
FAST AND STRONG CONTROL OF CONGESTION-MAKING
TRAFFIC

Gaeil Ahn, Kiyoung Kim, Jongsoo Jang

Security Gateway Research Team, Electronics and Telecommunications Research Institute (ETRI)
161 Gajeong-dong, Yuseong-gu, Daejon, 305-350, Korea

Keywords: Network congestion, DDoS attack, Packet marking, Priority queue, Traffic control

Abstract: In case that malicious or selfish user congests network, the traditional congestion control schemes such as
ECN (Explicit Congestion Notification) in TCP protocol could not control the pernicious congestion so
perfectly as they protect normal traffic. In this paper, we propose a strong congestion-making traffic control
scheme, which is capable of preventing malicious or selfish user from congesting networks by dropping only
packets corresponding to congestion-making traffic when a network congestion occurs. Our scheme involves
two mechanisms: a traffic service decision mechanism that is able to fast and correctly determine whether an
incoming packet is normal traffic or congestion-making, and a marking mechanism for identifying
congestion-making traffic. In the marking mechanism a router can mark a packet in order to notify
downstream routers that the marked packet is congestion-making traffic. To show our scheme's excellence,
its performance is measured and compared with that of the existing schemes through simulation.

1 INTRODUCTION

Congestion at a router occurs when the sum of input
streams is greater than output capacity. Once
congestion occurs, packet delay and packet loss
increase because congested router's buffers become
full. In solving the congestion problem, most of the
traditional mechanisms assume that sender makes an
effort to adjust its transmission rate to network state
or reserves a certain amount of network resource
before sending packets. For example, network in
ECN (Explicit Congestion Notification) mechanism
(S. Floyd, 1994) notifies TCP senders/receivers
about incipient congestion in expectation that if they
receive an ECN signal they'll decrease their
transmission rate.
However, malicious or selfish users may
intentionally congest network. Actually, Denial of
Service (DoS) attackers (K. J. Houle et al, 2001), (X.
Geng et al, 2000) as malicious user result in network
congestion by generating a huge volume of traffic
for the purpose of assailing a victim system or
networks. Selfish users also establish many
connections to get better network service. In that
case, ECN-like approach would be of little use in
controlling such pernicious congestion. That is,
when congested router sends an ECN signal to
senders, only normal senders will decrease its
transmission rate. On the other hand, malicious or
selfish users will ignore the ECN signal by
increasing the number of flows. This is why network

is still congested nevertheless normal user’s
decreased its transmission rate.

In this paper, we define congestion-making traffic as
one of which transmission rate is still high under
network congestion. To control congestion-making
traffic, it has been proposed a static rate-limit
scheme (Cisco, 2000) in which the rate to limit is
fixed in advance. But the scheme has a disadvantage
that the amount of packets during normal state
should be first measured to set the correct threshold
value for rate-limiting congestion-making traffic.
And also, it has been proposed a dynamic rate-limit
scheme called ACC (Aggregate-based Congestion
Control) (R. Mahajan et al, 2002) in which when
congestion occurs the rate to limit is dynamically
determined based on the bandwidth of each
aggregate. Even if ACC is much better than static
rate-limit, it is likely to have a weak point in
determining precise rate-limit value. As explained
above, TCP-like adaptive traffic decreases its
transmission rate when congestion occurs. So, the
threshold for rate-limiting congestion-making traffic
may be overestimated. As a result, ACC may not
protect adaptive traffic from congestion-making
traffic.

In this paper, we propose a strong congestion-
making traffic control scheme for preventing
malicious or selfish user from congesting networks.
Our elementary strategy is to drop only packets
corresponding to congestion-making traffic when
network congestion occurs. We don't use rate-limit

20
Ahn G., Kim K. and Jang J. (2004).
FAST AND STRONG CONTROL OF CONGESTION-MAKING TRAFFIC.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 20-29
DOI: 10.5220/0001399700200029
Copyright c© SciTePress

approach in controlling congestion-making traffic.
Instead, we employ three priority queues: high,
medium, and low priority queues. We provide
normal traffic with high priority queue and
congestion-making traffic with medium or low
priority queue. Our scheme prevents the buffer of
high priority queue from becoming full. So when
network congestion occurs, only medium and low
priority queues experience that their buffer become
full. In other words, network congestion is localized
to only congestion-making traffic without having
any effect on normal traffic.

