
ALIGNING BUSINESS PROCESS MODELING AND SOFTWARE
SPECIFICATION IN A COMPONENT-BASED WAY

The advantages of SDBC

Boris Shishkov, Jan L.G. Dietz
Faculty of El. Engineering, Mathematics and Comp. Science, Delft University of Technology,The Netherlands

Keywords: SDBC; Business modeling; Software specification; Component-based alignment

Abstract: This paper introduces the SDBC approach. It aligns business process modeling and software specification.
They are aligned in a component-based way. In particular, business components are identified and reflected
in the software specification. The business components are identified considering the rich semantic and
language/communicative expressiveness of current business systems. This is claimed to have a definite
value in building a complete and realistic business model. The component-based alignment on the other
hand is claimed to have sound theoretical background and promising practical perspective.

1 INTRODUCTION

The current software development practices need
improvement. This is shown by a number of
examples of software project failures (Liu, 2000),
most of which clearly indicate mismatch between
stated business requirements and the actual
functionality of a delivered software application.
Therefore, it can be claimed that the software
development methods, widely used today, do not
adequately bridge the consideration of the target
business system and the specification of the
corresponding software artefact(s).

Besides the alignment itself, it is considered
useful also improving the business modeling by
addressing not only the business system’s structure
and dynamics but also semantic/language aspects.
This is motivated by the fact that great deal of the
activities within any organization are about
coordination/communication (as opposed to
production). For example, considering shoe
repairing, the repair of a shoe brought by a client, is
just one issue within the set of activities actually
taking place. First the client explains his/her request
– what exactly (s)he needs to be done. The
shoemaker might accept the request or might not
accept it. It is possible that further negotiations are
needed about the request. Also, after the shoemaker
has repaired client’s shoe(s), it is possible that the
client does not accept the work, claiming that the
repair is of low quality, and so on. Hence,

overlooking the communicative/coordination aspects
would lead to building an incomplete business
model.

These mentioned issues are approached through
two promising research perspectives: the
Component-Based (system) Development (CBD) as
a background for aligning business modeling and
software specification, and the Language-Action
Perspective (LAP) as a theory that contributes to
properly grasping the communicative aspects
characterizing a business system.

CBD and LAP are discussed in (Shishkov &
Dietz, 2004). They are of essential importance for
the proposed SDBC approach (SDBC stands for
Software Derived from Business Components). It
aligns business process modeling and software
specification in a component based way and
considers not only the structural and dynamic
aspects but also the communicative aspects of the
target business system. Some issues which are
foundational for SDBC have already been
introduced (Shishkov & Dietz, 2004).

This paper elaborates on the SDBC, positioning
it within the software engineering task (Section 2),
and concludes about some strengths of SDBC
compared to other existing methods (Section 3).

103
Shishkov B. and L.G. Dietz J. (2004).
ALIGNING BUSINESS PROCESS MODELING AND SOFTWARE SPECIFICATION IN A COMPONENT-BASED WAY - The advantages of SDBC.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 103-108
DOI: 10.5220/0002600001030108
Copyright c© SciTePress

2 THE SDBC APPROACH

The development of SDBC has been motivated by
the following definite conclusions (Shishkov &
Dietz, 2004): 1>. It is necessary to consider the
semantic/communicative aspects in order to build a
sound and complete business model. 2>. Further
studies are required towards aligning business
modeling and software specification. 3>.
Considering business and software systems as well
as their alignment, it is worthwhile applying the
principles of CBD, benefiting in this way from the
undisputable advantages of object-orientation,
among which: re-usability, modifiability, design
flexibility.

On this basis, it has been considered crucial that:
SDBC allow for grasping the semantic and

language business systems expressiveness, and
also aligning business process modeling and
software specification in a component-based way.

