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Abstract: We present an assessment of an empirical study aiming at building effort estimation models for corrective 
maintenance projects. We show results from the application of the prediction models to a new corrective 
maintenance project within the same enterprise and the same type of software systems used in a previous 
study. The data available for the new project are finer grained according to the indications devised in the 
first study. This allowed to improve the confidence in our previous empirical analysis by confirming most of 
the hypotheses made and to provide other useful indications to better understand the maintenance process of 
the company in a quantitative way. 

1 INTRODUCTION 

Planning software maintenance work is a key factor 
for a successful maintenance project and for better 
project scheduling, monitoring, and control. To this 
aim, effort estimation is a valuable asset to 
maintenance managers in planning maintenance 
activities and performing cost/benefits analysis. In 
fact, it allows to: 
• support software related decision making;  
• reduce project risks; 
• assess the efficiency and productivity of the 

maintenance process;  
• manage resources and staff allocation, and so on.  
Management can use cost estimates to approve or 
reject a project proposal or to manage the 
maintenance process more effectively. Furthermore, 
accurate cost estimates would allow organizations to 
make more realistic bids on external contracts. 
Unfortunately, effort estimation is one of the most 
relevant problems of the software maintenance 
process (Banker et al., 1993; Kemerer & Slaughter, 
1999; Jorgensen, 1995). Predicting software 
maintenance effort is complicated by the many 
typical aspects of software and software systems that 
affect maintenance activities. The maintenance 
process can be focused on several different types of 
interventions: correction, adaptation, perfection, etc. 

(IEEE, 1998). Maintenance projects may range from 
ordinary projects requiring simple activities of 
understanding, impact analysis and modifications, to 
extraordinary projects requiring complex 
interventions such as encapsulation, reuse, 
reengineering, migration, and retirement (De Lucia 
et al., 2001). Moreover, software costs are the result 
of a large number of parameters (Boehm, 1981), so 
any estimation or control technique must reflect a 
large number of complex and dynamic factors. The 
predictor variables typically constitute a measure of 
size in terms of LOC or function points (Niessink & 
van Vliet, 1998) or complexity (Nesi, 1998) and a 
number of productivity factors that are collected 
through a questionnaire (Boehm, 1981). Quality 
factors that take into account the maintainability of 
the system are also considered to improve the 
prediction of the maintenance costs (Granja-Alvarez 
& Barranco-Garcia, 1997; Sneed, 2003).  
The size of a maintenance task can also be used to 
estimate the effort required to implement the single 
change (Jorgensen, 1995; Sneed, 2003). However, 
while useful for larger adaptive or perfective 
maintenance tasks during software evolution 
(Fioravanti & Nesi, 2001), this approach is not very 
attractive for managers that have to estimate the 
effort required for a corrective maintenance project. 
Indeed, in this case the effort of a maintenance 
period greatly depends on the number of 
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maintenance requests, whereas tasks of the same 
type typically require a similar effort (Basili et al., 
1996; Ramil, 2000).  
In a recent work (De Lucia et al., 2002), we 
presented an empirical study aiming at building 
corrective maintenance effort prediction models 
from the experience of the Solution Center setup in 
Italy (in the town of Caserta) by EDS Italia 
Software, a major international software company. 
This paper presents a replicated assessment of the 
effort prediction models described in (De Lucia et 
al., 2002). We show results from the application of 
the prediction models to a new corrective 
maintenance project within the same enterprise and 
the same application domain as the projects used in 
the previous study. The data available for the new 
project were finer grained according to the 
indications devised in the first study. This allowed to 
improve the confidence in our previous empirical 
analysis by confirming most of the hypotheses made 
and to provide other useful indications to better 
understand the maintenance process of the company 
in a quantitative way. 
The paper is organized as follows. Sections 2 and 3 
report the experimental setting and the results of the 
previous experimental study, respectively. Section 4 
describes the new project, while Sections 5-7 present 
and discuss the results achieved through the analysis 
of the finer grained data available for the new 
maintenance project. Concluding remarks are 
outlined in Section 8. 