Our scheme involves two mechanisms: a traffic
service decision mechanism that is able to fast and
correctly determine whether an incoming packet is
normal traffic or congestion-making, and a marking
mechanism for identifying congestion-making traffic.
In the marking mechanism, a router can mark a
packet in order to notify downstream routers that the
marked packet is congestion-making traffic. If a
router receives a marked packet, it forwards the
packet to low priority queue at once without
determining the service queue for it.

The rest of this paper is organized as follows.
Section 2 overviews our scheme and section 3
illustrates an algorithm for determining the service
of an incoming packet in detail. In section 4, the
performance of the proposed scheme is measured
and compared with that of the existing schemes
through simulation. In section 5, the other works that
tackle the problems of DoS attacks is shortly
described. Finally conclusion is given in Section 6.

2 CTC OVERVIEW

In this section, we describe our scheme, Congestion-
making Traffic Control (CTC)

2.1 IP Spoofing Problem

Generally, severe network congestion occurs by
malicious or selfish user. Malicious user is likely to
employ the faked source IP to hide his/her identity,
while selfish user does not use the faked source IP
because his/her purpose is not to attack
networks/systems, but to get better network service.

In this paper, we don't address IP spoofing problem.
We assume that there is no IP-spoofed packet on
networks or if it exists it is detected/dropped by
using the existing mechanism such as ingress
filtering (P. Ferguson et al, 2000), unicast reverse
path forwarding (uRPF) (Cisco, 2001) and so on.

2.2 Identifying Congestion-making
Traffic

Malicious or selfish user has a common
characteristic that generates a huge volume of traffic
without any consideration of network state. That is,
they generate heavy traffic and never decrease their
transmission rate even if network congestion occurs.
For such reason, we define congestion-making
traffic as one that generates heavy traffic under
network congestion.

STT Class 1

STT 1

STT 2

STT n

STT Class 2

STT 1

STT 2

STT n

STT Class m

STT 1

STT 2

STT n

Classified by application type

Classified
by

source IP
network address

STT Class 1

STT 1

STT 2

STT n

STT Class 2

STT 1

STT 2

STT n

STT Class m

STT 1

STT 2

STT n

Classified by application type

Classified
by

source IP
network address

Figure 1: STT and STT class

In this paper, we classify all traffic by its source IP
network address and application type (i.e,
destination port and protocol). More specifically, we
define two terms, a source-based traffic trunk (STT)
and a STT class as shown in Fig. 1. The original
concept of traffic trunk was introduced by T. Li and
Y. Rekhter (T. Li et al, 1998). In this paper, a STT
indicates an aggregate of flows with the same source
IP network address. The granularity of STT depends
on the size of address prefix. A STT class indicates
the set of STTs with the same application type. STT
class can be defined with a policy. For example, it is
possible to define STT class 1 as one for Web traffic
and STT class 2 as one for voice traffic.

In this paper, we define normal traffic as one that
consists of STTs with relatively less load than other
STT, and of which the sum of load does not exceed
MaxLoad_Threshold. MaxLoad_threshold can be
configured by an administrator. The definition of
normal traffic and congestion-making traffic is as
follows :

FAST AND STRONG CONTROL OF CONGESTION-MAKING TRAFFIC

21

()

{ } { }STTsNormalSTTsActiveAll

STTofLoadSTTofLoad

ThresholdMaxLoadSTTofLoadSTTSTT

ii

mMAX

i
im

 ficMakingTraf-Congestion

 , _ | ..

Traffic Normal

1

0
0

−
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≤

<⎟
⎠

⎞
⎜
⎝

⎛

=

+

=
∑

To fast and correctly distinguish between normal
and congestion-making traffic, we propose a novel
algorithm. The algorithm is described in section 3.2
in detail.

Resource to service

MaxLoad
threshold

Sum of load of
normal STTs

Sum of load of
malicious/selfish

STTs

Medium
priority
queue

High
priority
queue

Resource to service

Sum of load of
normal STTs

MaxLoad
threshold

Sum of load of
malicious/selfish

STTs

Medium
priority
queue

High
priority
queue

Figure 2: Our strategy for controlling congestion-making
traffic

Our strategy for controlling congestion-making
traffic is to keep the sum of load of normal STTs
from exceeding MaxLoad_threshold and to provide
them with better service than congestion-making
STTs for the purpose of localizing the effect of
network congestion to congestion-making STTs.

To realize this, we employ two kinds of priority
queues, high and medium priority queues as shown
in Fig. 2. We provide normal STT with high priority
queue and congestion-making STT with medium
priority queue. If the sum of load of normal STTs is
greater than MaxLoad_threshold, we change the
property of the worst one of the normal STTs to
congestion-making traffic for the purpose of
avoiding that network congestion occurs in high
priority queue. On the contrary, if the sum of load of
all normal STTs is less than MaxLoad_threshold, we
changes the property of the best one of the
congestion-making STTs to normal traffic for the
purpose of increasing network utilization.