SDBC is positioned as a software specification
approach within the software engineering task
(IEEE-Std.’610’ 1990). This is illustrated on Figure
1. Going as deep as the specification is claimed to
be sufficient for SDBC to properly place the
software model under development on a sound
business modeling background.

software engineering

software development

software specification

SDBC

Figure 1: The positioning of SDBC within the software
engineering task

Being an approach for specifying software on the

basis of business modeling, SDBC is based on: 1)
Integrated view over business modeling and
software specification; 2) LAP – founded
Transaction concept; 3) Alignment based on
components; 4) Re-use requirements. These four
fundaments are elicited further on in this section.

INTEGRATED VIEW OVER BUSINESS
MODELING AND SOFTWARE SPECIFICATION

The current software development practices are
characterized by lack of sound alignment between
business modeling and software specification. Small
software companies usually rely on an arsenal of
“know-how”. They try to adapt it to the user’s case.
Bigger companies, however, spend more time and
energy for getting insight about the target business
system. Anyway, the process of getting such an

insight plays just a supportive role for the system
specification, without being integrated with it. A
value of SDBC is that it integrates business
modeling activities and software specification ones
(as shown on Figure 2).

2. ss

br
1. bpm

 br: business reality

 bpm: business process modeling

 ss: software specification

Figure 2: Integrated view over business process modeling
and software specification

A business process model is to be built up from

the studied business reality. This model is to be
reflected in the derivation of a software specification
model. This would be the viable link that should

business
process
model

software
specification

model

map

business reality

realization and integration

r
e
 q
 u
 i
 r
 e
 m
 e
 n
 t
 s

 ssmlr = {ssmlr′;ssmlr″}

 bpmlr

Figure 3: Specifying requirements

guarantee the proper consideration of the original
business requirements in the specification of the
software’s functionality. The derived software
specification model should further undergo
realization and integration, in building the software
system. All this is illustrated in Figure 3. Hence, a
crucial issue in this regard is the proper mapping
between the two models. Next to that, both the
business process model and the software
specification model serve as sources for extraction
of requirements.

The built business model should represent a
source for completely discovering the so called
bpmlr (bpmlr stands for business process modeling
level requirements). The bpmlr characterize the
system reflected in the business process model and
do not directly refer to the functionality of the
software application to be developed. Extracting a
particular sub-set of bpmlr, in particular those
requirements which concern the functionality of the

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

104

software application to be developed and adding to
them the requirements additionally discovered
throughout the software specification phase, we
would come to the ssmlr (ssmlr stands for software
specification model level requirements). The ssmlr′
(ssmlr″) stands for the first (second) group of
requirements mentioned in the current paragraph.
Therefore, in general, the following statement
should be true:

ssmlr′ ⊆ bpmlr,

although it is considered possible that a requirement
belonging to the ssmlr′ set might appear to be a
refined version (not an exact copy) of a requirement
belonging to the bpmlr set.

LAP-FOUNDED TRANSACTION CONCEPT
As mentioned before, the essential SDBC goal of

grasping the rich semantic and language
expressiveness of a considered business system
could be accomplished by founding the business
system study on LAP. DEMO (www.demo.nl) offers
a useful interpretation of some essential aspects of
this theoretical orientation (Shishkov & Dietz,
2004). Valuable in this regard is the relation of
DEMO also to two other sound and relevant to the
mentioned goal theories, namely Organizational
Semiotics (Liu, 2000) and Philosophical Ontology
(Bunge, 1979). The LAP Transaction and, in
particular, the DEMO interpretation of it, is adapted
and adopted within SDBC as an elementary business
modeling unit. Considering any structural of
Transactions (a starting transaction and a tree of
transactions triggered by it), a Business process is
defined as: the set of transactions realized in order
to fulfill a starting transaction. A Business
component is a complete business process model, as
specified in (Shishkov & Dietz, 2004). In this way
(through the Business component concept) SDBC
allows for placing a specification of software on a
business model that is elaborated also in terms

DEMO

 Transaction concept

…

…

SDBC

LAP

OS

PO

 LAP: Language/Action Perspective

 OS: Organizational Semiotics

 PO: Philosophical Ontology

Figure 4: The importance of the transaction concept for
SDBC

of communicative action issues, not only in terms of
structural and dynamic issues what is the case with
the current popular business modeling methods. The
relation of SDBC (realized through the Business
component concept) to the mentioned semantic and
language related theories is illustrated in Figure 4.