2 EXPERIMENTAL SETTING 

Most of the business of the subject company 
concerns maintaining third party legacy systems. 
The subject company realizes outsourcing of system 
conduction and maintenance, including help desk 
services, for several large companies. Very often the 
customers ask for a very high service agreement 
level and this requires an accurate choice and 
allocation of very skilled maintainers, with adequate 
knowledge of the application domain and 
programming language of the maintenance project. 
This implies a careful definition of the maintenance 
process with well-defined activities, roles, and 
responsibilities to avoid inefficiencies (Aversano et 
al., 2002). The phases of the life-cycle of the 
ordinary maintenance process are shown in Table 1. 
They closely follow the IEEE Standard for Software 
Maintenance (IEEE, 1998).  
The data set available for our study is composed of a 
number of corrective software maintenance projects 
conducted on software systems of different 
customers. The subject systems are mainly business 

applications in banking, insurance, and public 
administration. These projects allow for general 
conclusions that can be applied to other corrective 
maintenance projects in the business application 
domains of the subject company. 
 

Table 1: Phases of the corrective maintenance process 
Phase Short description 
Define Requirements identification and definition 
Analyze Requirements analysis 
Design Design of software modules and test cases 

Produce Implementation of software modules and 
execution of test cases 

Implement Delivery and introduction of the new modules in 
the software system 

 
The main advantage of the data set is that it does not 
contain missing values. This is due to the careful 
manner in which the data was collected. In fact, the 
subject company is at CMM level 3 and is currently 
planning the assessment to achieve CMM level 4. At 
the CMM level 3, metrics are collected, analyzed, 
and used to control the process and to make 
corrections to the predicted costs and schedule, as 
necessary. Therefore, metric collection was crucial 
and supported by automatic tools, such as workflow 
management systems which are of aid to process 
automation and improvement (Aversano et al., 
2002). Technical metrics, such as software 
complexity metrics, were not available. In fact, for 
each new maintenance project, the subject company 
preliminarily collects a number of different technical 
metrics on a meaningful subset (about 20%) of the 
application portfolio to be maintained. The goal is to 
make an assessment of the software systems to make 
decisions about negotiations of the customer service 
levels, and to select the skills required by the 
maintenance team (De Lucia et al., 2001). 

3 PREVIOUS EMPIRICAL STUDY 

In a previous work (De Lucia et al., 2002), the data 
of five corrective maintenance projects was used in 
an empirical study aiming at constructing effort 
prediction models. We used multiple linear 
regression analysis to build prediction models and 
validated them on the project data using cross-
validation techniques (Bradley & Gong, 1983). 
The data set was composed of 144 monthly 
observations, collected from all the projects. For 
each observation, corresponding to monthly 
maintenance periods for each project, the following 
data was available and considered in our analysis 
(see Table 2): 
• size of the system to be maintained; 
• effort spent in the maintenance period; 
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• number of maintenance tasks, split in three 
categories:  

type A: the maintenance task requires software 
source code modification;  

type B: the maintenance task requires fixing of 
data misalignments through database queries;  

type C: the maintenance task requires 
interventions not included in the previous 
categories, such user disoperation, problems 
out of contract, and so on. 

The cost estimation model previously used within 
the organization was based on the size of the system 
to be maintained and the total number of 
maintenance tasks. For this reason we decided to 
build a linear model taking into account these two 
variables (model A in Table 3). However, we 
observed that the effort required to perform a 
maintenance task of type A might be sensibly 
different than the effort required to perform a task of 
type B or C. Also the number of maintenance tasks 
of type A is sensibly lower than the number of 
maintenance tasks of the other two types. For this 
reason, we expected to achieve a sensible 
improvement by splitting the variable N into the two 
variables NA and NBC (see Table 2). The result of 
our regression analysis was model B in Table 3. 
Finally, we also built a model considering the effect 
of each different type of maintenance tasks (model C 
in Table 3), although this model is generally more 
difficult and risky to be used, because it requires 
more precise estimates of the number of tasks of 
type B and C. Indeed, the coefficients of this model 
seem to suggest that the effort required for these two 
types of maintenance tasks is different: in particular, 
tasks of type C seem to be more expensive than 
tasks of type B.  
To evaluate the prediction performance, we 
performed cross-validation and computed MRE 
(Magnitude Relative Error) for each observation, 
MMRE (Mean Magnitude Relative Error) and 
MdMRE (Median Magnitude Relative Error). 
The MREi on an observation i is defined as: 

