
ASSESSING EFFORT PREDICTION MODELS FOR
CORRECTIVE SOFTWARE MAINTENANCE

An empirical study

Andrea De Lucia Eugenio Pompella Silvio Stefanucci
Dipartimento di Matematica e Informatica

University of Salerno
Via S. Allende, 84081 Baronissi (SA), Italy

EDS Italia Software S.p.A.
Viale Edison, Loc. Lo Uttaro

81100 Caserta, Italy

Department of Engineering
University of Sannio

Piazza Roma, 82100 Benevento, Italy

Keywords: Software Engineering, Corrective Software Maintenance, Management, Cost Estimation Models

Abstract: We present an assessment of an empirical study aiming at building effort estimation models for corrective
maintenance projects. We show results from the application of the prediction models to a new corrective
maintenance project within the same enterprise and the same type of software systems used in a previous
study. The data available for the new project are finer grained according to the indications devised in the
first study. This allowed to improve the confidence in our previous empirical analysis by confirming most of
the hypotheses made and to provide other useful indications to better understand the maintenance process of
the company in a quantitative way.

1 INTRODUCTION

Planning software maintenance work is a key factor
for a successful maintenance project and for better
project scheduling, monitoring, and control. To this
aim, effort estimation is a valuable asset to
maintenance managers in planning maintenance
activities and performing cost/benefits analysis. In
fact, it allows to:
• support software related decision making;
• reduce project risks;
• assess the efficiency and productivity of the

maintenance process;
• manage resources and staff allocation, and so on.
Management can use cost estimates to approve or
reject a project proposal or to manage the
maintenance process more effectively. Furthermore,
accurate cost estimates would allow organizations to
make more realistic bids on external contracts.
Unfortunately, effort estimation is one of the most
relevant problems of the software maintenance
process (Banker et al., 1993; Kemerer & Slaughter,
1999; Jorgensen, 1995). Predicting software
maintenance effort is complicated by the many
typical aspects of software and software systems that
affect maintenance activities. The maintenance
process can be focused on several different types of
interventions: correction, adaptation, perfection, etc.

(IEEE, 1998). Maintenance projects may range from
ordinary projects requiring simple activities of
understanding, impact analysis and modifications, to
extraordinary projects requiring complex
interventions such as encapsulation, reuse,
reengineering, migration, and retirement (De Lucia
et al., 2001). Moreover, software costs are the result
of a large number of parameters (Boehm, 1981), so
any estimation or control technique must reflect a
large number of complex and dynamic factors. The
predictor variables typically constitute a measure of
size in terms of LOC or function points (Niessink &
van Vliet, 1998) or complexity (Nesi, 1998) and a
number of productivity factors that are collected
through a questionnaire (Boehm, 1981). Quality
factors that take into account the maintainability of
the system are also considered to improve the
prediction of the maintenance costs (Granja-Alvarez
& Barranco-Garcia, 1997; Sneed, 2003).
The size of a maintenance task can also be used to
estimate the effort required to implement the single
change (Jorgensen, 1995; Sneed, 2003). However,
while useful for larger adaptive or perfective
maintenance tasks during software evolution
(Fioravanti & Nesi, 2001), this approach is not very
attractive for managers that have to estimate the
effort required for a corrective maintenance project.
Indeed, in this case the effort of a maintenance
period greatly depends on the number of

383
De Lucia A., Pompella E. and Stefanucci S. (2004).
ASSESSING EFFORT PREDICTION MODELS FOR CORRECTIVE SOFTWARE MAINTENANCE - An empirical study.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 383-390
DOI: 10.5220/0002595603830390
Copyright c© SciTePress

