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Abstract: In 1985 a powerful and practical public-key scheme was produced by ElGamal; his work was applied using 
large prime integers. El-Kassar et al. and El-Kassar and Haraty modified the ElGamal public-key encryption 
scheme from the domain of natural integers, Z, to two principal ideal domains, namely the domain of 
Gaussian integers, Z[ i ], and the domain of the rings of polynomials over finite fields, F[x], by extending 
the arithmetic needed for the modifications to these domains. In this work we implement the classical and 
modified ElGamal cryptosystem to compare and to test their functionality, reliability and security. To test 
the security of the algorithms we use a famous attack algorithm called Baby-Step-Giant algorithm which 
works in the domain of natural integers. We enhance the Baby-Step-Giant algorithm to work with the 
modified ElGamal cryptosystems. 

1 INTRODUCTION 

Cryptography is the art or science of keeping 
messages secret. People mean different things when 
they talk about cryptography. Children play with toy 
ciphers and secret languages. However, these have 
little to do with real security and strong encryption. 
Strong encryption is the kind of encryption that can 
be used to protect information of real value against 
organized criminals, multinational corporations, and 
major governments. Strong encryption used to be 
only in the military domain; however, in the 
information society it has become one of the central 
tools for maintaining privacy and confidentiality. 
 

As we move further into an information society, 
the technological means for global surveillance of 
millions of individual people are becoming available 
to major governments. Cryptography has become 
one of the main tools for privacy, trust, access 
control, electronic payments, corporate security, and 
countless other fields. 

Perhaps the most striking development in the 
history of cryptography came in 1976 when Diffie 
and Hellman published New Directions in 

Cryptography (Diffie, 1978) . Their work introduced 
the concept of public-key cryptography and 
provided a new method for key exchange. This 
method is based on the intractability of discrete 
logarithm problems. Although the authors had no 
practical realization of a public-key encryption 
scheme at the time, the idea was clear and it 
generated extensive interests and activities in the 
world of cryptography. One of the powerful and 
practical public-key schemes was produced by 
ElGamal in 1985 (ElGamal, 1985). 

 
El-Kassar (El Kassar, 2001) and Haraty (Haraty 

2003) modified the ElGamal public-key encryption 
schemes from the domain of natural integers, Z, to 
two principal ideal domains, namely the domain of 
Gaussian integers, Z[ i ], and the domain of the rings 
of polynomials over finite fields, F[x], by extending  
the arithmetic needed for the modifications to these 
domains. 

 
In this paper, we compare and evaluate the 

classical and modified ElGamal algorithms by 
implementing and running them on a computer. We 
investigate the issues of complexity, efficiency and 
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reliability by running the programs with different 
sets of data. Moreover, comparisons will be done 
between these different algorithms given the same 
data as input. In addition, implementation of an 
attack algorithm will be presented. The attack 
algorithm consists of subroutines used to crack 
encrypted messages. This is done by applying 
certain mathematical concepts to find the private key 
of the encrypted message. After finding the key, it 
will be easy to decrypt the message. A study will be 
done using the results of running the attack 
algorithm to compare the security of the different 
classical and modified cryptographic algorithms. 

 
The rest of the paper is organized as follows: 

section 2 describes the classical technique of 
ElGamal cryptosystem, which depends on the 
discrete logarithm problem. Then, we present the 
modifications done on ElGamal encryption scheme. 
In section 3, we deal with the attack algorithm. In 
section 4, a testing procedure is used to evaluate the 
classical and modified algorithms. Also, attack 
programs are run to test the complexity, efficiency 
and reliability of the different modified algorithms 
and compare them to the classical one. A conclusion 
is drawn in section 5. 

2 CLASSICAL AND MODIFIED 
ELGAMAL PUBLIC-KEY 
CRYPTOSYSTEM 

The ElGamal encryption scheme is typically 
described in the setting of the multiplicative group 
Zp

*. But, it can be easily generalized to work in any 
finite cyclic group G. As with the classical ElGamal 
encryption, the security of the generalized ElGamal 
encryption scheme is based on the intractability of 
the discrete logarithm problem in the group G. The 
group G should be carefully chosen so that the group 
operations in G should be relatively easy to apply for 
efficiency and the discrete logarithm problem in G 
should be computationally infeasible for the security 
of the protocol that uses the ElGamal public-key 
cryptosystem. 