i
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−
=
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where yi is the value of the i-th value of the 
dependent variable as observed in the data set and ŷi* 
is the corresponding value predicted by the model. 
MMRE is the average of the MREi, while MdMRE 
is the median of the MREi. 
Moreover, the following variants of the measure 
PRED (Conte et al., 1986; Jorgensen, 1995) were 
computed: 

• PRED25 = % of cases with MRE <= 0.25. 
• PRED50 = % of cases with MRE <= 0.50. 

The MMRE, MdMRE, and PRED measures 
resulting from the leave-one-out cross-validation are 
shown in Table 4.  
The prediction performances of our models are 
nevertheless very interesting according to the 
findings of Vicinanza et al. (1991), in particular 
considering that what is really wanted by software 
management is not to predict accurately, but to 
control over the final results. 
 

Table 2: Collected metrics 
Metric Description 
NA # of tasks requiring software modification 
NB # of tasks requiring fixing of data misalignment
NC # of other tasks  
NBC NBC=NB+NC 
N N=NA+NB+NC 
SIZE Size of the system to be maintained [kLOC] 
EFFORT Actual Effort [man-hours] 

 
Table 3: Effort prediction model parameters 

Model Var. bi (Coeff.) p-value R2 Adj R2

A 
N 
SIZE

1.342904 
0.169086 

<10E-07 0.8257 0.8245

B 
NA 
NBC 
SIZE

9.053286 
0.138275 
1.164826 

<10E-07 
<10E-07 
<10E-07 

0.8891 0.8876

C 

NA 
NB 
NC 
SIZE

7.86988 
0.514121 
2.81486 

0.130507 

<10E-07 
<10E-07 
0.000001 
<10E-07 

0.8963 0.8941

 
Table 4: Model predictive performances 
 Model A Model B Model C 
MMRE 42.53% 36.40% 32.25% 
MdMRE 37.57% 29.16% 25.35% 
PRED25 31.25% 40.36% 49.31% 
PRED50 66.75% 74.56% 82.64% 

4 NEW EMPIRICAL STUDY 

The main limitation of the data set was the fact that 
only the total effort of each maintenance period was 
maintained, while data for the single maintenance 
tasks was not available.  
Indeed, it would have been interesting to increase 
the granularity of the collected data, also considering 
the effort of all the tasks of the same type or, even 
better, the effort of the single maintenance task. The 
availability of this data would allow to: 
• validate our hypothesis of considering different 

maintenance task types in the cost estimation 
models; 
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• assess the different task types in a quantitative 
way; 

• discover outliers at different granularity levels, 
both for monthly observations, and for single 
maintenance requests; 