maintenance requests, whereas tasks of the same
type typically require a similar effort (Basili et al.,
1996; Ramil, 2000).
In a recent work (De Lucia et al., 2002), we
presented an empirical study aiming at building
corrective maintenance effort prediction models
from the experience of the Solution Center setup in
Italy (in the town of Caserta) by EDS Italia
Software, a major international software company.
This paper presents a replicated assessment of the
effort prediction models described in (De Lucia et
al., 2002). We show results from the application of
the prediction models to a new corrective
maintenance project within the same enterprise and
the same application domain as the projects used in
the previous study. The data available for the new
project were finer grained according to the
indications devised in the first study. This allowed to
improve the confidence in our previous empirical
analysis by confirming most of the hypotheses made
and to provide other useful indications to better
understand the maintenance process of the company
in a quantitative way.
The paper is organized as follows. Sections 2 and 3
report the experimental setting and the results of the
previous experimental study, respectively. Section 4
describes the new project, while Sections 5-7 present
and discuss the results achieved through the analysis
of the finer grained data available for the new
maintenance project. Concluding remarks are
outlined in Section 8.

2 EXPERIMENTAL SETTING

Most of the business of the subject company
concerns maintaining third party legacy systems.
The subject company realizes outsourcing of system
conduction and maintenance, including help desk
services, for several large companies. Very often the
customers ask for a very high service agreement
level and this requires an accurate choice and
allocation of very skilled maintainers, with adequate
knowledge of the application domain and
programming language of the maintenance project.
This implies a careful definition of the maintenance
process with well-defined activities, roles, and
responsibilities to avoid inefficiencies (Aversano et
al., 2002). The phases of the life-cycle of the
ordinary maintenance process are shown in Table 1.
They closely follow the IEEE Standard for Software
Maintenance (IEEE, 1998).
The data set available for our study is composed of a
number of corrective software maintenance projects
conducted on software systems of different
customers. The subject systems are mainly business

applications in banking, insurance, and public
administration. These projects allow for general
conclusions that can be applied to other corrective
maintenance projects in the business application
domains of the subject company.

Table 1: Phases of the corrective maintenance process
Phase Short description
Define Requirements identification and definition
Analyze Requirements analysis
Design Design of software modules and test cases

Produce Implementation of software modules and
execution of test cases

Implement Delivery and introduction of the new modules in
the software system

The main advantage of the data set is that it does not
contain missing values. This is due to the careful
manner in which the data was collected. In fact, the
subject company is at CMM level 3 and is currently
planning the assessment to achieve CMM level 4. At
the CMM level 3, metrics are collected, analyzed,
and used to control the process and to make
corrections to the predicted costs and schedule, as
necessary. Therefore, metric collection was crucial
and supported by automatic tools, such as workflow
management systems which are of aid to process
automation and improvement (Aversano et al.,
2002). Technical metrics, such as software
complexity metrics, were not available. In fact, for
each new maintenance project, the subject company
preliminarily collects a number of different technical
metrics on a meaningful subset (about 20%) of the
application portfolio to be maintained. The goal is to
make an assessment of the software systems to make
decisions about negotiations of the customer service
levels, and to select the skills required by the
maintenance team (De Lucia et al., 2001).

3 PREVIOUS EMPIRICAL STUDY

In a previous work (De Lucia et al., 2002), the data
of five corrective maintenance projects was used in
an empirical study aiming at constructing effort
prediction models. We used multiple linear
regression analysis to build prediction models and
validated them on the project data using cross-
validation techniques (Bradley & Gong, 1983).
The data set was composed of 144 monthly
observations, collected from all the projects. For
each observation, corresponding to monthly
maintenance periods for each project, the following
data was available and considered in our analysis
(see Table 2):
• size of the system to be maintained;
• effort spent in the maintenance period;

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

384

• number of maintenance tasks, split in three
categories:

type A: the maintenance task requires software
source code modification;

type B: the maintenance task requires fixing of
data misalignments through database queries;

type C: the maintenance task requires
interventions not included in the previous
categories, such user disoperation, problems
out of contract, and so on.