SDBC interprets the Transaction concept as
centered around a particular Production fact
(following the DEMO Production fact definition).
The reason is that the actual output of any business
system represents a set of Production facts related to
each other. They actually bring about the useful
value of the business operation to the outside world
and the issues connected with their creation are to be
properly modeled in terms of structure and
dynamics, as in the popular current business
modeling methods. However, the already justified
necessity of considering also the corresponding
semantic and language aspects is important.
Although they are not directly related to the
Production facts, they are to be positioned around
them. As stated already, SDBC realizes this through
its interpretation of the Transaction concept, as
depicted in Figure 5.

P-act input output

r(R) p(E)

d(E)

compromise
found?

s(E) a(R)

d(R)

compromise
found?

P-fact

Legend
r: request R: requestor
p: promise E: executor
s: state
a: accept
d: decline

cancel

Yes Yes

Figure 5: The SDBC interpretation of the transaction
concept

As seen from the figure, the classical LAP-

DEMO Transaction concept has been adopted, with
a particular stress on the transaction’s output – the
Production fact. There is a proposition (for example,
a shoe to be repaired by a particular date and at a
particular price, and so on). First, anybody should
express a request towards the particular proposition
(we call him a Requestor). Such a request might
trigger either acceptance or rejection – the other
party (we call him an Executor) might either
promise to produce the requested product (or
service) or decline it. A decline actually triggers a
discussion (negotiation), for example: “I cannot
repair the shoe today, is tomorrow fine? … and so
on”. The discussion might result (or might not
result) in a compromise. A compromise means that
the Executor promises to produce an updated version
of the discussed proposition. After a promise, a
Production act takes place and afterwards – a
statement from the Executor that the requested
product or service is produced. Then, analogously,
the Requestor might accept (or might not accept) the

ALIGNING BUSINESS PROCESS MODELING AND SOFTWARE SPECIFICATION IN A COMPONENT-BASED
WAY, THE ADVANTAGES OF SDBC

105

production result; a discussion (negotiation) might
take place. The transaction is considered to be
successful and the corresponding Production fact
could be considered successfully created only if the
Requestor has accepted the production result (this is
indicated by the dashed line on the figure).

Based on the LAP-DEMO theory and its SDBC
interpretation, it might be concluded that applying
the Transaction concept, SDBC achieves: a realistic
position to the issues belonging to a business
system; a granularity level (considered) which is the
right one as long as the atomic business (process)
issues are of interest; a sound theoretical
justification.

The Transaction concept directly relates to the
Business component one which is fundamental for
the SDBC approach and is considered in the
following paragraphs.

ALIGNMENT BASED ON COMPONENTS
The perspective of realizing the alignment

between the two significant SDBC tasks (business
modeling and software specification) on the basis of
components is a crucial issue within the SDBC
approach. The proposed component-based alignment
has been justified (Shishkov & Dietz, 2004) by the
undisputable and well proven in practice advantages
of the object-orientation theory – a sound theory that
allows for representing any system (a
software/business one, for instance) in terms of
objects/components. Thus, identifying business
components and reflecting them in (sets of) software
components would be well founded theoretically.
Next to that, components could be re-used. As it is
well-known, re-use is an essential advantage for any
system development method. Re-use will be
discussed further on, as a foundational issue within
the SDBC approach. The component-based
alignment between business modeling and software
specification is illustrated in Figure 6.

Software Components (sc)

sc

sc

sc

sc

sc

…

Business Components (bc)

bc

bc bc

bc

bc bc

…

Business Reality

Figure 6: From business components to software
specification

As depicted on the figure, the target business
reality is to be reflected in a set of identified
business components (these are business process
models as already mentioned). Based on them, a
(component-based) software model is to be
specified. The business and software components are
not to be necessarily mapped one to one. The bottom

line in building up the business process model
(through the identification of business components)
should be a purely business-oriented study that has
nothing to do with the specification of software and
related issues. On the other hand, the software
specification (and integration), though based on the
business components, is to be realized from the
perspective of the functionality of the software
system under development. Thus, it is possible that
more than one software components are derived
based on a business component, for instance.

