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Abstract: We present an interaction protocol based approach for facilitating distributed construction processes. In our
approach, software agents represent various participants of a construction project. Examples of such are
contractor, subcontractor, and supplier. These agents are supposed to communicate according to predefined
interaction protocols. Should an agent be unaware of some protocol needed in the process, it benefits from
adopting it. We approach this problem with interaction protocol descriptions serialized in a commonly agreed
upon format and design our agents so that they can adapt to the descriptions. We present a scenario in the field
of construction industry, where the project participants do not know in advance how to communicate with each
other. However, by adapting to the interaction protocol descriptions provided by the respective parties they are
eventually able to interact.

1 INTRODUCTION

Internet’s emerging era is that of Web Services. Like
HTML pages of the current web, also Web Services
are distributed across the Internet and addressable
with URIs. The most evident difference is the inclu-
sion of intelligent computer programs in addition to
human beings as the consumers of web content. This
calls for providing material in the web with formal
and machine-understandable descriptions, i.e., creat-
ing the Semantic Web.

This paper discusses a case of business-to-business
collaboration in the domain of construction industry.
More specifically, we outline a framework for intelli-
gent software agents representing various participants
of a construction project to collaborate. Collabora-
tion is based on interaction protocol descriptions pro-
vided by the participants. In order to enable dynamic
collaboration, the descriptions conform to mutually
agreed upon interaction protocol ontology we intro-
duced in (Toivonen and Helin, 2004).

Motivation for the chosen case stems from the con-

tractor’s need to keep track of the progress of a project
it has initiated. This presupposes direct interaction
between the contractor’s expeditor and other partic-
ipants. The expeditor agent, if unaware beforehand
how to communicate with a participant, can down-
load interaction protocol descriptions provided by the
participant and adapt its behavior accordingly.

In addition to the above motivation to facilitate in-
formation flows between construction process partic-
ipants, we also have a technological objective. Our
intention is to investigate software agents adapting
according to interaction protocol descriptions. Even
though the sample scenario is focused to a particular
phase of a construction process, our approach is suit-
able to virtually any distributed application with inde-
pendent parties interacting via software agents. How-
ever, expediting process as a real world problem pro-
vides us with interesting proof-of-concept material.

The rest of the paper is organized as follows: In
the next section we describe a scenario for applying
our approach in certain parts of a construction pro-
cess. Section 3 summarizes the interaction protocol
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ontology, how to describe interaction protocols based
on it using RDF, and how to adapt to the descriptions.
Finally, Section 4 presents some concluding remarks.

2 DISTRIBUTED
CONSTRUCTION PROCESS

2.1 Sample Scenario

Supply chain management in the construction indus-
try can at a general level be divided into two separate
processes: procurement and expediting (Williams,
1995). This paper deals with the expediting pro-
cess. Traditionally, performing an expediting process
means paying visits to the premises of project partic-
ipants, making phone calls, or exchanging emails for
checking the status. There are previous attempts, such
as the one described in (Kim et al., 2000), for apply-
ing software agents in construction processes. A dis-
tinctive property in our approach is that we automate
parts of the expediting process by applying interaction
protocols to the work performed by the contractor’s
software agent that acts as an expeditor.

Typically the contractor wants to keep track of the
project it has initiated, and therefore expects to re-
ceive status reports of the project from the subcontrac-
tor(s) regularly. That helps the contractor to identify
and avoid possible risks involved in the project such
as schedule delays and cost overruns (Barrie and Paul-
son, 1992). However, often the contractor cannot rely
solely on the information the subcontractor(s) provide
in the status reports. A subcontractor can either inten-
tionally conceal that the project is behind schedule,
or some important piece of information might unin-
tentionally be out of date in a status report.

For verifying the information in a status report, the
contractor’s expeditor contacts the other participants
directly. Thereby, in addition to interacting with the
subcontractor, we add functionalities for the expedi-
tor agent to interact with the rest. Figure 1 depicts
the states of the expediting process from the expedi-
tor’s point of view. The expeditor acts somewhat as
a detective trying to dig up information from various
sources and incorporate it into a complete picture.

With many project participants involved, direct in-
teraction between the contractor and the rest can also
help to avoid problem amplification. Consider a case
where a supplier delivers raw material to a manufac-
turer, who is supposed to fabricate bulk products from
that material and deliver them to another manufac-
turer. That manufacturer, in turn, is supposed to build
a more refined product from them and again deliver
it to yet another participant. Suppose further, that a
problem of some kind happens at an early stage of the
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Figure 1: Progression of the expediting process from the
contractor’s point of view

process—say the delivery of raw material goes to a
wrong address. Unless there is frequent direct interac-
tion between the contractor and all these participants,
reacting to this misfortune most likely takes longer
time. Direct interaction, instead, can fasten the infor-
mation exchange. That, in turn, can help in avoiding
the “bullwhip effect” (Lee et al., 1997) and the project
will likely not fall as much behind the schedule.

