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Abstract: In case that malicious or selfish user congests network, the traditional congestion control schemes such as 
ECN (Explicit Congestion Notification) in TCP protocol could not control the pernicious congestion so 
perfectly as they protect normal traffic. In this paper, we propose a strong congestion-making traffic control 
scheme, which is capable of preventing malicious or selfish user from congesting networks by dropping only 
packets corresponding to congestion-making traffic when a network congestion occurs. Our scheme involves 
two mechanisms: a traffic service decision mechanism that is able to fast and correctly determine whether an 
incoming packet is normal traffic or congestion-making, and a marking mechanism for identifying 
congestion-making traffic. In the marking mechanism a router can mark a packet in order to notify 
downstream routers that the marked packet is congestion-making traffic. To show our scheme's excellence, 
its performance is measured and compared with that of the existing schemes through simulation. 

1 INTRODUCTION 

Congestion at a router occurs when the sum of input 
streams is greater than output capacity. Once 
congestion occurs, packet delay and packet loss 
increase because congested router's buffers become 
full. In solving the congestion problem, most of the 
traditional mechanisms assume that sender makes an 
effort to adjust its transmission rate to network state 
or reserves a certain amount of network resource 
before sending packets. For example, network in 
ECN (Explicit Congestion Notification) mechanism 
(S. Floyd, 1994) notifies TCP senders/receivers 
about incipient congestion in expectation that if they 
receive an ECN signal they'll decrease their 
transmission rate. 
However, malicious or selfish users may 
intentionally congest network. Actually, Denial of 
Service (DoS) attackers (K. J. Houle et al, 2001), (X. 
Geng et al, 2000) as malicious user result in network 
congestion by generating a huge volume of traffic 
for the purpose of assailing a victim system or 
networks. Selfish users also establish many 
connections to get better network service. In that 
case, ECN-like approach would be of little use in 
controlling such pernicious congestion. That is, 
when congested router sends an ECN signal to 
senders, only normal senders will decrease its 
transmission rate. On the other hand, malicious or 
selfish users will ignore the ECN signal by 
increasing the number of flows. This is why network 

is still congested nevertheless normal user’s 
decreased its transmission rate. 
 
In this paper, we define congestion-making traffic as 
one of which transmission rate is still high under 
network congestion. To control congestion-making 
traffic, it has been proposed a static rate-limit 
scheme (Cisco, 2000) in which the rate to limit is 
fixed in advance. But the scheme has a disadvantage 
that the amount of packets during normal state 
should be first measured to set the correct threshold 
value for rate-limiting congestion-making traffic. 
And also, it has been proposed a dynamic rate-limit 
scheme called ACC (Aggregate-based Congestion 
Control) (R. Mahajan et al, 2002) in which when 
congestion occurs the rate to limit is dynamically 
determined based on the bandwidth of each 
aggregate. Even if ACC is much better than static 
rate-limit, it is likely to have a weak point in 
determining precise rate-limit value. As explained 
above, TCP-like adaptive traffic decreases its 
transmission rate when congestion occurs. So, the 
threshold for rate-limiting congestion-making traffic 
may be overestimated. As a result, ACC may not 
protect adaptive traffic from congestion-making 
traffic. 
 
In this paper, we propose a strong congestion-
making traffic control scheme for preventing 
malicious or selfish user from congesting networks. 
Our elementary strategy is to drop only packets 
corresponding to congestion-making traffic when 
network congestion occurs. We don't use rate-limit 
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approach in controlling congestion-making traffic. 
Instead, we employ three priority queues: high, 
medium, and low priority queues. We provide 
normal traffic with high priority queue and 
congestion-making traffic with medium or low 
priority queue. Our scheme prevents the buffer of 
high priority queue from becoming full. So when 
network congestion occurs, only medium and low 
priority queues experience that their buffer become 
full. In other words, network congestion is localized 
to only congestion-making traffic without having 
any effect on normal traffic. 
 