Hence, following the principles of component-
based system development brings all the advantages
associated with this type of system development to
both the business modeling phase and the software
specification one. The component-based perspective
makes it doable to easily trace a relation between a
designed (or even implemented) software
component and its originating business process
model. Adding corrections and/or modifications
further on would be easy as well. Even entire
models/components could be inherited and
developed in a new context, for example. Therefore,
the mapping itself (between business modeling and
software specification) could be significantly
facilitated. Next to that, re-use would be possible
and easily realizable at different levels. A (specified)
software component could be used for the
development of different software artefacts as this is
successfully done currently. Also the business
components could be re-used – if some (business)
requirements change, it would be possible to replace
a business component with another one without
affecting the entire model of the business system.

RE-USE REQUIREMENTS
As mentioned before, the re-use options are

essential for SDBC. The approach benefits from
them both in the business modeling phase and in the
software specification one. SDBC allows for reuse
of business processes – if they are abstractly
described and also for reuse of components
(business and software components). This is
depicted in Figure 7.

business process

business component

software component

Figure 7 : Levels of re-use

Re-using a Business process within SDBC
includes describing a business process at a general
level, making such a description abstract enough so
that it could be applied in a number of cases. An

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

106

example: ARRANGE A SERVICE (this is the
transaction which is the starting one); PAYMENT;
REDUCTION APPROVAL… This general
description could easily be made more specific, for
example: ARRANGE A HOTEL RESERVATION
SERVICE; DEPOSIT PAYMENT; EARLY
BOOKING REDUCTION OFFER…

Re-using a Software component is considered
to be also an option within SDBC, especially in tune
with the latest software re-use practices associated
with distributed computing environments like EJB,
CORBA, and .NET (Atkinson & Muthig, 2002).

As long as software components and their re-
usability are concerned, the existing knowledge
(Atkinson & Muthig, 2002), is considered to be
sufficient. It is reflected in developing SDBC.

The component-based software development
differs from traditional approaches by splitting the
development process into two distinct activities:

• Development for reuse – creating high-
quality, specialized components which
concentrate on doing a specific job well; they
should be of use in multiple applications.

• Development with reuse (called also
“Integration”) – creating new applications (or
possible larger components) by assembling
prefabricated components.

 Re-using a Business component is of
significant importance for SDBC and the approach
introduces ideas in this regard.

If we consider the building up of a system (in
general) out of some building blocks and want to re-
use some of them, we have two solution directions –
we could have either a core unit that we should build
further on, in order to specify a building block, or
we could have a “multiple function” unit that we
should adjust in order to create a particular building
block. An analogy for the first case is a wagon
platform – it could be further developed either into a
passenger wagon or into a cargo one. An analogy for
the second case is a universal plug adaptor – it has
(in it) a number of functionalities that might be
adjusted in one way or another depending on the
particular purpose of use (for example: use in
Europe, USA, or Japan).

Following the classical Object-orientation
terminology, it is suggested that the first (second) of
the mentioned types of re-usable units is called a
general (generic) unit. Returning to the system that
is made up of building blocks, we could, therefore,
distinguish between two types of re-usable units:
General building blocks and Generic building
blocks. This is illustrated on Figure 8.

re-usable building block

general building block

generic building block

Figure 8: Re –usable units.

These basic principles could be applied to the

Business component concept within the SDBC
framework, bringing about possibilities of re-using
Business components. If general or generic business
components are identified, they could be re-used in
the specification of different software artefacts; this
could be realized either by extending a general
business component or by parameterizing a generic
one, as depicted in Figure 9.

…
extending

parameterizing

bc

Figure 9: Extending a general business component or
parameterizing a generic one.