• understand the process in a quantitative way. 
To overcome the limitations of the first study 
concerning the granularity of the data, the subject 
company implemented a specific process 
management tool (PMT) and used it in a new 
maintenance project. The PMT is web-based and is 
used at three different geographical sites, 
corresponding to the different Solution Centers 
involved in this new project. Its main capabilities are 
recording time and effort needed to carry out each 
phase of the maintenance process, notifying events 
to the maintenance team members responsible to 
perform a task when this has to be started, 
interfacing existing tools for configuration 
management, tracking maintenance requests.  
Each maintenance request coming from the 
customer is recorded by a fist level Help Desk using 
a tracking tool that is on-line consulted only on one 
site by the software analysts responsible for this 
maintenance project. The analysts have two options: 
accepting the request and routing it to other sites or 
discarding the request and providing the motivations 
directly to the Help Desk tracking tool. Each 
accepted request is assigned a typology, that can be 
Change (small evolution), Defect (trouble ticket), or 
Other. Moreover, if the request is classified as 
Defect, there are other attributes specifying the 
severity and the associated priority (High, Medium, 
Low). The maintenance process is composed of a set 
of phases (shown in Table 1), again decomposable in 
a set of elementary activities based on the typology 
of the maintenance request. Each phase can be 
assigned to different human resources allocated on 
the project.  
The new project was still on when we started the 
empirical study, so the data concerning the first 6 
months of the project were available. The PMT 
allowed to collect about 30,000 observations, 
concerning 7,310 maintenance requests received in 
these 6 months. In this case, each observation 
corresponds to one phase of the maintenance process 
applied to a maintenance request, while in the 
previous empirical study it corresponded to the 
aggregation of all the maintenance requests received 
in one month. For each maintenance request the 
following data was available: 
• Effort spent on each phase of the maintenance 

process (measured in man-hours); 
• Priority, split in three categories:  

High: anomalies that entail the total 
unavailability of the system; 

Medium: anomalies that entail the partial 
unavailability (one or more functions) of the 
system; 

Low: anomalies that do not entail blocks of the 
system’s functions, but degrade the 
performances of the system or cause incorrect 
operations or are limited to the user interface. 

Table 5 shows the descriptive statistics for the 
monthly metrics of this maintenance project. 
 

Table 5: Descriptive statistics of the new project  
Metric Min Max Mean Median Std.Dev.
NA 66 96 83.33 83.5 10.23 
NB 276 472 353.83 348 69.39 
NC 625 927 780.5 782 104.23 
N 967 1423 1217.67 1223 164.51 
EFFORT 3225 4857 3812.5 3768 539.58 

5 ASSESSING PREDICTIVE 
PERFORMANCES ON THE NEW 
PROJECT 

Our first analysis was evaluating the predictive 
performances of the models built in De Lucia et al. 
(2002) on the new maintenance project. We applied 
the models to the new data simulating their behavior 
as it was really applied for prediction purposes. In 
fact, for the first monthly observation we used 
directly the models and coefficients of Table 3; for 
the next observation, we added previous 
observations to the data learning set of the model 
and recalibrated the models calculating the 
coefficients again. Results are shown in Table 6.  
 

Table 6: Assessed model predictive performances 
 Model A Model B Model C 
MMRE 36.91% 31.40% 16.60% 
MdMRE 32.31% 27.29% 14.31% 
PRED25 0.00% 33.33% 83.33% 
PRED50 66.66% 66.66% 100.00% 