Our scheme involves two mechanisms: a traffic 
service decision mechanism that is able to fast and 
correctly determine whether an incoming packet is 
normal traffic or congestion-making, and a marking 
mechanism for identifying congestion-making traffic. 
In the marking mechanism, a router can mark a 
packet in order to notify downstream routers that the 
marked packet is congestion-making traffic. If a 
router receives a marked packet, it forwards the 
packet to low priority queue at once without 
determining the service queue for it. 
 
The rest of this paper is organized as follows. 
Section 2 overviews our scheme and section 3 
illustrates an algorithm for determining the service 
of an incoming packet in detail. In section 4, the 
performance of the proposed scheme is measured 
and compared with that of the existing schemes 
through simulation. In section 5, the other works that 
tackle the problems of DoS attacks is shortly 
described. Finally conclusion is given in Section 6. 

2 CTC OVERVIEW 

In this section, we describe our scheme, Congestion-
making Traffic Control (CTC) 

2.1 IP Spoofing Problem 

Generally, severe network congestion occurs by 
malicious or selfish user. Malicious user is likely to 
employ the faked source IP to hide his/her identity, 
while selfish user does not use the faked source IP 
because his/her purpose is not to attack 
networks/systems, but to get better network service. 
 
In this paper, we don't address IP spoofing problem. 
We assume that there is no IP-spoofed packet on 
networks or if it exists it is detected/dropped by 
using the existing mechanism such as ingress 
filtering (P. Ferguson  et al, 2000), unicast reverse 
path forwarding (uRPF) (Cisco, 2001) and so on. 

2.2 Identifying Congestion-making 
Traffic 

Malicious or selfish user has a common 
characteristic that generates a huge volume of traffic 
without any consideration of network state. That is, 
they generate heavy traffic and never decrease their 
transmission rate even if network congestion occurs. 
For such reason, we define congestion-making 
traffic as one that generates heavy traffic under 
network congestion. 
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Figure 1: STT and STT class 

In this paper, we classify all traffic by its source IP 
network address and application type (i.e, 
destination port and protocol). More specifically, we 
define two terms, a source-based traffic trunk (STT) 
and a STT class as shown in Fig. 1. The original 
concept of traffic trunk was introduced by T. Li and 
Y. Rekhter (T. Li et al, 1998). In this paper, a STT 
indicates an aggregate of flows with the same source 
IP network address. The granularity of STT depends 
on the size of address prefix. A STT class indicates 
the set of STTs with the same application type. STT 
class can be defined with a policy. For example, it is 
possible to define STT class 1 as one for Web traffic 
and STT class 2 as one for voice traffic. 
 
In this paper, we define normal traffic as one that 
consists of STTs with relatively less load than other 
STT, and of which the sum of load does not exceed 
MaxLoad_Threshold. MaxLoad_threshold can be 
configured by an administrator. The definition of 
normal traffic and congestion-making traffic is as 
follows : 
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To fast and correctly distinguish between normal 
and congestion-making traffic, we propose a novel 
algorithm. The algorithm is described in section 3.2 
in detail.  
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Figure 2: Our strategy for controlling congestion-making 
traffic 

Our strategy for controlling congestion-making 
traffic is to keep the sum of load of normal STTs 
from exceeding MaxLoad_threshold and to provide 
them with better service than congestion-making 
STTs for the purpose of localizing the effect of 
network congestion to congestion-making STTs. 
 
To realize this, we employ two kinds of priority 
queues, high and medium priority queues as shown 
in Fig. 2. We provide normal STT with high priority 
queue and congestion-making STT with medium 
priority queue.  If the sum of load of normal STTs is 
greater than MaxLoad_threshold, we change the 
property of the worst one of the normal STTs to 
congestion-making traffic for the purpose of 
avoiding that network congestion occurs in high 
priority queue. On the contrary, if the sum of load of 
all normal STTs is less than MaxLoad_threshold, we 
changes the property of the best one of the 
congestion-making STTs to normal traffic for the 
purpose of increasing network utilization. 