The cost estimation model previously used within
the organization was based on the size of the system
to be maintained and the total number of
maintenance tasks. For this reason we decided to
build a linear model taking into account these two
variables (model A in Table 3). However, we
observed that the effort required to perform a
maintenance task of type A might be sensibly
different than the effort required to perform a task of
type B or C. Also the number of maintenance tasks
of type A is sensibly lower than the number of
maintenance tasks of the other two types. For this
reason, we expected to achieve a sensible
improvement by splitting the variable N into the two
variables NA and NBC (see Table 2). The result of
our regression analysis was model B in Table 3.
Finally, we also built a model considering the effect
of each different type of maintenance tasks (model C
in Table 3), although this model is generally more
difficult and risky to be used, because it requires
more precise estimates of the number of tasks of
type B and C. Indeed, the coefficients of this model
seem to suggest that the effort required for these two
types of maintenance tasks is different: in particular,
tasks of type C seem to be more expensive than
tasks of type B.
To evaluate the prediction performance, we
performed cross-validation and computed MRE
(Magnitude Relative Error) for each observation,
MMRE (Mean Magnitude Relative Error) and
MdMRE (Median Magnitude Relative Error).
The MREi on an observation i is defined as:

i

ii
i y

yy
MRE

−
=

*ˆ

where yi is the value of the i-th value of the
dependent variable as observed in the data set and ŷi*
is the corresponding value predicted by the model.
MMRE is the average of the MREi, while MdMRE
is the median of the MREi.
Moreover, the following variants of the measure
PRED (Conte et al., 1986; Jorgensen, 1995) were
computed:

• PRED25 = % of cases with MRE <= 0.25.
• PRED50 = % of cases with MRE <= 0.50.

The MMRE, MdMRE, and PRED measures
resulting from the leave-one-out cross-validation are
shown in Table 4.
The prediction performances of our models are
nevertheless very interesting according to the
findings of Vicinanza et al. (1991), in particular
considering that what is really wanted by software
management is not to predict accurately, but to
control over the final results.

Table 2: Collected metrics
Metric Description
NA # of tasks requiring software modification
NB # of tasks requiring fixing of data misalignment
NC # of other tasks
NBC NBC=NB+NC
N N=NA+NB+NC
SIZE Size of the system to be maintained [kLOC]
EFFORT Actual Effort [man-hours]

Table 3: Effort prediction model parameters

Model Var. bi (Coeff.) p-value R2 Adj R2

A
N
SIZE

1.342904
0.169086

<10E-07 0.8257 0.8245

B
NA
NBC
SIZE

9.053286
0.138275
1.164826

<10E-07
<10E-07
<10E-07

0.8891 0.8876

C

NA
NB
NC
SIZE

7.86988
0.514121
2.81486

0.130507

<10E-07
<10E-07
0.000001
<10E-07

0.8963 0.8941

Table 4: Model predictive performances
 Model A Model B Model C
MMRE 42.53% 36.40% 32.25%
MdMRE 37.57% 29.16% 25.35%
PRED25 31.25% 40.36% 49.31%
PRED50 66.75% 74.56% 82.64%

4 NEW EMPIRICAL STUDY

The main limitation of the data set was the fact that
only the total effort of each maintenance period was
maintained, while data for the single maintenance
tasks was not available.
Indeed, it would have been interesting to increase
the granularity of the collected data, also considering
the effort of all the tasks of the same type or, even
better, the effort of the single maintenance task. The
availability of this data would allow to:
• validate our hypothesis of considering different

maintenance task types in the cost estimation
models;

ASSESSING EFFORT PREDICTION MODELS FOR CORRECTIVE SOFTWARE MAINTENANCE - AN EMPIRICAL
STUDY

385

• assess the different task types in a quantitative
way;

• discover outliers at different granularity levels,
both for monthly observations, and for single
maintenance requests;

