1

1=
x Weigths

exp
Entries

f    (3) 

5.1 Preparing data for training 

The largest effort to get a trained net generally lies 
on collecting and pre-processing the input data. The 
pre-processing stage consists in data normalization 
in such way that inputs and outputs values are within 
0 to 1 range. 

The following procedure has been adopted to 
normalize the data before using them in the net 
structure: 
1) The normalization interval [0, 1] has been 
reduced to [0.2, 0.8]. 
2) Data have been normalized by means of the 
following formulas 

)minL - max(L / )L - (L  L)(L mínonof a ==  (4a) 
mínnnonf b L * )L - (1  maxL * L  L)(L +==  (4b) 

The formulas above must be applied to each variable 
of the training set (e.g. Tamb, Tin, G), normalizing all 
their values. 
3) Lmin and Lmax have been computed as follows: 

)(*))/(( supinfsupmin LLNNNLL sis −−−=    (5a) 

minsupinfmax ))/()(( LNNLLL si +−−=    (5b) 

where Lsup is the maximum value of that variable, 
Linf is its minimum value, Ni and Ns are the limits for 
the normalization (in this case, Ni = 0.2; Ns = 0.8). 

5.2 The training process 

For the training process, random values (between –1 
and 1) have been attributed to connections weights. 
As explained in section (4.1), 20 data have been 
chosen for the training process. After approximately 
80800 iterations, with learning rate equivalent to 
0.08, the obtained error value reached 0.0016. The 
final weights of hidden and output layers with 
polarization weight (bias) are: 

h
biasW =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0.97916955

1.6151366-

1.1757647-

1.0196898

40.06592242

0.4899998

0.7190721 hW =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0.783707850.07013532-0.13926853

0.159009673.44067930.18253215-

0.6246862.07694080.53837997

0.762031260.57508911.0179754

0.976054970.2064137960.01728609

0.008322780.8813280.22867158

0.454591480.55641556-0.36259624  

out
biasW = [ ]1.9953568-  outW =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0.6316091-

3.764176

2.231161

0.4214473-

30.02313953

0.2919098

0.90068215-  

In h
biasW  and hW  lines refer to hidden neurons and 

columns refer to their input connections. In out
biasW  

and outW  lines refer to connections between hidden 
and output layers while columns refer to output 
neurons. Table 1 shows errors values obtained in the 
training process. 

Table 1: Training results. 
Min. error (°C) Max. error (°C) Error average (°C) 

0.017174 0.92959 0.33199015 
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Figure 7 graphically shows the result of training. 

 

Figure 7: Real (○) and ANN (+) output temperatures. 

5.3 Validation of the Neural Network 

Table I.2 (append) shows the data set used to 
validate the ANN, previously extracted from the 
collected data. Table I.2 also shows the output of the 
ANN and the errors obtained, compared to the real 
output temperature. 
Table 2 shows the errors values obtained in the 
validation process. 

Table 2: Errors from validation process 
Min. error (°C) Max. error (°C) Error average (°C) 

0.030246 1.359952 0.458544167 

 
Figure 8 graphically shows the results obtained from 
the trained and validated net, when operated with the 
validation set. 

 
Figure 8: Real (+) and ANN (○) output temperatures. 

5.4 Verification of Results 

For the analysis by means of linear regression, 
Equation (6) has been used: 

G

TT
UFF ambin
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−= ταη   (6) 

FR(τα)e equals 66.662 and FRUL, 809.89. FR 
corresponds to collector heat removal factor, (τα)e, to 
transmittance absorptance product and UL, to 
collector overall loss coefficient. Tin is the input 
water temperature, Tamb, the ambient temperature 
and G, the solar irradiance. Equation (6) calculates 
efficiency when linear regression is used. 
With the values of the output temperature of the 
water, the efficiency of the solar collector can be 
calculated. Table 3 shows the comparison between 
linear regression and ANN errors in calculating the 
efficiency of the solar collector. 