In our scenario, the expeditor knows initially only
how to interact with the subcontractor, and therefore
it has to learn how to do so with other participants.
We approach this problem by defining interaction pro-
tocol descriptions, and design the expeditor agent so
that it can process the descriptions, and adapt its be-
havior accordingly.

2.2 Interaction Protocol Based
Collaboration

We model the interaction between the contractor and
the subcontractor using FIPA Request (Foundation for
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Intelligent Physical Agents, 2000c) interaction proto-
col. The contractor requests the subcontractor to send
the status report. The subcontractor then tries to per-
form the requested action. In the successful case the
subcontractor informs the contractor that the action is
performed. Should something go wrong, the subcon-
tractor sends a failure message instead.

Assume the subcontractor has ordered a steel deliv-
ery from the supplier with the help of an external car-
rier, but the delivery has not yet arrived. It neverthe-
less includes the order in the status report before send-
ing it to the contractor. In our scenario the contractor
wants to keep track of the whole process. Thereby it
contacts the supplier and the carrier to check the status
of the order and the delivery. The contractor first re-
quests the subcontractor to send the status report. By
examining it as depicted in Figure 1, it finds out the
addresses (URIs) of the agents representing supplier
and carrier, as well as the ID of the steel order. Note
that this examination, i.e., how the contractor extracts
the desired information from the status report, is not
in the focus of our current research, and it could be
performed by the software agent itself, or by a hu-
man being. In any case, after retrieving this informa-
tion the contractor queries the supplier for the ID of
the steel delivery with the order ID as the parameter.
The supplier provides the contractor with it, and the
contractor uses it next as a parameter for requesting a
delivery report from the carrier.

Since the contractor has not collaborated with the
supplier and the carrier before, being able to do so at
this time presupposes adaptability. In the next section
we present interaction protocol descriptions in more
detail. We start with the interaction protocol ontol-
ogy, then move on to the actual descriptions, and after
that discuss how the contractor’s expeditor agent can
process the information found in the descriptions and
adapt its behavior accordingly.

3 DESCRIBING INTERACTION
PROTOCOLS WITH SEMANTIC
WEB TECHNOLOGIES

3.1 Interaction Protocol Ontology

Interaction protocols specify ordered sets of messages
to be exchanged between conversating agents. We
describe the interaction protocols using RDF (Lassila
and Swick, 1999), a language designed for describing
any resources in the Semantic Web. As mentioned,
interaction protocol descriptions conform to an inter-
action protocol ontology (Toivonen and Helin, 2004).
Core concepts of that ontology are depicted in Fig-
ure 2.
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Figure 2: Core concepts of the interaction protocol ontology

Basically all interaction protocols have one initiator
and one or more participants. Progress of the proto-
col is defined with states following each other. More
specifically, states have options to choose from, and
the chosen option determines which state to shift to.
Options can have messages associated with them that
are sent between the participating agents.

3.2 Describing Interaction Protocols

Among other interactions, the supplier knows how to
respond to queries for selected things. In our sce-
nario, the contractor asks the supplier for the ID of
the steel delivery using the order ID found in the sta-
tus report as a parameter. In order to do so, it adapts
to FIPA Query (Foundation for Intelligent Physical
Agents, 2000b) interaction protocol. This serializa-
tion is provided by the supplier. The following ex-
cerpts of the serialization do not capture the entire
protocol, but some pivotal points. Using our ontol-
ogy, description of the interaction protocol class is as
follows:

<rdf:Description rdf:about="&this;queryDelivId">

<rdf:type rdf:resource="&ip;IP" />

<ip:hasInitiator

rdf:resource="&this;contractor" />

<ip:hasParticipant

rdf:resource="&this;supplier" />

<ip:hasProgress
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rdf:resource="&this;queryProgress" />

</rdf:Description>

The abbreviation &ip; refers to the ip-namespace
containing the interaction protocol ontology. The
interaction protocol class IP contains properties
called hasInitiator, hasParticipant, and
hasProgress, which are in this serialization given
values denoting to RDF-descriptions appearing in the
same file. The agents taking part in the protocol are
defined in the following way:

<rdf:Description rdf:about="&this;contractor">

<rdf:type rdf:resource="&ip;Initiator" />

</rdf:Description>

<rdf:Description rdf:about="&this;supplier">

<rdf:type rdf:resource="&ip;Participant" />

</rdf:Description>

The agents have to comprehend the interaction pro-
tocol ontology in order for the adaptation of the indi-
vidual protocol descriptions to take place. For exam-
ple, the agents have to understand the basic difference
between the Initiator and the Participant,
i.e., that it is the Initiator that starts the proto-
col by sending the first message. Definition of the
queryProgress class is serialized as follows:

<rdf:Description

rdf:about="&this;queryProgress">

<rdf:type rdf:resource="&ip;Progress" />

<ip:hasState rdf:resource="&this;start" />

<ip:hasState

rdf:resource="&this;replySupplier" />

<ip:hasState rdf:resource="&this;end" />

</rdf:Description>

Of the three states of this protocol, start and
end are found in every protocol instance and knowl-
edge of their semantics is presupposed of the agents
adapting to the protocol descriptions. The agent has
to know, for example, that the first state of the proto-
col is start. Below are serialized two of these three
states, namely start and replySupplier.

<rdf:Description rdf:about="&this;start">

<rdf:type rdf:resource="&ip;State" />

<ip:choices rdf:resource="sendDelivquery" />

</rdf:Description>

<rdf:Description

rdf:about="&this;replySupplier">

<rdf:type rdf:resource="&ip;State" />

<ip:choices

rdf:resource="&this;sendSupplInform" />

<ip:choices

rdf:resource="&this;sendSupplFailure" />

</rdf:Description>

Every state has one or more options. These
are denoted by ip:choices tags. The only
option of start is sendDelivQuery, while
replySupplier has two options. The actual

choice between these depends on the success of the
supplier’s ability to answer to the query. Moving
on, the options have their own serializations, which
contain the possible messages to be sent, as well as
the target states for the protocol to shift to. Be-
low are two options, namely sendDelivQuery re-
sulting from the activation of the start state and
sendSupplInform resulting from the positive re-
sponse by the supplier to the initial query.

<rdf:Description

rdf:about="&this;sendDelivQuery">

<rdf:type rdf:resource="&ip;Option" />

<ip:hasMessage

rdf:resource="&this;delivqueryRef" />

<ip:follows

rdf:resource="&this;replySupplier" />

</rdf:Description>

<rdf:Description

rdf:about="&this;sendSupplInform">

<rdf:type rdf:resource="&ip;Option" />

<ip:hasMessage

rdf:resource="&this;supplInform" />

<ip:follows rdf:resource="&this;end" />

</rdf:Description>

The target state is denoted by the ip:follows
tag. For example, sendDelivQuery has the
above-serialized replySupplier as its target
state. It also entertains one message, namely
delivQueryRef, which is presented below.
sendSupplInform, instead, has end as its target
state, and supplInform as the message associated
with it. The message serializations contain the infor-
mation on who sends and who receives the messages,
as well as references to the possible message contents.

<rdf:Description

rdf:about="&this;delivqueryRef">

<rdf:type rdf:resource="&fipa;queryRef" />

<ip:sendBy rdf:resource="&this;contractor" />

<ip:recvBy rdf:resource="&this;supplier" />

<fipa:hasContent

rdf:resource="&this;queryContent" />

</rdf:Description>

<rdf:Description rdf:about="&this;supplFailure">

<rdf:type rdf:resource="&fipa;Failure" />

<ip:sendBy rdf:resource="&this;supplier" />

<ip:recvBy rdf:resource="&this;contractor" />

</rdf:Description>

The above message definitions contain the senders
and the receivers of the messages, denoted by the re-
spective sendBy and recvBy tags. Additionally,
a new namespace called fipa is introduced. It de-
notes a location containing the FIPA extension to the
interaction protocol ontology, which is described in
detail in (Toivonen and Helin, 2004). Among other
things specific to FIPA ACL (Foundation for Intel-
ligent Physical Agents, 2000a), the extension allows
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Figure 3: Flow of a protocol from the initiator’s point of view

expressing message contents. Below is serialized the
queryContent class, which expresses the thing to
be queried, in this case the ID of the delivery report.

<rdf:Description rdf:about="&this;queryContent">

<rdf:type rdf:resource="&fipa;Content" />

<fipa:expression>

String

ORDER_ID = "http://www.sscompany.com/"

+"orderReports#steelOrd123";

String query = "SELECT ?x"

+" WHERE (?y, <rdf:type>,"

+" <report:orderReport>),"

+" (?y, <report:deliveryReport>, ?x)"

+" AND ( ?y eq <" +ORDER_ID +">)"

+" USING " +nameSpaces;

</fipa:expression>

</rdf:Description>

The message content is expressed inside the
fipa:expression tag. This phrase expresses the
RDQL (Seaborne, 2002) query for a delivery ID (?x)
with the order ID (?y) as the parameter. Order ID, as
depicted in Figure 1, is found in the initial status re-
port received from the subcontractor. Here we assume
that the agents share a supply chain reports ontology,
denoted by the report namespace, which captures
the general structures of order and delivery reports.
For example, the contractor knows that the order re-
port can contain information about the delivery and
thereby has reason to perform the above query.