2.3 Architecture of CTC 

We now describe our scheme. Fig. 3 shows the 
architecture of CTC-enabled router. The architecture 
is composed of two parts: packet forwarding and 
STT examiner. 
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Figure 3: Architecture of a CTC-enabled router 

Firstly, we explain about packet forwarding. When 
CTC-enabled router receives a packet, it checks if 
the packet is marked with congestion-maker (CM). 
If it is, CTC-enabled router sends it to Low Priority 
Queue (LPQ). Otherwise, it classifies the incoming 
packet by STT (i.e. source IP network address, 
destination port, and protocol) and looks up the 
service queue of the STT corresponding to the 
packet from STT Service Table.  And then it sends 
the packet to High Priority Queue (HPQ), Medium 
Priority Queue (MPQ) or LPQ according to the 
lookup result. If the service queue of the packet is 
MPQ or LPQ, then the packet is marked with CM.  
 
Secondly and finally, STT-Examiner takes the 
responsibility of determining whether a STT 
corresponding to an incoming packet is congestion-
making traffic or not. STT-Examiner calculates the 
average bandwidth of a STT corresponding to an 
incoming packet and determines the service queue of 
the STT based on bandwidth of the STT and the sum 
of bandwidth of normal STTs. The operation result 
is stored in STT Service Table. Algorithm of STT-
Examiner is described in section 3 in detail. 
 
STT Service Table consists of several fields such as 
STT-Identifier, service queue by STT-Examiner, 
service queue by Intrusion Detection Agent (IDA), 
the average bandwidth of STT, and so on. Where, 
IDA means IDS (Intrusion Detection System)-like 
agent.  
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Figure 4: Update of STT service table: can be done by 
IDA as well as by STT-examiner 

Our architecture can support IDA in order to 
enhance the correctness when distinguishing 
between normal and congestion-making traffic. That 
is, STT Service Table can be updated by IDA as 
well as by STT-examiner as shown in Fig. 4. In that 
case, IDA has higher priority than STT-examiner in 
packet forwarding. For example, if IDA regards a 
STT (e.g., 192.168.32.x in Fig. 4) as malicious 
traffic and set its service queue to LPQ, then packets 
with the STT will be forwarded to LPQ irrespective 
of the service decision of STT-examiner. 
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Figure 5: Example about how congestion-making STT is 

controlled 

Fig. 5 shows how our CTC scheme controls 
congestion-making traffic. In the Fig. 5, the two 
links between R1 and R3 are congested. , , , 
and  indicate STT identifier. The normal packet 
with STT-ID,  gets good Quality of Service (QoS) 
at both R1 and R2. The congestion-making packet 
with STT-ID, , however, gets bad QoS at R1 and 
worse QoS at R2 than at R1. So, The drop 
probability of the packet is very strong because it is 
forwarded using MPQ at R1 and LPQ at R2, 
respectively. 

P2 P1 P0 T3 T2 T1 T0 CU

DS5 DS4 DS3 DS2 DS1 DS0 ECN ECN

ToS Byte
(IP precedence: three bits (P2.P0), ToS: four bits (T3.T0), CU: one bit)

DiffServ Field
DSCP: six bits (DS5.DS0), ECN: two bits

P2 P1 P0 T3 T2 T1 T0 CU

DS5 DS4 DS3 DS2 DS1 DS0 ECN ECN

ToS Byte
(IP precedence: three bits (P2.P0), ToS: four bits (T3.T0), CU: one bit)

DiffServ Field
DSCP: six bits (DS5.DS0), ECN: two bits         

Figure 6: Use of ToS field in IP Header by Diffserv 

To support CM-marking proposed in this paper, we 
need a field in IP header. There is ToS field in IP 
header to show precedence and type of service for a 
packet. But, the ToS field is now used by DiffServ 
(Differentiated Service) (K. Nichols et al) as shown 
in Fig. 6. The six most signification bits of the ToS 
byte are now called the DiffServ field. The last two 
Currently Unused (CU) bits are now used as ECN 
bits. Until now, DS0 in DiServ Field is always 0 (F. 
Baker et al) (V. Jacobson et al). So we have under 
investigation whether we can use DS0 in doing CM-
marking. 