• understand the process in a quantitative way.
To overcome the limitations of the first study
concerning the granularity of the data, the subject
company implemented a specific process
management tool (PMT) and used it in a new
maintenance project. The PMT is web-based and is
used at three different geographical sites,
corresponding to the different Solution Centers
involved in this new project. Its main capabilities are
recording time and effort needed to carry out each
phase of the maintenance process, notifying events
to the maintenance team members responsible to
perform a task when this has to be started,
interfacing existing tools for configuration
management, tracking maintenance requests.
Each maintenance request coming from the
customer is recorded by a fist level Help Desk using
a tracking tool that is on-line consulted only on one
site by the software analysts responsible for this
maintenance project. The analysts have two options:
accepting the request and routing it to other sites or
discarding the request and providing the motivations
directly to the Help Desk tracking tool. Each
accepted request is assigned a typology, that can be
Change (small evolution), Defect (trouble ticket), or
Other. Moreover, if the request is classified as
Defect, there are other attributes specifying the
severity and the associated priority (High, Medium,
Low). The maintenance process is composed of a set
of phases (shown in Table 1), again decomposable in
a set of elementary activities based on the typology
of the maintenance request. Each phase can be
assigned to different human resources allocated on
the project.
The new project was still on when we started the
empirical study, so the data concerning the first 6
months of the project were available. The PMT
allowed to collect about 30,000 observations,
concerning 7,310 maintenance requests received in
these 6 months. In this case, each observation
corresponds to one phase of the maintenance process
applied to a maintenance request, while in the
previous empirical study it corresponded to the
aggregation of all the maintenance requests received
in one month. For each maintenance request the
following data was available:
• Effort spent on each phase of the maintenance

process (measured in man-hours);
• Priority, split in three categories:

High: anomalies that entail the total
unavailability of the system;

Medium: anomalies that entail the partial
unavailability (one or more functions) of the
system;

Low: anomalies that do not entail blocks of the
system’s functions, but degrade the
performances of the system or cause incorrect
operations or are limited to the user interface.

Table 5 shows the descriptive statistics for the
monthly metrics of this maintenance project.

Table 5: Descriptive statistics of the new project
Metric Min Max Mean Median Std.Dev.
NA 66 96 83.33 83.5 10.23
NB 276 472 353.83 348 69.39
NC 625 927 780.5 782 104.23
N 967 1423 1217.67 1223 164.51
EFFORT 3225 4857 3812.5 3768 539.58

5 ASSESSING PREDICTIVE
PERFORMANCES ON THE NEW
PROJECT

Our first analysis was evaluating the predictive
performances of the models built in De Lucia et al.
(2002) on the new maintenance project. We applied
the models to the new data simulating their behavior
as it was really applied for prediction purposes. In
fact, for the first monthly observation we used
directly the models and coefficients of Table 3; for
the next observation, we added previous
observations to the data learning set of the model
and recalibrated the models calculating the
coefficients again. Results are shown in Table 6.

Table 6: Assessed model predictive performances
 Model A Model B Model C
MMRE 36.91% 31.40% 16.60%
MdMRE 32.31% 27.29% 14.31%
PRED25 0.00% 33.33% 83.33%
PRED50 66.66% 66.66% 100.00%

For the best model (model C) only one prediction
falls outside the 25% wall, producing a PRED25
value of 83.33%. The MRE of each observation is
reasonably low for all the predictions: if we discard
the worst prediction (MRE = 35.56%), the MRE has
a maximum value of 21.00%, that is surely an
acceptable error value for the software maintenance
effort prediction. The mean MRE is 16.60%, again
an excellent value. It is worth noting that although
the number of monthly periods is small, the