With the delivery ID that the contractor receives as
a reply to the above query it proceeds to request the
delivery report from the carrier. The protocol is de-
scribed in the similar manner as the query and not
included here. Eventually, once the contractor has re-
ceived the delivery report, it can compare the informa-
tion in it with the information in the original status re-

port received from the subcontractor. Should the two
reports contain conflicting information, it can take
appropriate actions (see Figure 1). Software agents
could take part in performing the comparison, for ex-
ample by notifying their owner about mismatches be-
tween the reports. However, considering these details
is outside the scope of this paper.

3.3 Adapting to Interaction Protocol
Descriptions

The only agent adapting to the interaction protocol
descriptions in the above scenario is the contractor’s
expeditor. Other agents of the scenario have knowl-
edge of the interaction protocols beforehand. Fig-
ure 3 depicts how a protocol progresses. Knowledge
of start and end states is assumed to be known by ev-
ery agent—also by the adaptable expeditor—as men-
tioned above. Being the initiator of the protocol, the
expeditor first searches for the start state. From that
state it extracts different options. Based on its cur-
rent goals, it chooses one option and executes it. Note
that agents’ goals having effect on the decision are
excluded from interaction protocol descriptions.

Executing an option that does not entail message
sending is called a non-communicative option. A
communicative option, instead, entails sending a mes-
sage. If such message is directive, the sender of that
message expects a reply to that message. Addition-
ally, with directive messages the sender aims to get
the receiver to do something, such as perform an ac-
tion or answer a question (with the exception of direc-
tives “directed” to oneself). As an example consider
FIPA Request; after sending the request message
the initiator waits for an answer to it from the partici-
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pant before the protocol shifts to the next state. For a
non-directive message, instead, there are no answers
and the protocol moves immediately to the next state.
Examples are all the other messages in FIPA Request,
namely refuse, agree, failure, and inform.

Unlike agree, all other non-directive messages in
FIPA Request protocol are followed by the end state.
Instead, agree is followed by the one where (after
trying to perform the requested action and based on its
results) the participant sends the appropriate message
to the initiator. Note that excluded from Figure 3 are
canceling and exception handling mechanisms. An
agent participating in a protocol has the possibility of
canceling the protocol at any point. Also, exceptions
can arise at any point of the protocol.

Contractor’s expeditor agent is able to adapt its
behavior to conform to the interaction protocols de-
scribed and provided by other process participants by
combining the following information: Knowledge of
the interaction protocol ontology; knowledge of the
flow of a protocol as depicted in Figure 3; knowl-
edge of utilized domain ontologies such as the above-
mentioned supply chain reports ontology.

4 CONCLUSION

In this paper we considered applying adaptable agents
in an expediting process of a distributed construction
project. In our scenario a software agent representing
a contractor acted as an expeditor. It had the inten-
tion of contacting other project participants directly
for verifying information in a status report received
earlier from the subcontractor.

Since the expeditor agent did not know in advance
how to interact with other project participants, it
adapted to interaction protocol descriptions provided
by them. These interaction protocol descriptions were
serialized in RDF, and followed an interaction pro-
tocol ontology. Such shared ontology specifying the
general structure of conversations between the agents
brings flexibility in multi-agent systems. So long as
the agents are aware of the ontology, modifying ex-
isting protocols or launching new ones is straightfor-
ward. Note that our intention was not to contentu-
ally solve problems related to expediting processes,
but instead to present an application area for agents
adapting to interaction protocol descriptions.

Our future work around the area includes further
developing functionalities of the agents. Progress of
an interaction protocol could be more dependent on
the contents of the messages than it is at the mo-
ment. The agents could also have the functionality of
composing protocol descriptions themselves and stor-
ing them in RDF. At the moment the descriptions are
hand-written by humans. In addition, we are planning

on applying software agents adapting to interaction
protocol descriptions in wireless networks. In such
networks, should all the client devices entertain an
agent capable of adapting to interaction protocol de-
scriptions, the client devices could inform the server
about their capabilities (screen sizes, memory capac-
ities, etc.), connection types (WLAN, GPRS, Blue-
tooth, etc.), as well as user profiles and contextual de-
tails. The server side agent could provide them with
appropriate interaction protocol descriptions for con-
necting with the services.
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