2.3 Architecture of CTC

We now describe our scheme. Fig. 3 shows the
architecture of CTC-enabled router. The architecture
is composed of two parts: packet forwarding and
STT examiner.

CM-
Marked
Packet ?

LPQ

Queue
? MPQ

HPQ

Yes

LPQ
or

MPQ

HPQ

No

STT
Service Table

insert/
delete/
update

lookup

Packet In

Packet Out

Marking
with CM

STT
Examiner

Packet
Classification

by STT

• CM : Congestion Maker
• LPQ: Low-Priority Queue
• MPQ: Medium-Priority Queue
• HPQ: High-Priority Queue

LPQ

MPQ

CM-
Marked
Packet ?

LPQ

Queue
? MPQ

HPQ

Yes

LPQ
or

MPQ

HPQ

No

STT
Service Table

insert/
delete/
update

lookup

Packet In

Packet Out

Marking
with CM

STT
Examiner

Packet
Classification

by STT

• CM : Congestion Maker
• LPQ: Low-Priority Queue
• MPQ: Medium-Priority Queue
• HPQ: High-Priority Queue

LPQ

MPQ

Figure 3: Architecture of a CTC-enabled router

Firstly, we explain about packet forwarding. When
CTC-enabled router receives a packet, it checks if
the packet is marked with congestion-maker (CM).
If it is, CTC-enabled router sends it to Low Priority
Queue (LPQ). Otherwise, it classifies the incoming
packet by STT (i.e. source IP network address,
destination port, and protocol) and looks up the
service queue of the STT corresponding to the
packet from STT Service Table. And then it sends
the packet to High Priority Queue (HPQ), Medium
Priority Queue (MPQ) or LPQ according to the
lookup result. If the service queue of the packet is
MPQ or LPQ, then the packet is marked with CM.

Secondly and finally, STT-Examiner takes the
responsibility of determining whether a STT
corresponding to an incoming packet is congestion-
making traffic or not. STT-Examiner calculates the
average bandwidth of a STT corresponding to an
incoming packet and determines the service queue of
the STT based on bandwidth of the STT and the sum
of bandwidth of normal STTs. The operation result
is stored in STT Service Table. Algorithm of STT-
Examiner is described in section 3 in detail.

STT Service Table consists of several fields such as
STT-Identifier, service queue by STT-Examiner,
service queue by Intrusion Detection Agent (IDA),
the average bandwidth of STT, and so on. Where,
IDA means IDS (Intrusion Detection System)-like
agent.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

22

192.168.10.x MPQ

192.168.21.x HPQ

192.168.32.x HPQ

192.168.41.x HPQ

•

•

LPQ

MPQ

192.168.51.x MPQ •

STT
(/24 prefixes)

Service Queue
by STT-Examiner

Service Queue
by IDA

192.168.10.x MPQ

192.168.21.x HPQ

192.168.32.x HPQ

192.168.41.x HPQ

•

•

LPQ

MPQ

192.168.51.x MPQ •

STT
(/24 prefixes)

Service Queue
by STT-Examiner

Service Queue
by IDA

Figure 4: Update of STT service table: can be done by
IDA as well as by STT-examiner

Our architecture can support IDA in order to
enhance the correctness when distinguishing
between normal and congestion-making traffic. That
is, STT Service Table can be updated by IDA as
well as by STT-examiner as shown in Fig. 4. In that
case, IDA has higher priority than STT-examiner in
packet forwarding. For example, if IDA regards a
STT (e.g., 192.168.32.x in Fig. 4) as malicious
traffic and set its service queue to LPQ, then packets
with the STT will be forwarded to LPQ irrespective
of the service decision of STT-examiner.