     
Menezes (Menezes, 1997) showed that the groups 

that appear to meet the above criteria of which the 
first three have received the most attention are the 
multiplicative group Zp

* of the integers modulo a 
prime p, the multiplicative group F2

m* of the finite 
field F2

m of characteristic two, the group of points on 
an elliptic curve over a finite field, the multiplicative 
group Fq

* of the finite field Fq, where q=pm, p is a 
prime, the group of units Zn

*, where n is a composite 

integer, the Jacobean of a hyper elliptic curve 
defined over a finite field, and the class of an 
imaginary number field. 

 
 For any of the above cases used to generalize 

ElGamal public-key scheme, the following 
procedures are followed: To generate the public-key, 
entity A should select an appropriate cyclic group G 
of order n, with generator α. Assuming that G is 
written multiplicatively, a random integer a, 1≤a≤n-1 
is selected and the group element αa is computed. 
A′s public-key is (α,αa), together with a description 
of how to multiply elements in G. A′s private-key is 
a. To encrypt a message m in the cyclic group G, 
entity B should obtain A′s authentic public-key 
(α,αa), then select a random integer k, 1≤k≤n-1 and 
compute γ=αk and δ=m. (αa)k. Finally, B sends the 
ciphertext c= (γ, δ) to entity A. To recover the 
plaintext m from c, entity A should use the private-
key a to compute γa and then compute γa, the 
recovered message m is obtained by computing 
(γa.δ). The algorithm for the case Zp and Zn can be 
for (Menezes, 1997). 
 

The following algorithms show the functionality 
of the ElGamal cryptosystem: 
Algorithm 1: (Key generation for ElGamal public-
key encryption). 
 

1- Generate a large random prime p and generator 
θ of Zp

*. 
2- Select a random integer a, 1≤a≤p-2, and 

compute θa (modp). 
3- A's public key is (p, θ, θa); A's private key is a. 
 
The following algorithm shows how entity B 

encrypts a message m for A. 
Algorithm 2: (ElGamal public-key Encryption). B 
should do the following: 
 

1- Obtain A's authentic public key (p, θ, θa). 
2- Represent the message as an integer m in the 

range {0, 1,....., p-1}. 
3- Select a random integer k, 2 ≤ k ≤ p-2. 
4- Compute γ=θk (mod p) and  
δ ≡ m. ( θa )k (mod p) 
5- Send the ciphertext c= (γ, δ) to A. 
 
The following algorithm shows how entity A 

decrypts a message c from B. 
Algorithm 3: (ElGamal public-key decryption). A 
should do the following: 
 

1- Use the private key a to compute γp-1-a (mod p)  
          (Note:  γp-1-a=γ -a=θ –ak). 

2- Recover the message m by computing γ -a.δ 
(mod p). 
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Example 1: In order to generate the public-key, 
entity A selects an odd prime p=359 and finds a 
generator α=124 of Z359 

*. Then, A chooses the 
private-key a=292 and computes  
    124292≡205=α a (mod359).  
Therefore, A's public-key is  

(p=359, α=124, αa = 205)  
and A's private-key is a=292. 
To encrypt the message m=101chosen from Z359, B 
selects a random integer k=247 and computes 

124247≡291=γ (mod 359) 
and 

101.205247≡288=δ (mod 359). 
Then, B sends (γ=291, δ=288) to A. Note that B has 
359 different values for m to choose from Z359. 
Finally, A computes γp-1-a= 29166≡ 216(mod 359) 
and recovers the original message m by computing 

γ -a.δ≡ (216). (288)≡ 101 (mod 359). 
 

Example 2: To generate the public-key, entity A 
generates an odd prime p=359 and computes the 
composite integer n=2p³=92536558. Then, A 
chooses the generator α=7395 of the multiplicative 
cyclic group Z92536558

* and a=42514236. Now, 
computing 
αa(mod n) ≡739542514236≡85784899 (mod 92536558), 
we have A′s public-key is 

(n=92536558,α=7395,αa=85784899). 
and A′s private key is a=42514236. 
To encrypt the message m=1100110, where  
m Є Z92536558, entity B selects a random integer 
k=35923064 and computes   
γ≡739535923064≡66976409 (mod 92536558),  
and  
δ≡ (1100110). (85784899)35923064≡63539874  
(mod 92536558). Then B sends (γ=66976409 and 
δ=63539874) to A. 
To decrypt the sent message, A computes  
γφ(n)-a≡669764093625162≡25198413 (mod92536558), 
and hence recovers  
m≡(25198413)(63539874)≡1100110(mod92536558)
Since m≡1100110 (mod92536558) and m Є 
Z92536558, then m=1100110. 