 
For the best model (model C) only one prediction 
falls outside the 25% wall, producing a PRED25 
value of 83.33%. The MRE of each observation is 
reasonably low for all the predictions: if we discard 
the worst prediction (MRE = 35.56%), the MRE has 
a maximum value of 21.00%, that is surely an 
acceptable error value for the software maintenance 
effort prediction. The mean MRE is 16.60%, again 
an excellent value. It is worth noting that although 
the number of monthly periods is small, the 
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performance parameters in Table 6 exhibit the same 
positive trends as in the previous study (see Table 
4), in particular concerning MMRE e MdMRE. 
However, the small number of monthly periods 
seems to be the main reason for the greater 
variations of the PRED measures.  
Our previous work was centered on the model 
construction and assessment of the prediction 
performance through cross-validation (Bradley & 
Gong, 1983). In this paper the granularity of the data 
collected for the last software project allows us to 
make further analyses: we have useful data to 
confirm (or to reject) the basic hypothesis of the 
effort prediction model, namely the assumption that 
the tasks of different type require different effort to 
be made and, in particular, tasks of type A generally 
require greater effort than the other two types. The 
box plot of Figure 1 and the data in Table 8 clearly 
confirm this hypothesis and provide us with a lot of 
other information about the maintenance process. 
Each type of task has mean and median values 
sensibly different and presents a higher value for the 
coefficient of variation (it is the ratio of standard 
deviation by mean), thus indicating the presence of 
statistical outliers. However, rather than discarding 
all statistical outliers, we decided to analyze the data 
in a flexible way: we only discarded the 
maintenance requests with an effort that was clearly 
abnormal compared with all the other observations. 
These outliers represent isolated points with very 
high effort values almost of one magnitude order 
greater than the other observations (including other 
statistical outliers). On the other hand, besides 
abnormal outliers, it is common to have a relatively 
small number of maintenance requests requiring a 
great effort (compared to mean value); therefore, if 
we had discarded from our analysis also these 
observations that can be considered as outliers by a 
pure statistical point of view, we would have surely 
lost useful information about the software 
maintenance process.  
It is worth noting that the effort required to 
accomplish the maintenance tasks corresponding to 
abnormal outliers is very large (almost two 
magnitude order greater than the mean). These 
maintenance requests can be easily identified as 
soon as they begin to be worked, as their resolution 
is usually non standard and requires more complex 
analysis and design. Sometimes, they are 
programmed maintenance requests, such as database 
restructuring operations. These can be viewed as the 
perfective interventions auspicated by Lehman’s 
laws of software evolution to deal with the 
increasing complexity and declining quality of the 
software systems (Lehman & Belady, 1985). For this 
reason, the effort of these maintenance tasks should 
not be considered in the prediction model; rather, a 

project manager should account for a small number 
of such tasks when estimating the effort of the 
maintenance project. 
According to this heuristic we identified five 
outliers, corresponding to five maintenance requests, 
one of type A, three of type C and one of type B. 
After this elimination we recalibrated the effort 
prediction models and obtained the new relative 
errors shown in Table 7: the performance values are 
improved in all the parameters, although slightly. 
Moreover, if we consider the model C, MRE 
sensibly decreases for all the months which have an 
outlier discarded; in particular, the maximum value 
of the monthly MRE shrinks from 35.56% to 
26.48%. 
 

Table 7: Assessed model predictive performances  
(without outliers) 

 Model A Model B Model C
MMRE 37.72% 28.06% 15.69% 
MdMRE 38.68% 30.40% 13.56% 
PRED25 16.66% 33.33% 83.33% 
PRED50 66.66% 83.33% 100.00%

6  ANALYSIS OF TASKS OF 
DIFFERENT TYPES AND 
PRIORITY 

In this section we analyze the distribution of the 
effort among tasks of different type and priority. As 
shown in Figure 1, the height of the NA box 
indicates that tasks of type A have higher variability 
than the tasks of other types. Generally, this type of 
tasks: 
• requires an effort great almost five or six times 

the effort required by the other two types, as it 
can be noted by comparing the values of the 
quartiles, of the medians, and of the box fences 
(adjacent values); 

• has effort value ranges clearly higher than the 
other two types; 

• has the main influence on the effort.  
This confirms our hypothesis about the different 
influence on the effort determined by the type of 
tasks.  
The other two types of tasks have similar boxes, 
indicating that the tasks of type B and C: 
• generally require similar effort to be made, with 

a slight adjunctive effort for type B; 
• have a small variability range, as the efforts of 

the maintenance tasks comprised between the 
10th and 90th percentiles range between 0.4 and 
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4 hours for maintenance tasks of type B and 
between 0.4 and 3 hours for maintenance tasks of 
type C (see Table 8). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Effort distribution box plot with respect to 
maintenance request types 

 
Table 8: Effort distribution among task types 

 NA NB NC 
Mean 12.78 2.43 1.94 
StDev 20.30 6.86 7.25 
10th Percentile 1.75 0.40 0.40 
Median 6.75 1.20 1.00 
90th Percentile 30.00 4.00 3.00 

