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Abstract:  This paper develops a representation of multi-model based controllers by using artificial intelligence typical 
structures. These structures will be neural networks, genetic algorithms and fuzzy logic. The interpretation 
of multimodel controllers in an artificial intelligence frame will allow the application of each specific 
technique to the design of multimodel based controllers. A method for synthesizing multimodel based 
neural network controllers from already designed single model based ones is presented. Some applications 
of the genetic algorithms and fuzzy logic to multimodel controller design are also proposed. 

1 INTRODUCTION 

Multi-model based controllers have been broadly 
studied during the last years (Narendra et al, 1997, 
Gregorcic et al, 2001, Ibeas et al, 2003). This kind of 
control architecture allows to design intelligent 
control systems able to modify their behavior 
according to the characteristics of a changing 
environment or operation point. This intelligent 
behavior, allows the stability and improvement of 
the closed-loop output for complex systems. Thus, a 
general multimodel based control scheme is formed 
by a set of different plant models running in parallel. 
These models, which may be fixed (Narendra et al, 
1994) or adaptive (Ibeas et al, 2003), are different 
one from each other in what it is concerned with its 
structure or its parameter values. Thus, each one 
contains different characteristics of the controlled 
process. Moreover, a higher level switching 
structure between the various models chooses at 
each time the model which will be used to calculate 
the control law at that time instant. The switching 
structure chooses the control model according to a 
performance index for the closed-loop system. Thus, 
the switching law acts as a supervisor of the system 
behavior. The structure and operation of the 
switching law has been studied from an artificial 
intelligence point of view in an expert systems 
context (De la Sen et al, 2002). However, 

multimodel structures itself, have always been 
modeled in a classical control theory frame 
(Narendra et al, 1997). This paper proposes a 
possible interpretation of multimodel schemes in an 
artificial intelligence frame. The artificial 
intelligence structures chosen for such a goal have 
been, artificial neural networks (ANN), genetic 
algorithms (GA) and fuzzy logic. This interpretation 
will allows the use of specific characteristics of each 
one to the design of improved multimodel control 
schemes. Thus, a method for synthesizing 
multimodel-based neural network controllers from 
pre-designed single model ones is proposed. Also, 
some applications of genetic algorithms and fuzzy 
logic to multimodel control design are presented. An 
adaptive, being more general than that related to the 
use of fixed models, formalism is used for making 
the interpretation.  

2 BASIC MULTIESTIMATION 
SCHEME 

In this Section, a brief description on the 
multiestimation scheme used for discussion is 
presented. It has been considered the adaptive case 
since the fixed case is included in this as a particular 
case. The aim is to design a multimodel control for 
the discrete (the continuos case can be treated in the 
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same way) time invariant linear SISO plant 
described by: 

1 1( ) ( )k kA q y B q u− −=             (1) 

where ku  and ky  are the input and the output 

sequences respectively, 1q−  is the one-step delay 

operator, q is the one-step forward operator and  
1 1 2

1 2( ) 1 n
nA q a q a q a q− − − −= + + + +K              (2.1) 

1 1
0 1( ) m

mB q b b q b q− − −= + + +K                    (2.2) 

with n m≥ . The above Equations (1-2) represent a 
linear difference equation which is usually written in 
adaptive control as the inner product of two vectors 

T T
k k ky ϕ θ θ ϕ= =                                 (3) 

[ ]1 2 1
T
k k k k n k k k my y y u u uϕ − − − − −= − − −L L  

being the so called regressor and  
[ ]1 2 0 1

T
n ma a a b b bθ = L L  

symbolising the true plant parameter vector (Ibeas et 
al, 2003). If the true plant parameter vector is 
unknown, parameter estimation has to be used. 

Thus, an estimated parameter vector k̂θ is considered 

at each sample k. This estimated vector is used for 
control calculations at each sample. If this estimated 
vector is far away from the real plant parameter 
vector, then the transient response will have large 
deviations from the desired output resulting in a bad 
performance. This fact motivates to consider a set of 
estimation algorithms running in parallel, each one 
with its own estimated parameter vector 

( )(1) (2)ˆ ˆ ˆ, ,..., eN
k k kθ θ θ , where eN  is the number of total 

estimators. Each estimated vector is updated at each 
sample according to input and output measurements 
of the plant. The multiestimation scheme block 
diagram is displayed in Figure 1. A switching logic 
between the various estimation algorithms chooses 
the estimated vector that achieves the best system 
behavior improvement according to a prescribed 
performance index ( ) ,1i

s eJ i N≤ ≤ . The switching 

law must respect a minimum dwell or residence time 
between consecutive switchings in order to 
guarantee closed-loop stability.  
 