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

386

performance parameters in Table 6 exhibit the same
positive trends as in the previous study (see Table
4), in particular concerning MMRE e MdMRE.
However, the small number of monthly periods
seems to be the main reason for the greater
variations of the PRED measures.
Our previous work was centered on the model
construction and assessment of the prediction
performance through cross-validation (Bradley &
Gong, 1983). In this paper the granularity of the data
collected for the last software project allows us to
make further analyses: we have useful data to
confirm (or to reject) the basic hypothesis of the
effort prediction model, namely the assumption that
the tasks of different type require different effort to
be made and, in particular, tasks of type A generally
require greater effort than the other two types. The
box plot of Figure 1 and the data in Table 8 clearly
confirm this hypothesis and provide us with a lot of
other information about the maintenance process.
Each type of task has mean and median values
sensibly different and presents a higher value for the
coefficient of variation (it is the ratio of standard
deviation by mean), thus indicating the presence of
statistical outliers. However, rather than discarding
all statistical outliers, we decided to analyze the data
in a flexible way: we only discarded the
maintenance requests with an effort that was clearly
abnormal compared with all the other observations.
These outliers represent isolated points with very
high effort values almost of one magnitude order
greater than the other observations (including other
statistical outliers). On the other hand, besides
abnormal outliers, it is common to have a relatively
small number of maintenance requests requiring a
great effort (compared to mean value); therefore, if
we had discarded from our analysis also these
observations that can be considered as outliers by a
pure statistical point of view, we would have surely
lost useful information about the software
maintenance process.
It is worth noting that the effort required to
accomplish the maintenance tasks corresponding to
abnormal outliers is very large (almost two
magnitude order greater than the mean). These
maintenance requests can be easily identified as
soon as they begin to be worked, as their resolution
is usually non standard and requires more complex
analysis and design. Sometimes, they are
programmed maintenance requests, such as database
restructuring operations. These can be viewed as the
perfective interventions auspicated by Lehman’s
laws of software evolution to deal with the
increasing complexity and declining quality of the
software systems (Lehman & Belady, 1985). For this
reason, the effort of these maintenance tasks should
not be considered in the prediction model; rather, a

project manager should account for a small number
of such tasks when estimating the effort of the
maintenance project.
According to this heuristic we identified five
outliers, corresponding to five maintenance requests,
one of type A, three of type C and one of type B.
After this elimination we recalibrated the effort
prediction models and obtained the new relative
errors shown in Table 7: the performance values are
improved in all the parameters, although slightly.
Moreover, if we consider the model C, MRE
sensibly decreases for all the months which have an
outlier discarded; in particular, the maximum value
of the monthly MRE shrinks from 35.56% to
26.48%.

Table 7: Assessed model predictive performances
(without outliers)

 Model A Model B Model C
MMRE 37.72% 28.06% 15.69%
MdMRE 38.68% 30.40% 13.56%
PRED25 16.66% 33.33% 83.33%
PRED50 66.66% 83.33% 100.00%

6 ANALYSIS OF TASKS OF
DIFFERENT TYPES AND
PRIORITY

In this section we analyze the distribution of the
effort among tasks of different type and priority. As
shown in Figure 1, the height of the NA box
indicates that tasks of type A have higher variability
than the tasks of other types. Generally, this type of
tasks:
• requires an effort great almost five or six times

the effort required by the other two types, as it
can be noted by comparing the values of the
quartiles, of the medians, and of the box fences
(adjacent values);

• has effort value ranges clearly higher than the
other two types;

• has the main influence on the effort.
This confirms our hypothesis about the different
influence on the effort determined by the type of
tasks.
The other two types of tasks have similar boxes,
indicating that the tasks of type B and C:
• generally require similar effort to be made, with

a slight adjunctive effort for type B;
• have a small variability range, as the efforts of

the maintenance tasks comprised between the
10th and 90th percentiles range between 0.4 and

ASSESSING EFFORT PREDICTION MODELS FOR CORRECTIVE SOFTWARE MAINTENANCE - AN EMPIRICAL
STUDY

387

4 hours for maintenance tasks of type B and
between 0.4 and 3 hours for maintenance tasks of
type C (see Table 8).