R2

R3

R1

2

3

22

4

2

1

4

1

1

3

• Normal Link :
• Congested Link:

• Non-Marked Packet :
• CM-Marked Packet :

• HPQ-experienced Packet :
• MPQ-experienced Packet :
• LPQ-experienced Packet :

• Normal Packet with STT-ID, 1 :
• Congestion-making Packet

with STT-ID, 2 :

1
2

• Normal Link :
• Congested Link:

• Non-Marked Packet :
• CM-Marked Packet :

• HPQ-experienced Packet :
• MPQ-experienced Packet :
• LPQ-experienced Packet :

• Normal Packet with STT-ID, 1 :
• Congestion-making Packet

with STT-ID, 2 :

1
2

Figure 5: Example about how congestion-making STT is

controlled

Fig. 5 shows how our CTC scheme controls
congestion-making traffic. In the Fig. 5, the two
links between R1 and R3 are congested. , , ,
and indicate STT identifier. The normal packet
with STT-ID, gets good Quality of Service (QoS)
at both R1 and R2. The congestion-making packet
with STT-ID, , however, gets bad QoS at R1 and
worse QoS at R2 than at R1. So, The drop
probability of the packet is very strong because it is
forwarded using MPQ at R1 and LPQ at R2,
respectively.

P2 P1 P0 T3 T2 T1 T0 CU

DS5 DS4 DS3 DS2 DS1 DS0 ECN ECN

ToS Byte
(IP precedence: three bits (P2.P0), ToS: four bits (T3.T0), CU: one bit)

DiffServ Field
DSCP: six bits (DS5.DS0), ECN: two bits

P2 P1 P0 T3 T2 T1 T0 CU

DS5 DS4 DS3 DS2 DS1 DS0 ECN ECN

ToS Byte
(IP precedence: three bits (P2.P0), ToS: four bits (T3.T0), CU: one bit)

DiffServ Field
DSCP: six bits (DS5.DS0), ECN: two bits

Figure 6: Use of ToS field in IP Header by Diffserv

To support CM-marking proposed in this paper, we
need a field in IP header. There is ToS field in IP
header to show precedence and type of service for a
packet. But, the ToS field is now used by DiffServ
(Differentiated Service) (K. Nichols et al) as shown
in Fig. 6. The six most signification bits of the ToS
byte are now called the DiffServ field. The last two
Currently Unused (CU) bits are now used as ECN
bits. Until now, DS0 in DiServ Field is always 0 (F.
Baker et al) (V. Jacobson et al). So we have under
investigation whether we can use DS0 in doing CM-
marking.

3 STT SERVICE
DETERMINATION
ALGORITHM

We now describe an algorithm for determining on
the service for a STT in detail, which is executed by
STT examiner explained in previous section.

3.1 Fluctuation-sensitive STT
metering

To correctly determine which one is congestion-
making traffic, it requires precisely calculating the
average bandwidth of STT. However, it’s not easy to
get exact bandwidth of STT because packets in
current TCP/IP Internet are forwarded from a router
to a router at variable bit rate. To make it worse,
malicious user may generate artificial congestion-
making traffic with violent fluctuations in on-off
sending pattern.

FAST AND STRONG CONTROL OF CONGESTION-MAKING TRAFFIC

23

t1 t2 t3 t4
BW Calculation Time

BW

STT1

STT2

t1 t2 t3 t4
BW Calculation Time

BW

STT1

STT2

Figure 7: Congestion-making traffic (STT2) with violent
fluctuations

For Example, let's suppose that STT1 and STT2 as
shown in Fig. 7 are normal traffic and congestion-
making traffic, respectively. In Fig. 7, t1-t4 each
indicates the time to calculate the average bandwidth
of STT and to determine which one is congestion-
making traffic. STT2 is generating heavy traffic in an
instant from t2 to t4 to bring out network congestion.
In that case, if the bandwidth of both STTs is
ordinarily metered, it'll be difficult to be aware at t3
that STT2 is congestion-making traffic. This is
because the average bandwidth of STT2 is
underestimated.

For fast detection of congestion-making traffic, we
propose a fluctuation-sensitive metering scheme,
which considers traffic increasing rate as well as
current traffic volume in calculating the average
bandwidth of STT. The proposed metering scheme
makes use of Exponentially Weighed Moving
Average (EWMA), which employs a statistic to
average the data in a way that give more weight to
recent observations and less weight to older
observations. In this paper, the average bandwidth of
a STT is calculated as follows :

α
α

×+
+−×=

)..(
)0.1(..

BWadditionalSTTsampleBWSTT
avgBWSTTavgBWSTT

Where, STT.sampleBW indicates the current
bandwidth of STT calculated based on the total size
of packets received during a certain given time. 0 <
alpa < 1 and alpa is used to mitigate a sudden
change of STT.avgBW.

The value of STT.additionalBW dedepnds on traffic
increasing rate of the STT. If the traffic increasing
rate (i.e. STT.sampeBW - STT.avgBW) is less than or
equal to 0, then STT.additionalBW is 0. Otherwise,
STT.additionalBW is calculated as follows:

()
avgBWSTT

sampleBWSTTavgBWSTTsampleBWSTT
BWadditionalSTT

.
...