  
Figure 1: Basic Multiestimation Scheme 

 
A complete discussion of the stability issues is 
available in (Ibeas et al, 2003). In the next sections 
an artificial intelligence representation of the above 
multiestimation scheme is given for various typical 
artificial intelligence structures (Da Ruan, 1997). 

3 ARTIFICIAL NEURAL 
NETWORKS 

In this section, an artificial neural network (ANN) 
representation is developed for the above 
multiestimation based control scheme (Fausett, 
1998). In (Etxebarria, 1994), a two layered ANN is 
presented for a discrete time single adaptive control. 
The difference Equation (1)-(2) is implemented for 
estimation purposes by the ANN displayed in Figure 
2, where the activation functions are linear for all 
neurons. The ANN output can be written as: 

, 1,
1 0

n m
T

k i k k i n j k k j k k
i j

y w y w u w ϕ− + + −
= =

= + =∑ ∑           (4) 

where: 

1, 2, ,
T
k k k n m kw w w w +⎡ ⎤= ⎣ ⎦K  

and ϕ is the so called regressor. Comparing the 

above Equation (4) with Equation (3), it can be 
observed that network weights ,i kw  represents the 

estimated plant parameters. Networks weights (or 
plant parameters) are updated by using the well 
known Widrow-Hoff rule for single-output multiple-
input ANN: 

( ) 1
1

1 1

ˆk k k
k k T

k k

y y
w w

α ϕ
ε ϕ ϕ

−
−

− −

−
= +

+
                     (5) 

where ŷ  denotes ANN output while y  denotes real 

measured plant output and 0ε > , ( )0,2α ∈ , 

(Etxebarria, 1994). Thus, network weights are 
updating by comparing the network output with the 
real plant output (which it is the target value). Then, 
the estimated weights vector (which is the estimated 
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plant parameters vector) is used for controller design 
purposes.  
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Figure 2: Single neural network estimator 
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Figure 3: Multiestimation neural network 

 
Now, the multiestimation scheme presented in 
Section 2 can be represented by increasing the 
number of neurons in the output layer to a number 
of  neurons equal to the number of different 
estimators used in the multiestimation scheme. Since 
the output layer has one neuron in this case, a 
multiestimation scheme with eN  estimators running 

in parallel will have eN  neurons in its output layer 

as the Figure 3 displays for the case of two 
estimators. Hence, the number of connections and 
weights between neurons is increased. Thus, the 
proposed ANN is an structure containing itself the 

eN  estimated parameter vectors (which are 

represented by the corresponding weights). The 
target vector (with which the ANN is trained) is 
defined in this case by repeating the original target 
value as many times as the number of estimators 
used. If the original target value was the real 
measured plant output, ky , in the case with two 

estimators, the new target vector is defined by: 
[ ]*T

k k ky y=y  

while in the general case with eN  estimators, it is: 

*

e

T
k k k k

N

y y y
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

K
1442443

y  

The switching logic compares each output of the 
ANN with the real plat output and chooses the set of 

weights associate with the best estimated output in 
order to calculate the control law. The training rule 
is the generalization of the above Widrow-Hoff 
single output training rule (5) to the multiple output 
case: 

( )( )
, 1

, , 1
1 1

ˆ i
k k j k

ij k ij k T
k k

y y
w w

α ϕ
ε ϕ ϕ

−
−

− −

−
= +

+
                  (6)  

where , 1j kϕ −  stands for the j-th component of the 

vector 1kϕ − . Note that the updating law for the 

estimated parameters vectors (network weights) is 
formulated for the multiple output ANN as a unique  

 
Figure 4: Single model based output 

 
identity. In the following, a simulation example is 
presented containing two estimation algorithms and 
the above training rule. The switching logic is 
assumed to respect a minimum residence time 
between successive switchings in order to guarantee 
closed-loop stability (Ibeas et al, 2003). The discrete 
plant has the real plant parameter vector 

[ ]1.9 0.73 0.195 1 0.6 0.0875Tθ = − − −   and 

the reference model is:  

[ ]0.6 0.11 0.006 1 0.32 0.0255T
mθ = − − −  

while the estimators are initialised by the following 
estimated parameter vectors (or network weights) : 

[ ](1)
0̂ 0.5 0.25 0.5 0.79 0.5 0.08Tθ = − − −  

[ ](2)
0̂ 1.5 0.7 0.2 0.9 0.5 0.08Tθ = − − −  

It is taken 0.001ε =  and 1α = . The input signal is a 
unity square wave with a 20 samples period. The 
residence time is 2 samples and the performance 
index to decide switches is  

( )2( ) ( )

1

ˆ( )
k

i k i
sJ k y yλ −

=

= −∑ l
l l

l

                   (7) 

with the forgetting factor 0.95λ = . The single 
adaptive control scheme is initialised with the first 
estimator. Simulations are showed in Figures (4-6).  
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Figure 5: Multimodel based neural controller. 