3 STT SERVICE 
DETERMINATION 
ALGORITHM  

We now describe an algorithm for determining on 
the service for a STT in detail, which is executed by 
STT examiner explained in previous section. 

3.1 Fluctuation-sensitive STT 
metering 

To correctly determine which one is congestion-
making traffic, it requires precisely calculating the 
average bandwidth of STT. However, it’s not easy to 
get exact bandwidth of STT because packets in 
current TCP/IP Internet are forwarded from a router 
to a router at variable bit rate. To make it worse, 
malicious user may generate artificial congestion-
making traffic with violent fluctuations in on-off 
sending pattern. 
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Figure 7: Congestion-making traffic (STT2) with violent 
fluctuations 

 
For Example, let's suppose that STT1 and STT2 as 
shown in Fig. 7 are normal traffic and congestion-
making traffic, respectively. In Fig. 7, t1-t4 each 
indicates the time to calculate the average bandwidth 
of STT and to determine which one is congestion-
making traffic. STT2 is generating heavy traffic in an 
instant from t2 to t4 to bring out network congestion. 
In that case, if the bandwidth of both STTs is 
ordinarily metered, it'll be difficult to be aware at t3 
that STT2 is congestion-making traffic. This is 
because the average bandwidth of STT2 is 
underestimated. 
 
For fast detection of congestion-making traffic, we 
propose a fluctuation-sensitive metering scheme, 
which considers traffic increasing rate as well as 
current traffic volume in calculating the average 
bandwidth of STT. The proposed metering scheme 
makes use of Exponentially Weighed Moving 
Average (EWMA), which employs a statistic to 
average the data in a way that give more weight to 
recent observations and less weight to older 
observations. In this paper, the average bandwidth of 
a STT is calculated as follows : 

α
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+−×=

)..(                       
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Where, STT.sampleBW indicates the current 
bandwidth of STT calculated based on the total size 
of packets received during a certain given time. 0 < 
alpa < 1 and alpa is used to mitigate a sudden 
change of STT.avgBW. 
 
The value of STT.additionalBW dedepnds on traffic 
increasing rate of the STT. If the traffic increasing 
rate (i.e. STT.sampeBW - STT.avgBW) is less than or 
equal to 0, then STT.additionalBW is 0. Otherwise, 
STT.additionalBW is calculated as follows: 
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3.2 Fast STT Service Determination 

In this paper, we propose an algorithm as shown in 
Fig. 8, which is capable of determining fast if the 
service queue of a STT is HPQ or MPQ according to 
its average bandwidth. 
 
The proposed procedure has four parameters: STT, 
AvailableBW, STT_ToPromote, STT_ToDemote. 
STT contains information about a STT that an 
incoming packet belongs to. AvailableBW indicates 
the available bandwidth for a STT class. In initial 
time, AvailableBW is set to the max bandwidth that 
can be allocated for the STT class. STT_ToPromote 
is one to promote foremost of all the MPQ-served 
STTs in case that one of them have to be changed to 
HPQ in service queue. And STT_ToDemote is one to 
demote foremost of all the HPQ-served STTs in case 
that one of them have to be changed to MPQ in 
service queue. 

Procedure Fast-STT-SQ-Decision ( STT, AvailableBW, 
STT_ToPromote, STT_ToDemote )

// STT : Source-based Traffic Trunk that a incoming packet belongs to.
// AvailableBW : the available bandwidth for a STT class.
//                         initially, it’s set to the max bandwidth for the STT class
// STT_ToPromote : is one to promote foremost of all the MPQ-served STTs
//                in case that  one of them have to be changed to HPQ in service queue.
// STT_ToDemote  : is one to demote foremost of all the HPQ-served STTs
//                in case that one of them have to be changed to MPQ in service queue.

if ( time to calculate the average bandwidth of STT ) then
previousAvgBw ← STT.avgBw