.
×−

=

3.2 Fast STT Service Determination

In this paper, we propose an algorithm as shown in
Fig. 8, which is capable of determining fast if the
service queue of a STT is HPQ or MPQ according to
its average bandwidth.

The proposed procedure has four parameters: STT,
AvailableBW, STT_ToPromote, STT_ToDemote.
STT contains information about a STT that an
incoming packet belongs to. AvailableBW indicates
the available bandwidth for a STT class. In initial
time, AvailableBW is set to the max bandwidth that
can be allocated for the STT class. STT_ToPromote
is one to promote foremost of all the MPQ-served
STTs in case that one of them have to be changed to
HPQ in service queue. And STT_ToDemote is one to
demote foremost of all the HPQ-served STTs in case
that one of them have to be changed to MPQ in
service queue.

Procedure Fast-STT-SQ-Decision (STT, AvailableBW,
STT_ToPromote, STT_ToDemote)

// STT : Source-based Traffic Trunk that a incoming packet belongs to.
// AvailableBW : the available bandwidth for a STT class.
// initially, it’s set to the max bandwidth for the STT class
// STT_ToPromote : is one to promote foremost of all the MPQ-served STTs
// in case that one of them have to be changed to HPQ in service queue.
// STT_ToDemote : is one to demote foremost of all the HPQ-served STTs
// in case that one of them have to be changed to MPQ in service queue.

if (time to calculate the average bandwidth of STT) then
previousAvgBw ← STT.avgBw

// calculate the average bandwdith of STT
calculate-STT-BW (STT)

if (STT.sq = MPQ && STT.avgBw ≤ AvailableBW) then
STT.sq ← HPQ
AvailableBW ← AvailableBW − STT(i).avgBw

else if (STT.sq = HPQ) then
AvailableBW ← STT.avgBw − previousAvgBw
if (AvailableBW < 0)

STT.sq ← MPQ
AvailableBW ← AvailableBW − STT.avgBw

end
end

end

if (STT.sq = HPQ) then
STT_ToDemote.avgBw ← max (STT_ToDemote.avgBw , STT.avgBw)

else
STT_ToPromote.avgBw ← min (STT_ToPromoote.avgBw, STT.avgBw)

end

if (STT_ToDemote.avgBw > STT_ToPromote.avgBw) {
AvailableBW ← AvailableBW +

(STT_ToDemote.avgBw − STT_ToPromote.avgBw)
STT_ToDemote.sq ← MPQ
STT_ToPromote.sq ← HPQ

end

END Fast-STT-SQ-Decision

Figure 8: Algorithm for determining on the service
queue of a STT

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

24

The proposed algorithm, Fast-STT-SQ-Decision is
executed whenever a packet arrives. Firstly, the
algorithm checks if it's time to calculate the average
bandwidth of the STT corresponding to the packet.
If yes, it calculates the average bandwidth of the
STT. If the service queue of the STT is MPQ and
there is available bandwidth for it, then its service
queue is changed to HPQ. On the contrary, Even if
the current service queue of the STT is HPQ, if the
increased bandwidth of the STT is greater than
available bandwidth then its service queue is
changed to MPQ. Without regard to STT bandwidth
calculation time, the proposed algorithm is always
trying to set STT_ToPromote to a STT consuming
the least bandwidth of MPQ-served STTs, and to set
STT_ToDemote to a STT consuming the most
bandwidth of HPQ-served STTs. If the average
bandwidth of STT_ToDemote is greater than that of
STT_ ToPromote, the service queue of
STT_ToDemote is changed to MPQ and that of STT_
ToPromote is changed to HPQ.

The proposed algorithm is capable of satisfying the
definition of normal and congestion-making traffic
defined in section 2.2 within a fast time without
using time-consuming operation such as sort. We'll
show how fast and correctly the proposed algorithm
can determine whether a STT is normal STT or
congestion-making through a simulation in next
section.

4 SIMULATIONS

4.1 STT service queue determination
algorithm

The purpose of this simulation is to see how fast the
proposed algorithm (i.e., Fast-STT-SQ-Decision
algorithm of Fig. 8) can determine the service queue
for a STT. For the simulation, we assume that the
bandwidth of each STT is fixed at simulation initial
time and the packet inter-arrival time of each STT is
10ms. The simulation finishes when the proposed
algorithm provides all normal STT with HPQ and all
congestion-making STT with MPQ.