 
Note that there are 92536559 values for m you 

can choose from the complete residue system 
modulo 92536558, Z92536558. 

 
Next, we describe the modifications of ElGamal 

public-key encryption to some of the cases described 
in the list of cyclic groups stated above, and to other 
new cases.  

 

 

2.1 ElGamal Cryptosystem in the 
Domain of Gaussian Integers, Z[i] 

El-Kassar (El-Kassar, 2001) considered the 
arithmetics in the domain of Gaussian integers to 
extend ElGamal cryptosystem from the integer 
arithmetics as follows: First, a Gaussian prime β is 
chosen. If β=π, where q=π π' is prime integer of the 
form 4k+1, then Gπ= {a: 0≤a≤q-1} = Zq. This 
choice will be excluded since the calculations will 
be identical to those of the classical case. Hence, β is 
chosen to be a large prime integer p of the form 
4k+3 so that Gβ= {a+bi: 0≤a≤p-1, 0≤b≤p-1}, where 
the number of elements in Gβ is q (β) = p² and in Gβ 
is φ (β) = p²-1. Hence, the cyclic group used in the 
extend ElGamal cryptosystem has an order larger 
than the square of that used in the classical ElGamal 
cryptosystem with no additional efforts required for 
finding the prime p. Now, a generator of θ of Gβ

* is 
chosen. Note that there are φ (p²-1) generators in 
Gβ

*. A random positive integer a is then chosen so 
that the public key is (p, θ, θa). Since a is a power of 
θ, then a must be less than the order of the group 
power Gβ

* which is p²-1. This power, a, is the private 
key. To encrypt a message, we first represent it as an 
element m in Gβ

*. Then, a random positive integer k 
is selected to be used as a power so that k is less than 
p²-1. The encrypted message is c= (γ, δ) where γ= θk 
and δ=m. (θa) k. Note that the values of γ and δ must 
be elements of Gβ and hence must be reduced 
modulo β. The message c is decrypted using the 
private-key a to compute γ -a.δ. 

 
We note that the reduction modulo a Gaussian 

integer requires computational procedures that are 
more involved than those used in the reduction 
modulo an integer. However, since β was chosen to 
be a prime integer p=4k+3, then the reduction 
modulo β do not require computational procedures 
that are different from those used for the integers. In 
fact, to reduce a+bi modulo β, we find c, d with  
0≤c, d≤p-1 such that c≡ a (mod p) and d≡b (mod p). 
Then c+di Є Gβ and c+di ≡ a+bi (mod β). Hence, the 
reduction modulo β in Z [i] is done using integer 
reductions. 

2.2 ElGamal Cryptosystem over 
Finite Fields 

 The generalized ElGamal public-key Crypto- 
system in the setting of a finite field Fq, Where q=pn 
for an odd prime integer p and a positive integer n, is 
based on working with the quotient ring 
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Zp[x]/<h[x]> where h(x) is an irreducible 
polynomial over Zp[x] .We extend the ElGamal 
public-key cryptosystem to the setting of a finite 
field. It is well known that Zp[x]/<h[x]>  is a field 
whose elements are the congruence classes 
modulo h(x) of polynomials in Zp[x] with degree  
this field by {a0 + a1 x +…+an-1 xn-1:a0,a1,…,an-1 Є 
Zp[x]}to be the complete residue system by A(h(x)) 
.Note that Zp[x]/<h[x]> is of order pn and its nonzero 
elements from a cyclic group denoted by 
U(Zp[x]/<h[x]>). The order of U (Zp[x]/<h[x]>) is  
φ (h(x)) = pn-1. Let α(x) be a generator of the cyclic 
group U (Zp[x]/<h[x]>). The elements in U 
(Zp[x]/<h[x]>) can be written as a power of the 
generator α(x). Hence, U (Zp[x]/ <h[x]>) = {e, α (x), 
α(x)2… α (x)p^n -1}. 