// calculate the average bandwdith of STT
calculate-STT-BW (STT) 

if ( STT.sq = MPQ && STT.avgBw  ≤ AvailableBW ) then
STT.sq ← HPQ
AvailableBW  ← AvailableBW − STT(i).avgBw

else if ( STT.sq = HPQ ) then
AvailableBW ← STT.avgBw − previousAvgBw 
if ( AvailableBW < 0 )

STT.sq ← MPQ
AvailableBW ← AvailableBW − STT.avgBw

end
end

end

if ( STT.sq = HPQ )  then
STT_ToDemote.avgBw  ← max (STT_ToDemote.avgBw  , STT.avgBw )

else
STT_ToPromote.avgBw ← min (STT_ToPromoote.avgBw, STT.avgBw )

end

if (STT_ToDemote.avgBw > STT_ToPromote.avgBw ) {
AvailableBW ← AvailableBW + 

(STT_ToDemote.avgBw − STT_ToPromote.avgBw)
STT_ToDemote.sq ← MPQ
STT_ToPromote.sq  ← HPQ

end

END Fast-STT-SQ-Decision

Figure 8: Algorithm for determining on the service 
queue of a STT 
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The proposed algorithm, Fast-STT-SQ-Decision is 
executed whenever a packet arrives. Firstly, the 
algorithm checks if it's time to calculate the average 
bandwidth of the STT corresponding to the packet. 
If yes, it calculates the average bandwidth of the 
STT. If the service queue of the STT is MPQ and 
there is available bandwidth for it, then its service 
queue is changed to HPQ. On the contrary, Even if 
the current service queue of the STT is HPQ, if the 
increased bandwidth of the STT is greater than 
available bandwidth then its service queue is 
changed to MPQ. Without regard to STT bandwidth 
calculation time, the proposed algorithm is always 
trying to set STT_ToPromote to a STT consuming 
the least bandwidth of MPQ-served STTs, and to set 
STT_ToDemote to a STT consuming the most 
bandwidth of HPQ-served STTs. If the average 
bandwidth of STT_ToDemote is greater than that of 
STT_ ToPromote, the service queue of 
STT_ToDemote is changed to MPQ and that of STT_ 
ToPromote is changed to HPQ. 
 
The proposed algorithm is capable of satisfying the 
definition of normal and congestion-making traffic 
defined in section 2.2 within a fast time without 
using time-consuming operation such as sort. We'll 
show how fast and correctly the proposed algorithm 
can determine whether a STT is normal STT or 
congestion-making through a simulation in next 
section. 

4 SIMULATIONS 

4.1 STT service queue determination 
algorithm 

The purpose of this simulation is to see how fast the 
proposed algorithm (i.e., Fast-STT-SQ-Decision 
algorithm of Fig. 8) can determine the service queue 
for a STT. For the simulation, we assume that the 
bandwidth of each STT is fixed at simulation initial 
time and the packet inter-arrival time of each STT is 
10ms. The simulation finishes when the proposed 
algorithm provides all normal STT with HPQ and all 
congestion-making STT with MPQ. 
 
Fig. 9 shows simulation results of the STT service 
queue determination algorithm proposed in this 
paper. In Fig. 9, <average waiting time of a STT> 
means the average time taken to correctly determine 
the service queue of a STT. In <average waiting 
time of a failed STT>, a failed STT means one that 
fails to find out its service queue at one time. And in 
<waiting time of the worst failed STT>, the worst 

failed STT indicates one that most fails to find out 
its service queue. In the simulation of Fig. 9-(a), we 
fix the percentage of congestion-making STT to 
60%. In the simulation of Fig. 9-(b), we fix the 
number of STTs to 10000. 
 
The performance of our algorithm is very excellent 
as shown in Fig. 9. Our algorithm is little influenced 
by both the total number of STTs and the percentage 
of congestion-making STTs. 
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(b) Increase in the percentage of congestion-making STTs 
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Figure 9: Simulation results of the STT service queue 

determination algorithm 

Fig. 9 means that once the average bandwidth of a 
STT is calculated, our scheme can correctly 
determine on the service queue of the STT within 
2ms (the average time). In Fig. 9, the average 
waiting time of a failed-STT is about 25ms. The 
waiting time, 25 ms is not long in this simulation 
because it means that only two packets (since the 
inter-arrival time is 10ms) are forwarded to wrong 
queue. 