Fig. 9 shows simulation results of the STT service
queue determination algorithm proposed in this
paper. In Fig. 9, <average waiting time of a STT>
means the average time taken to correctly determine
the service queue of a STT. In <average waiting
time of a failed STT>, a failed STT means one that
fails to find out its service queue at one time. And in
<waiting time of the worst failed STT>, the worst

failed STT indicates one that most fails to find out
its service queue. In the simulation of Fig. 9-(a), we
fix the percentage of congestion-making STT to
60%. In the simulation of Fig. 9-(b), we fix the
number of STTs to 10000.

The performance of our algorithm is very excellent
as shown in Fig. 9. Our algorithm is little influenced
by both the total number of STTs and the percentage
of congestion-making STTs.

 (a) Increase in the total number of STTs

0

50

100

150

10 30 50 70
0.1

K
0.3

K
0.5

K
0.7

K 1K 3K 5K 7K 10
K

30
K

50
K

70
K

0.1
M

0.3
M

0.5
M

0.7
M 1M

NB of new STTs

W
ai

tti
ng

 T
im

e
(m

s)

average waiting time of a STT
average waitting time of a failed STT
waiting time of the wrost failed STT

(b) Increase in the percentage of congestion-making STTs

0

50

100

150

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

% of congestion-making STTs

W
ai

tti
ng

 T
im

e
(m

s)

average waiting time of a STT
average waitting time of a failed STT
waiting time of the wrost failed STT

Figure 9: Simulation results of the STT service queue

determination algorithm

Fig. 9 means that once the average bandwidth of a
STT is calculated, our scheme can correctly
determine on the service queue of the STT within
2ms (the average time). In Fig. 9, the average
waiting time of a failed-STT is about 25ms. The
waiting time, 25 ms is not long in this simulation
because it means that only two packets (since the
inter-arrival time is 10ms) are forwarded to wrong
queue.

4.2 CTC

In order to compare performance between our
scheme and the existing algorithms, we use ns-2
Network Simulator (UCB/LBNL/VINT). In this
simulation, the priority queues of our scheme are
implemented using CBQ (Class-based Queuing).

FAST AND STRONG CONTROL OF CONGESTION-MAKING TRAFFIC

25

Fig. 10 shows the network topology for simulations.
The topology consists of six source nodes from 0 to
5, three router nodes from 6 to 8, and two target
nodes from 9 to 10. In the source nodes, the node 0-
3 and 5 mean normal user and the node 4 means
malicious/selfish user. In this simulation, we
consider three kinds of traffic type: adaptive TCP,
non-adaptive UDP, and Web-like traffic.

Firstly, the simulation scenario for adaptive TCP and
non-adaptive UDP traffic is as follow. The node 0
and 2 each has three non-adaptive UDP flows of
which each transmission rate is 0.5 Mbps and target
is the node 9. The node 1 and 3 each have ten
adaptive TCP flows of which each window size is 11
and target is the node 9. The node 4 has forty non-
adaptive UDP flows of which each transmission rate
is 0.5 Mbps and target is the node 9. The node 4
results in congestion at link 7-8 and 8-9 by
increasing its transmission rate every 1 seconds. The
node 5 has ten adaptive TCP flows of which each
window size is 15 and target is the node 10. We
refer to the traffic generated by the node 5 as
background traffic because its target is different
from that of other source nodes.

0

1

2

6

8

9

3

4

5

7

20Mb

20Mb

10Mb

10

Normal Traffic
(non-adaptive UDP)

10Mb

Normal Traffic
(adaptive TCP)

Normal Traffic
(non-adaptive UDP)

Normal Traffic
(adaptive TCP)

Congestion-making
Traffic

(non-adaptive UDP)

Background Traffic
(adaptive TCP)

Target of
both normal &

congestion-making
traffic

Target of
background

traffic

0

1

2

6

8

9

3

4

5

7

20Mb

20Mb

10Mb

10

Normal Traffic
(non-adaptive UDP)

10Mb

Normal Traffic
(adaptive TCP)

Normal Traffic
(non-adaptive UDP)

Normal Traffic
(adaptive TCP)

Congestion-making
Traffic

(non-adaptive UDP)

Background Traffic
(adaptive TCP)

Target of
both normal &

congestion-making
traffic

Target of
background

traffic

Figure 10: Network topology for simulation: link 7-8 and
8-9 are congested.