Table 3: Comparison between errors. 
 Eff – Eff ANN (%) Eff – Eff LR (%) 

Average 3.124178769 1.864363541 
Minimum 0.14650623 0.08587937 
Maximum 8.110471201 7.215990429 

Std. deviation 2.672893417 1.816157438 

6 CONCLUSIONS 

In this work, a possible use of ANN to model a solar 
collector has been presented. It has been also 
presented a technique to build a more representative 
training set – the widely used k-means clustering 
method. With k-means, a training set composed by 
20 data could be used, as shown in Figure 5. 
Table 1 shows the results of the training process; the 
average error in the output water temperature equals 
0.33199 and maximum and minimum errors are, 
respectively, 0.92959 and 0.017174. Those results 
show the optimal approach of ANN, since the error 
recommended by INMETRO (National Institute of 
Metrology and Industrial Quality - Brazil) is 1°C. 
Efficiency errors, calculated via ANN and linear 
regression, are presented in Table 3. Although the 
errors obtained via linear regression are lower, ANN 
present some advantages on linear regression (e.g. 
For new situations with unusual values of entries, 
the equation of linear regression may increase the 
actual errors values unless it is reformulated, while a 
trained net may use its capacity of generalization in 
order to maintain the errors values). 
Comparing the results of training and validation 
processes of a net trained with 631 data (Zárate et al. 
2003a), with a training set selected by means of 
statistical analysis (Zárate et al. 2003b) and with the 
training set of this work, it can be observed that a 
better-defined training set may decrease the time 
spent in training and may also maintain the capacity 
of generalization of the net (Tables 4 and 5). 
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Table 4: Comparing training results. 

 
None 

technique 
Statistical 
analysis 

k-means 
clustering 

Min. error (°C) 0.000035 0.000039 0.017174 
Max. error (°C) 1.19 1.021237 0.92959 

Error average (°C) 0.15 0.244534 0.33199 
N° of iterations 
spent in training 

7700000 412800 80800 

Table 5: Comparing validation results. 
 

None 
technique 

Statistical 
analysis 

k-means 
clustering 

Min. error (°C) 0.02185 0.043265 0.030246 
Max. error (°C) 0.70706 1.475292 1.359952 

Error average (°C) 0.27365 0.625548 0.458544 
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APPEND 

Table I.1: Collected data sample. 
Tamb Tin Solar Irradiance Tout 
25.05 27.17 908.42 33.97 
25.91 34.7 1005.68 41.61 
23.51 43.42 967.31 49.43 
26.26 39.98 761.83 44.73 
22.61 25.31 905.41 32.02 
23.12 32.82 922.13 39.23 
23.75 57.89 958.19 62.21 
24.71 38.32 833.93 43.76 
25.66 31.65 958.24 38.58 
24.49 22.65 872.67 29.46 
24.22 23.01 933.09 30.4 
23.53 22.83 958.29 30.41 
23.96 20.76 768.96 27.28 
23.36 39.89 962.33 45.79 
25.99 38.11 794.92 43.15 

Table I.2: Validation data sets. 
Tamb Tin G Tout Tout (ANN) Error 
23.83 20.66 755.1 27.17 27.630451 0.460451 
24.43 20.97 819.75 27.74 28.14392 0.40392 
24.61 21.47 850.02 28.07 28.63377 0.56377 
24.44 22.5 860.06 29.27 29.388565 0.118565 
24.87 23.72 869.47 30.55 30.365038 0.184962 
24.81 25.96 912.59 32.85 32.46125 0.38875 
25.31 30.81 932.79 37.52 37.219883 0.300117 
25.66 31.65 958.24 38.58 38.304413 0.275587 
25.82 33.75 993.54 40.78 40.810246 0.030246 
25.85 33.81 996.78 40.86 40.902008 0.042008 
25.96 34.65 993.69 41.6 41.772133 0.172133 
26.03 34.79 1024.01 41.88 42.176178 0.296178 
26.45 37.9 1022.66 44.63 45.445923 0.815923 
26.66 38.04 1022.82 45.12 45.592113 0.472113 
26.98 38.16 1041 45.27 45.85676 0.58676 
26.02 38.18 794.81 43.3 43.93853 0.63853 
26.08 39.96 765.05 44.65 45.60505 0.95505 
23.77 22.96 924.79 30.32 30.066198 0.253802 
24.1 22.98 924.84 30.28 30.099792 0.180208 

24.04 23.05 931.81 30.42 30.191616 0.228384 
22.76 23.03 907.4 29.93 29.971178 0.041178 
23.33 39.98 966.37 46.05 47.142525 1.092525 
23.27 40.09 967.81 46.09 47.26527 1.17527 
23.74 53.4 983.64 58.6 57.840714 0.759286 
25.1 27.13 911.55 33.95 33.501625 0.448375 

25.09 27.12 910.06 33.95 33.481182 0.468818 
24.65 38.42 849.35 43.85 44.61326 0.76326 
24.69 47.01 809.17 51.31 52.669952 1.359952 
24.86 23.72 785.5 30.12 29.872047 0.247953 
24.96 23.73 770.1 29.83 29.797749 0.032251 
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