4.2 CTC  

In order to compare performance between our 
scheme and the existing algorithms, we use ns-2 
Network Simulator (UCB/LBNL/VINT). In this 
simulation, the priority queues of our scheme are 
implemented using CBQ (Class-based Queuing). 
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Fig. 10 shows the network topology for simulations. 
The topology consists of six source nodes from 0 to 
5, three router nodes from 6 to 8, and two target 
nodes from 9 to 10. In the source nodes, the node 0-
3 and 5 mean normal user and the node 4 means 
malicious/selfish user. In this simulation, we 
consider three kinds of traffic type: adaptive TCP, 
non-adaptive UDP, and Web-like traffic. 
 
Firstly, the simulation scenario for adaptive TCP and 
non-adaptive UDP traffic is as follow. The node 0 
and 2 each has three non-adaptive UDP flows of 
which each transmission rate is 0.5 Mbps and target 
is the node 9. The node 1 and 3 each have ten 
adaptive TCP flows of which each window size is 11 
and target is the node 9. The node 4 has forty non-
adaptive UDP flows of which each transmission rate 
is 0.5 Mbps and target is the node 9. The node 4 
results in congestion at link 7-8 and 8-9 by 
increasing its transmission rate every 1 seconds. The 
node 5 has ten adaptive TCP flows of which each 
window size is 15 and target is the node 10. We 
refer to the traffic generated by the node 5 as 
background traffic because its target is different 
from that of other source nodes. 
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Figure 10: Network topology for simulation: link 7-8 and 
8-9 are congested. 

Fig. 11-(a),(b),(c),(d) show the simulation results of 
RED, ACC, PushBack (R. Mahajan et al, 2002), and 
CTC scheme, respectively. In RED, the congestion-
making traffic consumes most of link bandwidth. As 
a result, both normal and background traffic are not 
good in throughput. ACC is better than RED in 
performance. ACC can protect the non-adaptive 
normal traffic. But, it fails to protect both the 
adaptive normal traffic and the background traffic. 
Pushback protects the background traffic as well as 
the non-adaptive normal traffic. But, Pushback fails 
to protect the adaptive normal traffic. This is 

because the adaptive normal traffic decreases its 
transmission when congestion occurs. 
 
CTC protects all normal and background traffic as 
shown in Fig. 11-(d). CTC provides almost the full 
bandwidth that the normal users requested. This is 
because network congestion is localized to only 
congestion-making traffic without having any effect 
on normal traffic. 
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(B) ACC 
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(c) PushBack 
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(d) CTC proposed in this paper 
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Figure 11: Throughput of adaptive TCP and non-adaptive 

UDP traffic under congestion 

(a) CTC without marking 
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(b) CTC with marking 
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Figure 12: Non-marking vs Marking 

CM-marking mechanism proposed in this paper is 
very useful when multiple congestions occur. Fig. 
12-(a) and (b) show the simulation results of CTC 
without marking and CTC with marking, 
respectively. In this simulation, all normal sources 
generate only adaptive TCP traffic. As shown in Fig. 
12, CTC with marking makes more exact 
determination because downstream node gets 
information on which one is congestion-making STT 
from upstream node 
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Figure 13: Time taken to finish a Web service under 

congestion 

To compare CTC with the existing schemes in Web-
like traffic environment, we rewrite link bandwidth 
in network topology shown in Fig. 10. Each uplink 
bandwidth between 6-8, between 7-8, and between 
8-9 is set to 1 Mbps. In this simulation, the node 9 is 
a web server. Fig. 13 shows the time taken to finish 
a Web service under congestion. As shown Fig. 13, 
CTC is better than any other schemes. 

5 RELATED STUDY 

It is said that DDoS attack strategy rests on the 
followings (X. Geng  et al, 2000): 
(1) Using the Internet's insecure channels 
(2) Hiding the attacker's identity 
(3) Generating huge traffic volume 
 
The first problem can be mitigated by installing 
intrusion detection system and firewall on customer 
networks, and also virus scan program and personal 
firewall on each user's PC. 
 