 
A consideration to make is the fact that while the 
coefficients of model C in Table 3 seems to suggest 
that in the previous projects the effort required for 
tasks of type C is greater than the effort required for 
tasks of type B, the detailed data of the new project 
seems to confute this hypothesis, as maintenance 
tasks of type B and C require a similar effort 
(slightly higher for tasks of type B). Therefore, the 
major improvement of model C with respect to 
model B (compare Tables 4 and Table 6) was 
unexpected, as the data of the new project seems to 
justify the aggregation of the tasks of type B and C 
and its use as a single variable in the prediction 
model B. The reason of the major improvement of 
the performances of model C can be justified by a 
compensation effect of the coefficients of the model. 
It is worth noting that due to the similarity of the 
efforts of maintenance tasks of type B and C and due 
to the fact that the number of maintenance tasks of 
type C is about twice the number of maintenance 
tasks of type B, applying model C is equivalent to 
apply model B with a lower coefficient for NA and a 
higher coefficient for NBC (see Table 3). Therefore, 
giving a greater weight to tasks of types B and C 
with respect to tasks of type A would result in better 
performances of model B in the new project.  
The classification of each request by priority allows 
to make further considerations about the 
maintenance process execution. Almost all the 
outliers do not have high priority. From Table 9 and 

Table 10 there is a low percentage of high priority 
tasks. The larger part of the effort is spent on the low 
priority tasks, which are resolved after an accurate 
scheduling of the activities. It is worth noting that, 
among the low priority tasks, the tasks of type A 
account only for 4.64% of the total number of 
maintenance requests, but consume 22.93% of the 
total effort. This suggests that a big part of 
maintenance requests that impacts on software code 
has low priority and a complexity level not trivial, as 
they need more effort to be made. 
 

Table 9: Task type and priority distribution (%)  
 Type A Type B Type C
High priority 0.60 2.18 2.08 
Medium priority 1.59 3.97 15.35 
Low priority 4.64 22.91 46.66 

 
Table 10: Effort distrib. (%) among task type and priority 

 Type A Type B Type C
High priority 2.23 4.12 1.96 
Medium priority 5.80 4.03 12.40 
Low priority 22.93 16.90 29.62 

7  EFFORT DISTRIBUTION 
ANALYSIS 

In this section we analyze the data about the 
distribution of the effort to the phases of the 
maintenance process. Figures 2 and 3 show the 
phase distribution distinguishing the tasks of type A 
from the tasks of type B and C. This distinction is 
needed because the maintenance process for a task 
of type A requires software code modifications: this 
operation and all the strictly correlated activities 
(such as document check-in/check-out, testing 
execution, etc.) are included in the phase called 
Produce, that is not present in the other task types.  
There are not unexpected results: for type A the 
Produce phase is the most expensive, as it can be 
seen from the height of the box and of the upper 
fence. This is reasonable, as the effort needed for 
testing (that generally is an expensive operation), is 
accounted in this phase. 
For type B and C the phase distribution is almost 
regular: all the boxes have similar height and have 
median value at 25%; there are no high values for 
the fences, and the phases require analogous time to 
be executed, with Analyze and Design generally 
more expensive than Define and Implement.  
It is worth noting that the phases of the maintenance 
process for the tasks of type B and C have a very 
short time. In most cases, they are performed in less 
than one hour. In this case, the phase distribution 
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analysis clearly shows that there is no real utility to 
perform analyses aiming at reducing the time needed 
for the completion of a single phase. On the other 
hand, it is useful to analyze them to discover 
particular trends or phase distribution correlated to 
specific process characteristics. In our case, we have 
not discovered any of these properties, so we have 
limited our discussion to the simple description of 
the time distribution among the different phases. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Effort distribution box plot with respect to 
phases (maintenance requests of type A) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Effort distribution box plot with respect to 
phases (maintenance requests of type B and C) 

8 CONCLUSION 

In this paper we have presented an assessment of an 
empirical study aiming at building corrective 
maintenance effort estimation models. In a previous 
work (De Lucia et al., 2002) we used as a case study 
a data set obtained from five different corrective 
maintenance projects to experimentally construct, 
validate, and compare model performances through 
multivariate linear regression models. The main 
observation was to take into account the differences 
in the effort required to accomplish tasks of different 
types. Therefore, we built effort prediction models 
based on the distinction of the task types. The 
prediction performance of our models was very 
interesting according to the findings of Vicinanza et 
al. (1991). 