General business components (bc) are models

which reflect core issues and can be extended in a
number of directions. For example, a general
brokerage model could be further developed: in one
way for building an e-trade system and in another,
for building a hotel reservations system. Hence, the
particular extension of a general business component
is motivated by the purpose of use. On the contrary,
a generic business component should contain in
itself several optional functionalities. Through
parameterization, such a component could be
adjusted depending on the aimed purpose of use.

In summary, it is possible within SDBC, to
derive a business component by developing a model
of a business process (the trivial way) or by re-using
general/generic business components (Figure 10).

ALIGNING BUSINESS PROCESS MODELING AND SOFTWARE SPECIFICATION IN A COMPONENT-BASED
WAY, THE ADVANTAGES OF SDBC

107

?

general

business

component

generic

business

component

business

process

derived

business

component

modeling

extension

parameterization

Figure 10: Deriving a business component

OUTLINE OF SDBC
Since the essential goal of the current paper is to

elaborate on the foundational issues behind the
SDBC approach and due to the limited scope of the
paper, the information on the outline of the approach
is omitted. However, this information is to be found
in (Shishkov & Dietz, 2004).

3 ADVANTAGES OF SDBC

SDBC’s innovative features relate primarily to its
allowing for a more complete business modeling (in
comparison to the widely used business modeling
tools) and especially for alignment between this
modeling and the specification of software. The
allowance for a component-based alignment
between the mentioned two aspects is a definite
value of the SDBC approach.

In order to justify the advantageous features of
SDBC, it is essential to approach through it real-life
problems and also compare SDBC to other relevant
modeling tools. The fundamental SDBC aspects
have been validated through case studies and some
of this information has been reported to (Shishkov &
Dietz, 2004). As for the comparison with other tools,
it is of no use considering either pure business
modeling tools or pure software design ones because
the essential goal behind SDBC is the alignment
between business modeling and software
specification. Hence, only tools that relate to these
both aspects have been considered. Among them,
KobrA (Atkinson & Muthig, 2002), Catalysis
(www.catalysis.org), and Tropos
(www.troposproject.org) are much popular and
successfully applied in practice.

Among the key characteristics of KobrA are:
architecture-centricity; systematic COTS component
re-use; integrated quality assurance. The major

strengths of KobrA are its overall consistency, the
embracement of the component concept in all phases
of the software life-cycle, and the UML-based
graphical specification of components. The main
limitation is that there are no clear guidelines how to
relate the specification of software to prior business
studies. Catalysis provides well-defined consistency
rules across models and powerful mechanisms for
composing different views to describe complex
systems. However, the method does not offer a solid
mechanism for reflecting the (business)
requirements in the specification of the software’s
functionality. Tropos approaches the requirements
elicitation and specification in a sound way, offering
mechanisms for transformation of this output into an
input for the further software design phases.
However, this transformation is neither sufficiently
formal nor completely founded on object-
orientation.

Therefore, the current popular methods
(including the most significant ones among which
are KobrA, Catalysis, and Tropos) related to the
considered research problem, have particular
limitations either in the pre-specification phase or in
the specification one. These limitations are an
obstacle for soundly aligning business modeling and
software specification.

4 CONCLUSION

The SDBC approach is based on the innovative idea
of aligning business modeling and software
specification in a component-based way. Next to
that, SDBC offers particular improvements in the
business modeling task, associated mainly with the
consideration of the communicative aspect in
approaching a business system.

REFERENCES

Atkinson, C. and D.Muthig, 2002. Enhancing component
reusability through product line technology. In
ICSR’02, 7th Int. Conf. on Software Reuse.

Bunge, M.A., 1979. Treatise on Basic Philosophy, Vol. 4,
Reidel Publishing Company, Dordrecht.

Liu, K., 2000. Semiotics in Information Systems
Engineering, Cambridge University Press.

Shishkov, B. and J.L.G. Dietz, 2004. Design of software
applications using generic business components. In
HICSS’04, 37th Hawaii International Conference on
System Sciences. IEEE’04.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

108