To solve the second problem, there have been 
proposed a few approaches: ingress filtering (P. 
Ferguson  et al, 2000), uRPF (Cisco, 2001), packet 
marking (S. Savage et al, 2001) and ICMP 
Traceback (S. Bellovin et al, 2001). Ingress filtering 
employs the scheme that boundary router filters all 
traffic coming from the customer that has a source 
address of something other than the addresses that 
have been assigned to the customer. uRPF discards 
faked packet by accepting only packet from interface 
if and only if the forwarding table entry for the 
source IP address matches the ingress interface. 
Packet marking scheme is one that probabilistically 
marks packets with partial path information as they 
arrive at routers in order that the victim may 
reconstruct the entire path. ICMP Traceback scheme 
uses a new ICMP message, emitted randomly by 
routers along the transmission path of packet and 
sent to the destination. The destination can 
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determine the traffic source and path by using the 
ICMP messages.  
 
This paper addresses the third and last problem. The 
problem can be thought of as the typical queuing 
discipline problem in network router. The core of the 
queuing discipline problem is to determine which 
packets get transmitted and which packets get 
discarded. There have been proposed many queuing 
algorithms (S. Keshav, 1997) such as FIFO: First-In-
First-Out, FQ (Fair Queuing), RED (Random Early 
Detection), and so on. Those queuing algorithms 
cannot be used as a solution for the problem. For 
example, RED has a merit that the more packets sent 
by a flow, the higher the chance that its packets will 
be selected for dropping. But, RED also has a 
disadvantage that the more increase the volume of 
malicious user's traffic, the higher the probability 
that legitimate user's packet will be dropped because 
DDoS attacker can generate a huge volume of traffic. 
(F. Lau et al, 2000) recommended CBQ as the 
queuing algorithm that can protect legitimate user 
from DDoS attack. Using CBQ requires 
classification of traffic into each class. But, they 
didn't handle the problem. 
 
There has been proposed static rate limit that blocks 
(or marks) packets exceeding a threshold (Cisco, 
2000). This strategy is available only in DoS attack 
and also has a disadvantage that amount of packets 
during normal state should be first measured to fix 
the correct threshold value for limiting malicious 
traffic. 
 
Yau has proposed max-min fair server-centric router 
throttle scheme (D.K.Y. Yau et al, 2002). The key 
idea is for a server under stress to install a router 
throttle (e.g. leaky-bucket) at selected upstream 
routers. The scheme can defeat DDoS traffic by 
controlling the router throttle. Mahajan has proposed 
a mechanism for detecting and controlling high 
bandwidth aggregates (R. Mahajan et al, 2002). 
They've researched recursive pushback of max-min 
fair rate limits starting from the target server to 
upstream routers. Both throttle and pushback 
mechanisms are likely to have a weak point in 
determining the threshold value for rate-limiting 
DDoS traffic and in requiring a new protocol for 
communication between victim and routers. 

6 CONCLUSIONS 

In this paper, we proposed a strong congestion-
making traffic control scheme for preventing 
malicious or selfish user from congesting networks. 

Its key idea is to drop only packets corresponding to 
congestion-making traffic when network congestion 
occurs by providing congestion-making traffic with 
worse service (i.e., worse priority queue) than the 
normal traffic. We simulated the proposed scheme 
and the existing schemes to evaluate the 
performance of each scheme. The simulation results 
demonstrate that the proposed scheme is better than 
or almost same as the existing schemes in 
performance. 
 
Even if our scheme is able to control congestion-
making traffic effectively, we still need more 
research in analysing the attack traffic of malicious 
user in order to detect real congestion-making traffic 
generated by malicious user. We introduced IDA 
(Intrusion Detection Agent) in this paper. We think 
IDA will play an important role in defeating various 
kinds of attacks such as virus and worm, needlessly 
to say DoS attacks 
Our future work is to implement and evaluate our 
scheme on real networks. 
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