Figure 1: Effort distribution box plot with respect to
maintenance request types

Table 8: Effort distribution among task types

 NA NB NC
Mean 12.78 2.43 1.94
StDev 20.30 6.86 7.25
10th Percentile 1.75 0.40 0.40
Median 6.75 1.20 1.00
90th Percentile 30.00 4.00 3.00

A consideration to make is the fact that while the
coefficients of model C in Table 3 seems to suggest
that in the previous projects the effort required for
tasks of type C is greater than the effort required for
tasks of type B, the detailed data of the new project
seems to confute this hypothesis, as maintenance
tasks of type B and C require a similar effort
(slightly higher for tasks of type B). Therefore, the
major improvement of model C with respect to
model B (compare Tables 4 and Table 6) was
unexpected, as the data of the new project seems to
justify the aggregation of the tasks of type B and C
and its use as a single variable in the prediction
model B. The reason of the major improvement of
the performances of model C can be justified by a
compensation effect of the coefficients of the model.
It is worth noting that due to the similarity of the
efforts of maintenance tasks of type B and C and due
to the fact that the number of maintenance tasks of
type C is about twice the number of maintenance
tasks of type B, applying model C is equivalent to
apply model B with a lower coefficient for NA and a
higher coefficient for NBC (see Table 3). Therefore,
giving a greater weight to tasks of types B and C
with respect to tasks of type A would result in better
performances of model B in the new project.
The classification of each request by priority allows
to make further considerations about the
maintenance process execution. Almost all the
outliers do not have high priority. From Table 9 and

Table 10 there is a low percentage of high priority
tasks. The larger part of the effort is spent on the low
priority tasks, which are resolved after an accurate
scheduling of the activities. It is worth noting that,
among the low priority tasks, the tasks of type A
account only for 4.64% of the total number of
maintenance requests, but consume 22.93% of the
total effort. This suggests that a big part of
maintenance requests that impacts on software code
has low priority and a complexity level not trivial, as
they need more effort to be made.

Table 9: Task type and priority distribution (%)
 Type A Type B Type C
High priority 0.60 2.18 2.08
Medium priority 1.59 3.97 15.35
Low priority 4.64 22.91 46.66

Table 10: Effort distrib. (%) among task type and priority

 Type A Type B Type C
High priority 2.23 4.12 1.96
Medium priority 5.80 4.03 12.40
Low priority 22.93 16.90 29.62

7 EFFORT DISTRIBUTION
ANALYSIS

In this section we analyze the data about the
distribution of the effort to the phases of the
maintenance process. Figures 2 and 3 show the
phase distribution distinguishing the tasks of type A
from the tasks of type B and C. This distinction is
needed because the maintenance process for a task
of type A requires software code modifications: this
operation and all the strictly correlated activities
(such as document check-in/check-out, testing
execution, etc.) are included in the phase called
Produce, that is not present in the other task types.
There are not unexpected results: for type A the
Produce phase is the most expensive, as it can be
seen from the height of the box and of the upper
fence. This is reasonable, as the effort needed for
testing (that generally is an expensive operation), is
accounted in this phase.
For type B and C the phase distribution is almost
regular: all the boxes have similar height and have
median value at 25%; there are no high values for
the fences, and the phases require analogous time to
be executed, with Analyze and Design generally
more expensive than Define and Implement.
It is worth noting that the phases of the maintenance
process for the tasks of type B and C have a very
short time. In most cases, they are performed in less
than one hour. In this case, the phase distribution

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

388

analysis clearly shows that there is no real utility to
perform analyses aiming at reducing the time needed
for the completion of a single phase. On the other
hand, it is useful to analyze them to discover
particular trends or phase distribution correlated to
specific process characteristics. In our case, we have
not discovered any of these properties, so we have
limited our discussion to the simple description of
the time distribution among the different phases.