A critique to the applicability of the cost estimation 
models might be the fact that they consider as 
independent variables the number of maintenance 
tasks that are not known at the beginning of a project 
and that should be in turn estimated. However, as far 
as our experience with these type of systems has 
demonstrated, the overall trend of the maintenance 
tasks of each type appears to follow the Lehman’s 
laws of software evolution (Lehman & Belady, 
1985), in particular the self regulation and the 
conservation of organizational stability laws: in 
general the number of maintenance tasks of each 
type oscillates around an average value across the 
maintenance periods. These average values can be 
calculated with a good approximation after a few 
maintenance periods and used to estimate the 
maintenance effort. Both the average values and the 
effort estimates can be improved as soon as new 
observations are available. A deeper discussion of 
this issue is out of the scope of this paper. More 
details and empirical data are available from the 
authors. 
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Although the results of the previous study were 
good, we identified some limitations concerning the 
granularity of the metrics used in the previous 
empirical study and auspicated the collection of 
further information useful to overcome them. The 
subject company is currently planning the 
assessment to move from CMM level 3 to CMM 
level 4. It is a requisite of the CMM level 3 that 
metrics are to be collected, analyzed, and used to 
control the process and to make corrections on the 
predicted costs and schedule, if necessary. 
Therefore, metric collection was crucial. The study 
presented in (De Lucia et al., 2002) suggested to 
record process metrics at a finer granularity level 
than a monthly maintenance period. The subject 
company applied these considerations in the 
definition of the metric plan of a new maintenance 
project, analyzed in this paper: productivity metrics 
have been collected and recorded for each 
maintenance request, allowing to obtain more 
accurate productivity data. Therefore, we performed 
a replicated assessment of the effort prediction 
models on a new corrective maintenance project. 
Thanks to the finer data, we have been able to: 
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50,0 
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100,0 

Define Analize Desig n Impl em ent 
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% 

• verify the prediction performances of the models 
on a new maintenance project, applying the 

  effort prediction model to the new project data; 
• verify the hypothesis of the different effort 

needed by the tasks of different types in a 
quantitative way, measuring the effort required 
by the different task types; 

• identify outliers in the data at a finer granularity 
level, analyzing the single maintenance request 
instead of their aggregation; 
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• improve the understanding of the corrective 
maintenance process and its trends, by analyzing 
the distribution of the effort among the different 
process phases and different types and priorities 
of the maintenance tasks. 

At the end of the assessment on the new project we 
had confirmation both of goodness of the prediction 
performances of the estimation models and of the 
validity of our hypotheses (different task types 
require different effort). From the distribution of the 
effort among the phases of the process, we also had 
evidence that the corrective maintenance process 
under study was quite stable. This is due to the long 
dated experience of the subject company and its 
maintenance teams in conducting corrective 
maintenance projects. Perhaps, this is one of the 
reasons why the company does not collect data for 
this type of projects concerning other factors, such 
as personnel skills that also generally influence 
maintenance projects (Jorgensen, 1995). This lack of 
available metric data is a limitation that should be 
considered before using the estimation models 
derived from our study outside the subject company 
and the analyzed domain and technological 
environment.  
Future work will be devoted to introduce further 
metric plans in the maintenance projects of the 
subject organization. Besides statistical regression 
methods, we aim at investigating other techniques. 
For example, dynamic system theory can be used to 
model the relationship between maintenance effort 
and code defects (Calzolari et al., 2001). 
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