2.3 ElGamal Cryptosystem over 
Quotient Rings of Polynomials 
over Finite Fields 

The ElGamal public-key cryptosystem is also 
extended in the setting of the cyclic group of the 
finite quotient ring Zp[x]/<f(x)>, where p is an odd 
prime, and f(x) is a reducible polynomial of degree n 
over Zp[x] (Smith, 1985). In this case the ring 
Zp[x]/<f(x)> is not a field. But according to ElGamal 
public-key cryptosystem scheme we are only 
interested in the cyclic groups of units of such rings. 
Hence, throughout this section we are dealing with 
any finite fields of order pⁿ, where p is an odd prime 
and n is the degree of the reducible polynomial f(x). 
From a recent study on the structure of cyclic finite 
fields in (El-Kassar, 2002) by El-Kassar, Chihadi, 
and Zentout, we can deduce for any finite field F of 
order q=pⁿ, where p is a prime integer, the group of 
units U (F[x]/<f(x)>) is cyclic and isomorphic to Zq-

1 if and only if f(x) is linear. Also, U (F[x]/<f(x)>) is 
cyclic and isomorphic to Zp-1×Zp if and only if f(x) = 
h(x) ², where h(x) is linear. Hence, we conclude that 
in order that the group of units U (Zp[x]/<h(x)>) to 
be cyclic, h(x) must be irreducible or a square power 
of only one linear irreducible polynomial. That is, 
h(x) = h1(x) ², where h1(x) = ax+b. This means that 
U (Zp[x]/< (ax+b) ²>) is cyclic. Moreover, we have 
that Zp[x]/ < (ax+b) ²>≅Zp[x]/<x²>. Hence, we can 
say that the extension of the ElGamal scheme in this 
case turns to apply on the group of units of the ring 
Zp[x]/<x²>, of order φ(x²)=p²-1. We note that a 
polynomial f(x) in Zp[x] belongs to the cyclic group 
U (Zp[x]/<x²>) if and only if (f(x), x) = 1. This is 
equivalent to saying that x does not divide f(x), 
where f(x) is a linear polynomial. Hence,  

U (Zp[x]/<x²>) = {c+dx|1≤c≤p-1, 0≤d≤p-1}. 
 

For a detailed look at the algorithms of the 
extended ElGamal encryption scheme in the domain 
of Gaussian integers, finite fields and over quotient 
rings of polynomials over finite fields see (Otrok, 
2003). 

3 ELGAMAL PUBLIC-KEY 
SCHEME ATTACK 

In order to attack any protocol that uses ElGamal 
public-key encryption scheme we have to solve the 
discrete logarithm problem. There are many 
algorithms for solving the discrete logarithm 
problem. The most popular algorithm is the 
Exhaustive Search with its baby-step giant-step 
algorithm. 

3.1 Exhaustive Search 

The most obvious algorithm for the discrete 
logarithm problem (Menezes, 1997) is to 
successively compute α0, α¹, α²… until β is obtained. 
This method takes O (n) multiplications, where n is 
the order of α, and is therefore inefficient if n is 
large (i.e., in cases of cryptographic interest). The 
algorithm is as follows: 
 
Algorithm 4: Exhaustive Search 

INPUT: a generator α of a cyclic group G of 
prime order n, and an element β Є G. 

OUTPUT: the discrete logarithm x=logαβ. 
1. Set k=0. 
2. Set β=αk. If β=xa  then return k. 
3. Set k=k+1, then return with new k; 0≤k≤n-1, 

until β=xa is reached. 

3.1.1 Baby-step Giant-step Algorithm 

Let m= [√n], where n is the order of α. The baby-
step giant-step algorithm is a time-memory trade-off 
of exhaustive search and is based on the following 
observation. If β=αx, then one can write x=im+j, 
where 0≤i,j≤m. Hence, αx=αimαj, which implies  
β(α -m)i=αj. This suggests the following algorithm for 
computing the discrete logarithm x=logαβ. 

 
Algorithm  5: The Baby-step algorithm for 
computing discrete logarithms  

INPUT: a generator α of a cyclic group G of 
order n, and an element β € G. 

OUTPUT: the discrete logarithm x=logαβ. 
1. Set m= [√n]. 
2. Construct a table with entries (j, αj) for 0≤j≤m. 

Sort this table by second component. (Alternatively, 
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use conventional hashing on the second component 
to store the entries in a hash table; placing an entry, 
and searching for an entry in the table takes constant 
time.) 

3. Compute α-m and set γ=β. 
4. For i from 0 to m-1 do the following: 

4.1 Check if γ is the second component of 
some entry in the table. 
4.2 If γ=αj then return (x=im+j). 
4.3 Set γ=γ.α-m. 

 
The (Baby-step giant-step algorithm) requires 

storage for O(√n) group elements. The table takes 
O(√n) multiplications to construct, and O(√nlg n) 
comparisons to sort. Having constructed this table, 
step 4 takes O(√n) multiplications and O(√n) table 
look-ups. Under the assumption that a group 
multiplication takes more time than log n 
comparisons, the running time of Baby-step giant-
step algorithm is O(√n) group multiplications. 