Fig. 11-(a),(b),(c),(d) show the simulation results of
RED, ACC, PushBack (R. Mahajan et al, 2002), and
CTC scheme, respectively. In RED, the congestion-
making traffic consumes most of link bandwidth. As
a result, both normal and background traffic are not
good in throughput. ACC is better than RED in
performance. ACC can protect the non-adaptive
normal traffic. But, it fails to protect both the
adaptive normal traffic and the background traffic.
Pushback protects the background traffic as well as
the non-adaptive normal traffic. But, Pushback fails
to protect the adaptive normal traffic. This is

because the adaptive normal traffic decreases its
transmission when congestion occurs.

CTC protects all normal and background traffic as
shown in Fig. 11-(d). CTC provides almost the full
bandwidth that the normal users requested. This is
because network congestion is localized to only
congestion-making traffic without having any effect
on normal traffic.

(a) RED

0

2

4

6

8

0 10 20 30

Number of Congestion-making Flows

Th
ro

ug
hp

ut
 (M

bp
s)

 .

10

40

Congestion-making Traffic
Non-daptive Normal Traffic
Adpative Normal Traffic
Adaptive Background Traffic

(B) ACC

0

2

4

6

8

0 10 20 30

Number of Congestion-making Flows

Th
ro

ug
hp

ut
 (M

bp
s)

 .

10

40

Congestion-making Traffic
Non-adaptive Normal Traffic
Adpative Normal Traffic
Adaptive Background Traffic

(c) PushBack

0

2

4

6

8

0 10 20 30

Number of Congestion-making Flows

Th
ro

ug
hp

ut
 (M

bp
s)

10

40

.

Congestion-making Traffic
Non-adaptive Normal Traffic
Adpative Normal Traffic
Adaptive Background Traffic

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

26

(d) CTC proposed in this paper

0

2

4

6

8

0 10 20 30

Number of Congestion-making Flows

Th
ro

ug
hp

ut
 (M

bp
s

10

40

)

Congestion-making Traffic
Non-adaptive Normal Traffic
Adpative Normal Traffic
Adaptive Background Traffic

Figure 11: Throughput of adaptive TCP and non-adaptive

UDP traffic under congestion

(a) CTC without marking

0

2

4

6

8

0 10 20 30 4

Number of Congestion-making Flows

Th
ro

ug
hp

ut
 (M

bp
s)

10

0

Congestion-making Traffic
Adaptive Normal Traffic A
Adpative Normal Traffic B
Total Traffic

(b) CTC with marking

0

2

4

6

8

0 10 20 30

Number of Congestion-making Flows

Th
ro

ug
hp

ut
 (M

bp
s)

10

40

Congestion-making Traffic
Adaptive Normal Traffic A
Adpative Normal Traffic B
Total Traffic

Figure 12: Non-marking vs Marking

CM-marking mechanism proposed in this paper is
very useful when multiple congestions occur. Fig.
12-(a) and (b) show the simulation results of CTC
without marking and CTC with marking,
respectively. In this simulation, all normal sources
generate only adaptive TCP traffic. As shown in Fig.
12, CTC with marking makes more exact
determination because downstream node gets
information on which one is congestion-making STT
from upstream node

0

20

40

60

80

100

0 10

Simulatin Time (seconds)

D
eg

re
e

of
 a

ch
ie

ve
m

en
t (

%
)

20

FIFO
RED
ACC
CTC without marking
CTC with marking

Figure 13: Time taken to finish a Web service under

congestion

To compare CTC with the existing schemes in Web-
like traffic environment, we rewrite link bandwidth
in network topology shown in Fig. 10. Each uplink
bandwidth between 6-8, between 7-8, and between
8-9 is set to 1 Mbps. In this simulation, the node 9 is
a web server. Fig. 13 shows the time taken to finish
a Web service under congestion. As shown Fig. 13,
CTC is better than any other schemes.

5 RELATED STUDY

It is said that DDoS attack strategy rests on the
followings (X. Geng et al, 2000):
(1) Using the Internet's insecure channels
(2) Hiding the attacker's identity
(3) Generating huge traffic volume

The first problem can be mitigated by installing
intrusion detection system and firewall on customer
networks, and also virus scan program and personal
firewall on each user's PC.

To solve the second problem, there have been
proposed a few approaches: ingress filtering (P.
Ferguson et al, 2000), uRPF (Cisco, 2001), packet
marking (S. Savage et al, 2001) and ICMP
Traceback (S. Bellovin et al, 2001). Ingress filtering
employs the scheme that boundary router filters all
traffic coming from the customer that has a source
address of something other than the addresses that
have been assigned to the customer. uRPF discards
faked packet by accepting only packet from interface
if and only if the forwarding table entry for the
source IP address matches the ingress interface.
Packet marking scheme is one that probabilistically
marks packets with partial path information as they
arrive at routers in order that the victim may
reconstruct the entire path. ICMP Traceback scheme
uses a new ICMP message, emitted randomly by
routers along the transmission path of packet and
sent to the destination. The destination can

FAST AND STRONG CONTROL OF CONGESTION-MAKING TRAFFIC

27

determine the traffic source and path by using the
ICMP messages.