Figure 2: Effort distribution box plot with respect to
phases (maintenance requests of type A)

Figure 3: Effort distribution box plot with respect to
phases (maintenance requests of type B and C)

8 CONCLUSION

In this paper we have presented an assessment of an
empirical study aiming at building corrective
maintenance effort estimation models. In a previous
work (De Lucia et al., 2002) we used as a case study
a data set obtained from five different corrective
maintenance projects to experimentally construct,
validate, and compare model performances through
multivariate linear regression models. The main
observation was to take into account the differences
in the effort required to accomplish tasks of different
types. Therefore, we built effort prediction models
based on the distinction of the task types. The
prediction performance of our models was very
interesting according to the findings of Vicinanza et
al. (1991).

A critique to the applicability of the cost estimation
models might be the fact that they consider as
independent variables the number of maintenance
tasks that are not known at the beginning of a project
and that should be in turn estimated. However, as far
as our experience with these type of systems has
demonstrated, the overall trend of the maintenance
tasks of each type appears to follow the Lehman’s
laws of software evolution (Lehman & Belady,
1985), in particular the self regulation and the
conservation of organizational stability laws: in
general the number of maintenance tasks of each
type oscillates around an average value across the
maintenance periods. These average values can be
calculated with a good approximation after a few
maintenance periods and used to estimate the
maintenance effort. Both the average values and the
effort estimates can be improved as soon as new
observations are available. A deeper discussion of
this issue is out of the scope of this paper. More
details and empirical data are available from the
authors.

0,0

25,0

50,0

75,0

100,0

Define Anal yze Design Produc e Impl ement
Phases

%

Although the results of the previous study were
good, we identified some limitations concerning the
granularity of the metrics used in the previous
empirical study and auspicated the collection of
further information useful to overcome them. The
subject company is currently planning the
assessment to move from CMM level 3 to CMM
level 4. It is a requisite of the CMM level 3 that
metrics are to be collected, analyzed, and used to
control the process and to make corrections on the
predicted costs and schedule, if necessary.
Therefore, metric collection was crucial. The study
presented in (De Lucia et al., 2002) suggested to
record process metrics at a finer granularity level
than a monthly maintenance period. The subject
company applied these considerations in the
definition of the metric plan of a new maintenance
project, analyzed in this paper: productivity metrics
have been collected and recorded for each
maintenance request, allowing to obtain more
accurate productivity data. Therefore, we performed
a replicated assessment of the effort prediction
models on a new corrective maintenance project.
Thanks to the finer data, we have been able to:

0,0

25,0

50,0

75,0

100,0

Define Analize Desig n Impl em ent
Phases

%

• verify the prediction performances of the models
on a new maintenance project, applying the

 effort prediction model to the new project data;
• verify the hypothesis of the different effort

needed by the tasks of different types in a
quantitative way, measuring the effort required
by the different task types;

• identify outliers in the data at a finer granularity
level, analyzing the single maintenance request
instead of their aggregation;

ASSESSING EFFORT PREDICTION MODELS FOR CORRECTIVE SOFTWARE MAINTENANCE - AN EMPIRICAL
STUDY

389

• improve the understanding of the corrective
maintenance process and its trends, by analyzing
the distribution of the effort among the different
process phases and different types and priorities
of the maintenance tasks.

At the end of the assessment on the new project we
had confirmation both of goodness of the prediction
performances of the estimation models and of the
validity of our hypotheses (different task types
require different effort). From the distribution of the
effort among the phases of the process, we also had
evidence that the corrective maintenance process
under study was quite stable. This is due to the long
dated experience of the subject company and its
maintenance teams in conducting corrective
maintenance projects. Perhaps, this is one of the
reasons why the company does not collect data for
this type of projects concerning other factors, such
as personnel skills that also generally influence
maintenance projects (Jorgensen, 1995). This lack of
available metric data is a limitation that should be
considered before using the estimation models
derived from our study outside the subject company
and the analyzed domain and technological
environment.
Future work will be devoted to introduce further
metric plans in the maintenance projects of the
subject organization. Besides statistical regression
methods, we aim at investigating other techniques.
For example, dynamic system theory can be used to
model the relationship between maintenance effort
and code defects (Calzolari et al., 2001).