4 TESTING AND EVALUATION 

In this section, we compare and evaluate the 
different classical and modified cryptosystems by 
showing the implementation of the cryptosystems' 
algorithms with their running results. Also, we test 
the security of the algorithms by implementing 
different attack algorithms to crack the encrypted 
messages. All this is done using Mathematica 4.0 as 
a programming language and a PIV Dell computer 
with 2.4 GHZ CPU, 40 GByte hard-disk, and 512 
MB DDRAM. 

4.1 ElGamal based Algorithms 

Using Mathmatica 4.0 functions and an additional 
abstract algebra library, we have written programs 
for the following algorithms: 

 
1. Classical ElGamal. 
2. Classical ElGamal with n of the form 2pt. 
3. ElGamal with Gaussian numbers. 
4. ElGamal with irreducible polynomials. 
5. ElGamal with reducible polynomials. 

 
After running the programs, it was clear that 

these programs have applied the ElGamal 
cryptosystem in the correct way. All the programs 
have generated a public and private key with 
different mathematical concepts. Then a message is 
encrypted using the encryption scheme and is sent 
encrypted to a decryption procedure which returned 
the original message. 

 

Comparing these algorithms with each other, we 
conclude the following: 

1.  All programs are reliable; they can encrypt 
     and decrypt any message. 

2.  The complexity for each of the algorithms is  
     O (n²). 

3. The reducible polynomial cryptosystem is 
reliable but it took considerable time to generate a 
key and to encrypt a message. This does not mean 
that it is inefficient because it is more secure than 
the other algorithms. This will be shown later in the 
attack section. 

4. The irreducible polynomial program worked 
well but only on specific examples. This is due to 
the fact that it is difficult to generate a random 
irreducible polynomial according to a prime number 
p. 
After 25 runs, we can conclude that: 

a- The time needed to find the key, to encrypt and 
to decrypt for the classical, modified 2pt and 
Gaussian is approximately negligible compared to 
the time needed for the polynomials. 

b- For the reducible and irreducible polynomials 
the time needed to encrypt a message is greater than 
the time needed to find the key or to decrypt a 
message. 

4.2 Attack Algorithm 

In order to attack any protocol that uses ElGamal 
public-key encryption scheme we have to solve the 
discrete logarithm problem. We enhanced the Baby-
step giant-step algorithm to work with the modified 
algorithms. 

 
To test the security of the algorithms, we 

implemented attack schemes and applied them on 
the classical and modified cryptosystem algorithms. 
After running these attack algorithms, we observed 
the following: 

 
1. All the attack programs are reliable so that they 

can hack an encrypted message by finding the 
private key. 

2. The 2pt algorithm is probably stronger than the 
classical algorithm because we have an unknown 
power t. Moreover, it needs t times to attack this 
algorithm compared to the classical one. 

3. The Gaussian algorithm is probably stronger 
than the classical algorithm since its attack algorithm 
needs double the time needed to attack the classical 
one. 

4. Perhaps the most difficult one to attack is in 
the polynomial domain. This is due to the fact that 
mathematically it is complex and needs considerable 
computing time to find the modulus of a given 
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polynomial with respect to a certain irreducible or 
reducible polynomial and with respect to a given 
prime number. 

5 CONCLUSION 

In this work, we presented the classic ElGamal 
cryptosystem and four modifications to it, namely, 
the ElGamal cryptosystem in Zn, in the domain of 
Gaussian integers, Z[i], over finite fields, and over 
quotient rings of polynomials over finite fields. We 
implemented these algorithms and tested their 
efficiency, reliability, and security. The results 
obtained showed that all the algorithms applied the 
ElGamal cryptosystem correctly and generated 
public and private key using different mathematical 
concepts. Messages were then encrypted using the 
encryption scheme and were sent in encrypted form 
to a decryption procedure which returned the 
original messages. 
 

We also built attack scenarios directly aimed at 
solving the discrete logarithm problem that these 
algorithms utilize. We modified the Baby-step 
Giant-step algorithm to handle the modified 
algorithms. We observed that the polynomial 
domain algorithm was the most challenging to attack 
due to mathematical complexity. 
 

As for future work, we plan to compare and 
evaluate the efficiency of the modified algorithms 
using very large numbers by using parallel 
computing techniques. We plan to run the programs 
in parallel on many computers and split the complex 
mathematical calculations between these computers. 
We plan to write a function that is capable of finding 
any random irreducible equation with respect to a 
specific prime number p. We also plan to apply the 
modified algorithms in many fields such as 
communications and network security. 
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