 
Figure 6:  Switching map for the multimodel ANN. 

 
It is showed that the system improves its behaviour 
by using the best weight set at each time (respecting 
the residence time constraint) Figures (4-5). The 
switching map kc  illustrating the switching process 

between both set of weights (parameters) is showed 
in Figure 6. The above idea can be extended to the 
most general case in which the ANN has a number 
of layers greater than two and a number of neurons 
in the output layer greater than one. Thus, the 
following rule is proposed in order to obtain 
multimodel based ANN controllers from a pre-
designed ANN single model one. Suppose that the 
single model ANN has Nl  layers and oN  neurons 

in its output layer. Now, define a new ANN for the 
multimodel structure as an ANN with the same 
number of layers as the original one and a number of 
neurons in the output layer equal to '

o e oN N N=  

where eN  is the number of estimators considered. 

The target vector in this case is built by repeating the 
original target vector (from the single model ANN) 
as many times as the number of estimators 
considered. The switching logic acts as an intelligent 
supervisor deciding the set of weights that will be 
used for control purposes. In such an easy way, the 
multimodel structure can be integrated with 

conventional neural network based controllers in 
order to obtain more general ANN based multimodel  
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 Figure 7: General multimodel ANN scheme. 
structures. The training rule is the same as in the first 
ANN, extended to the new weights associated to 
new connections. The general multimodel neural 
network scheme is displayed in Figure 7. 

4 GENETIC ALGORITHMS 

In this Section, a genetic algorithm representation is 
given for multiestimation based control schemes. 
Genetic algorithms are usually used as optimisation 
tools in complex problems (Beyers, 1998). The key 
idea is to use the natural selection and the genetics 
to obtain at each generation more accurate solutions 
to an original complex problem. First, a codification 
for the solutions for the proposed problem is 
decided. The codification process consists of 
deciding how the information about our problem has 
to be managed by the genetic algorithm. The 
codification may be formed by binary (formed by 
1’s and 0’s) or numeric (natural, real,…) vectors. 
These vectors are called chromosomes in the GA 
context. In the multiestimation case, the 
chromosomes will be vectors of real components 
containing the plant parameter values. The best 
vector is that for which the estimated output 
(associated to that parameter vector) is closer to the 
real plant output. A general description of a genetic 
algorithm is given by the Figure 8. In the first step, 
there exists an initial set of vectors uniformly 
distributed over the possible parameter space.  
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Figure 8: General structure of a genetic algorithm 

 
This is a typical assumption in the adaptive control 
problem, the existence of a convex and compact 
subset of the parameter space where the real plant 
parameter vector is assumed to belong to. Once the 
GA is initialised it starts running. First, one of the 
above vectors is chosen in order to generate the 
control law. The selection is made according to a 
performance index which evaluates the quality of 
each vector (in the first step the choice may be 
arbitrarily). The unique requirements about the 
performance index (in a GA context) are that it must 
be nonnegative and monotonically increasing with 
quality, i.e., the better vector is that which has the 
greater performance index. Then, the parameter 
estimated vector are modified by applying some 
modification rules. The modification rules may 
depend on the value of the performance index 
associate with each vector. In GA terms, these 
modification rules are called, selection, crossover 
and mutation. The adaptive counterpart is the 
updating rule for the estimation algorithms such as 
the least squares one or any of its variants for 
example. Once the new chromosomes are obtained, 
the algorithm evaluates the quality of each new 
vector in order to obtain the best one and the process 
is repeated so on. Note that the GA representation 
allows a broad class of modification rules for the 
estimated vectors which may not be driven by a 
classical parameter updating equation. Furthermore, 
the number of different models (the number of 

chromosomes) may not be constant during the 
system operation. This suggests the following 
interesting idea for multimodel based controllers. If 
the system detects that with a reduced number of 
models an acceptable system behaviour is achieved, 
then it may suppress some of the models 
(chromosomes) in order to prune unnecessary 
computations. Thus, the multiple models are 
classified into priority sets in such a way that models 
with a similar performance belong to the same set 
(according to some performance criteria, for 
example, all models with performance index inside a 
prescribed range belong to the same set). Thus, the 
sets associated to models with the worst 
performance may be pawn from the GA process 
while those sets containing the most accurate models 
may be recompensed by increasing the number of 
models inside them. Thus, from a general uniformly 
spaced different models, the system is able to obtain 
an improved number of models achieving an 
acceptable system performance.  