REFERENCES

Aversano, L., Canfora, G., De Lucia, A., & Stefanucci, S.
(2002). Automating the Management of Software
Maintenance Workflows in a Large Software
Enterprise: a Case Study. Journal of Software
Maintenance and Evolution: Research and Practice,
14(4), 229-255.

Basili, V., Briand, L., Condon, S., Kim, Y.M., Melo,
W.L., & Valett, J.D. (1996). Understanding and
Predicting the Process of Software Maintenance
Releases. Proc. of Int. Conf. on Software Engineering,
Berlin, Germany, pp. 464-474.

Banker, R.D., Datar, S.M., Kemerer, C.F., & Zweig, D.
(1993). Software Complexity and Maintenance Costs.
Communications of ACM, 36(11), 81-94.

Boehm, B.W. (1981). Software Engineering Economics.
Prentice-Hall Inc., Englewood Cliffs, N.J., 1981.

Bradley E., & Gong, G. (1983). A Leisurely Look at the
Bootstrap, the Jack-Knife and Cross-Validation. Amer.
Statistician, 37(1), 836-848.

Calzolari, F., Tonella, P., & Antoniol, G. (2001).
Maintenance and Testing Effort Modelled by Linear
and Non Linear Dynamic Systems. Information and
Software Technology, 43(8), 477-486

Conte, S., Dunsmore, H., & Shen, V. (1986). Software
Engineering Metrics and Models. Benjamin-
Cummings Publishing Company, 1986.

De Lucia, A., Fasolino, A., & Pompella, E. (2001). A
Decisional Framework for Legacy System
management. Proceedings of IEEE Int. Conf. on
Software Maintenance, Florence, Italy, pp. 642-651.

De Lucia, A., Pompella, E., & Stefanucci, S. (2002).
Effort Estimation for Corrective Software
Maintenance. Proc. of Int. Conf. on Software
Engineering and Knowledge Engineering, Ischia,
Italy, pp. 409-416.

Fioravanti, F. & Nesi, P. (2001). Estimation and
Prediction Metrics for Adaptative Maintenance Effort
of Object-oriented Systems. IEEE Trans. on Software
Engineering, 27(12), 1062-1084.

Granja-Alvarez, J.C. & Barranco-Garcia, M.J. (1997). A
method for estimating maintenance cost in a software
project: a case study. Journal of Software
Maintenance: Research and Practice, 9(3), 161-175.

IEEE Std. 1219-1998 (1998). Standard for Software
Maintenance, IEEE CS Press, Los Alamitos, CA.

Jorgensen, M. (1995). Experience With the Accuracy of
Software Maintenance Task Effort Prediction Models.
IEEE Trans. on Software Engineering, 21(8), 674-681.

Kemerer, C.F. & Slaughter, S. (1999). An Empirical
Approach to Studying Software Evolution. IEEE
Trans. on Software Engineering, 25(4), 493-509.

Lehman, M. & Belady, L. (1985). Program Evolution:
Processes of Software Change. Academic Press,
Austin, 1985.

Niessink, F. & van Vliet, H. (1998). Two Case Studies in
Measuring Maintenance Effort. Proc. of IEEE Int.
Conf. on Software Maintenance, Bethesda, Maryland,
USA, pp. 76-85.

Nesi, P. (1998). Managing Object Oriented Projects
Better, IEEE Software, 15(4), 50-60.

Ramil, J.F. (2000). Algorithmic Cost Estimation Software
Evolution. Proc. of Int. Conf. on Software
Engineering, Limerick, Ireland, pp. 701-703.

Sneed, H.M. (2003). Software Maintenance Cost
Estimation. Advances in Software Maintenance
Management: Technologies and Solutions. M. Polo
editor, Idea Group Publishing, USA, pp. 201-227.

Vicinanza, S., Mukhopadhyay, T., & Prietula, M. (1991).
Software Effort Estimation: an Exploration Study of
Export Performance. Information System Research,
2(4), 243-262.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

390