5 FUZZY LOGIC APPROACH 

In this Section, a fuzzy logic approach is given for 
multiestimation based control schemes. As it is 
known, fuzzy set theory is a generalization of the 
classical set theory (Tilli, 1992). It allows a class of 
objects with a continuum grade of membership. 
Such a set is characterised by a membership 
(characteristic) function which assigns to each object 
its grade of membership ranging from one to zero. 
The classical set theory operations are extended to 
the fuzzy case as well. Inference relations over fuzzy 
set objects define the so called fuzzy logic. In the 
multiestimation scheme presented in Section 2, an 
estimated parameter vector is chosen from a set of 
parameter estimated vectors to parameterise the 
adaptive controller at each sampling time. However, 
instead of choosing a single estimated vector, it is 
also possible to define a combined estimated vector:  

( )(1) (2)
1, 2, ,

ˆ ˆ ˆ ˆ... e

e

N
k k k k k N k kθ α θ α θ α θ= + + +                (8) 

where ,0 1i kα≤ ≤ , 1 ei N≤ ≤  and 0k∀ ≥ . This linear 

combination (8), is convex in the sense that 

,
1

1
eN

i k
i

α
=

=∑ , 0k∀ ≥ . In the standard cases (considered 

above and in (Ibeas et al, 2003)), only one 
coefficient ,i kα  is different to zero and equal to 

unity. However, it is also possible to let each 
coefficient ,i kα  take a value between one to zero. 

Then, we can interpret each one as a membership 
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function of the combined estimated vector k̂θ  to the 

corresponding estimation algorithm with vector ( )ˆ i
kθ . 

The following membership function is proposed in 
order to clarify the interpretation: 

1

1

( )

,
( )

1

e

i
k

i k N

k

J

J

α
−

−

=

=

∑ l

l

                              (9) 

where the ( )
kJ l  symbolizes the performance indexes 

for evaluating the quality of each estimation scheme. 
A bigger performance index for an estimation 
algorithm leads to a less membership function for 
the combined estimated vector to the corresponding 
estimation algorithm associate estimated vector. The 
fuzzy logic approach allows that the membership 
functions may be determined by linguistic rules as  

If f(condition1, condition2,…,conditionN) is true 
Then modify membership functions as (… rules…) 

where f(·) is a logical function of its arguments. As 
an example, it may be possible to avoid control 
singularities associated with pole-zero cancellations  
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Figure 9: Comparison between classical and combined 

schemes. 
 

in pole placement control algorithms. Given a set of 
estimated parameter vectors, add another vector (or 
vectors) to the set. This vector (or vectors, which 
may be fixed or updated at each sample) represents 
coprime pole-zero polynomials. If the system is near 
a control singularity (condition that can be detected 
with a prescribed threshold by using the determinant 
of the Sylvester matrix for example), then modify 
membership functions in such a way that 
singularities in the control law are avoided. 
Membership functions are modified in order to make 
more representative the coprime vectors in such a 
way that the combined estimated vector remains 
coprime. Thus, linguistic rules for specifying the 
system behavior can be included in the system 
operation increasing the way in which multimodel 
based controllers can be designed. Each estimated 

parameter vector is updated according to its 
corresponding estimation scheme. The updating of 
the membership functions must respect a minimum 
residence time in order to guarantee closed-loop 
stability. The following simulations show the 
usefulness of the proposed scheme. The plant, the 
input signal and the performance index used in (9) 
are the same as in the ANN example (7). The 
estimation algorithm is of least squares type. The 
residence time is 5 samples. There are five 
estimators initialized by: 

 [ ](1)
0̂ 0.5 0.2 0.5 0.79 0.35 0.082Tθ = − − −  

[ ](2)
0̂ 1 0.4 0.4 0.9 0.45 0.084Tθ = − − −  

[ ](3)
0̂ 1.5 0.6 0.3 1 0.55 0.086Tθ = − − −  

[ ](4)
0̂ 2 0.8 0.2 1.2 0.65 0.088Tθ = − − −  

[ ](5)
0̂ 2.5 1 0.15 1.5 0.75 0.088Tθ = − − −  

The initial values for the membership functions are: 

[ ]0 1 5 1 5 1 5 1 5 1 5α =  and they are updated 

by Equation (9) respecting the residence time 
constraint. The single adaptive control scheme is 
initialized by the first estimator. Figure (9) show a 
simulation example of the proposed scheme. 

6 CONCLUSIONS 

In this paper, an artificial intelligence representation 
of multiestimation based controllers has been 
developed. A neural network interpretation of 
multimodel based controllers has been given while a 
method for generating multimodel based artificial 
neural networks controllers from pre designed single 
model ones has been proposed. A genetic algorithm 
and fuzzy based approach has been given to 
multiestimation based schemes. These artificial 
intelligence techniques suggest new ideas and 
directions to be incorporated to the classical 
multimodel controllers. 
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