This paper addresses the third and last problem. The
problem can be thought of as the typical queuing
discipline problem in network router. The core of the
queuing discipline problem is to determine which
packets get transmitted and which packets get
discarded. There have been proposed many queuing
algorithms (S. Keshav, 1997) such as FIFO: First-In-
First-Out, FQ (Fair Queuing), RED (Random Early
Detection), and so on. Those queuing algorithms
cannot be used as a solution for the problem. For
example, RED has a merit that the more packets sent
by a flow, the higher the chance that its packets will
be selected for dropping. But, RED also has a
disadvantage that the more increase the volume of
malicious user's traffic, the higher the probability
that legitimate user's packet will be dropped because
DDoS attacker can generate a huge volume of traffic.
(F. Lau et al, 2000) recommended CBQ as the
queuing algorithm that can protect legitimate user
from DDoS attack. Using CBQ requires
classification of traffic into each class. But, they
didn't handle the problem.

There has been proposed static rate limit that blocks
(or marks) packets exceeding a threshold (Cisco,
2000). This strategy is available only in DoS attack
and also has a disadvantage that amount of packets
during normal state should be first measured to fix
the correct threshold value for limiting malicious
traffic.

Yau has proposed max-min fair server-centric router
throttle scheme (D.K.Y. Yau et al, 2002). The key
idea is for a server under stress to install a router
throttle (e.g. leaky-bucket) at selected upstream
routers. The scheme can defeat DDoS traffic by
controlling the router throttle. Mahajan has proposed
a mechanism for detecting and controlling high
bandwidth aggregates (R. Mahajan et al, 2002).
They've researched recursive pushback of max-min
fair rate limits starting from the target server to
upstream routers. Both throttle and pushback
mechanisms are likely to have a weak point in
determining the threshold value for rate-limiting
DDoS traffic and in requiring a new protocol for
communication between victim and routers.

6 CONCLUSIONS

In this paper, we proposed a strong congestion-
making traffic control scheme for preventing
malicious or selfish user from congesting networks.

Its key idea is to drop only packets corresponding to
congestion-making traffic when network congestion
occurs by providing congestion-making traffic with
worse service (i.e., worse priority queue) than the
normal traffic. We simulated the proposed scheme
and the existing schemes to evaluate the
performance of each scheme. The simulation results
demonstrate that the proposed scheme is better than
or almost same as the existing schemes in
performance.

Even if our scheme is able to control congestion-
making traffic effectively, we still need more
research in analysing the attack traffic of malicious
user in order to detect real congestion-making traffic
generated by malicious user. We introduced IDA
(Intrusion Detection Agent) in this paper. We think
IDA will play an important role in defeating various
kinds of attacks such as virus and worm, needlessly
to say DoS attacks
Our future work is to implement and evaluate our
scheme on real networks.

REFERENCES

S. Floyd, “TCP and explicit congestion notification,”
ACM Computer Communication Review, vol. 24, no.
5, pp. 8.23, October 1994

K. J. Houle and G. M. Weaver. "Trends in Denial of
Service Attack Technology," The fall 2001 NANOG
meeting, Oct. 2001

X. Geng and A. B. Whinston, "Defeating Distributed
Denial of Service Attacks", IT Pro, July-August 2000,
pp 36-41

Cisco, "Strategies to Protect Against Distributed Denial of
Service (DDoS) Attacks," white paper,
http://www.cisco.com/…/newsflash.html, Feb. 2000.

R. Mahajan, S. M. Bellovin, S. Floyd, and et al.,
"Controlling High Bandwidth Aggregates in the
Network," ACM SIGCOMM Computer
Communications Review, Vol. 32, No. 3, pp. 62-73,
July 2002.

P. Ferguson and D. Senie, "Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP
Source Address Spoofing," RFC 2827, May 2000.

Cisco, "Unicast Reverse Path Forwarding (uRPF)
Enhancements for the ISP-ISP Edge", http://www.
cisco.com/…/uRPF_Enhancement.pdf, Feb. 2001.

T. Li and Y. Rekhter "A Provider Architecture for
Differentialted Services and Traffic Engineering
(PASTE)". RFC 2430. October 1998.

K. Nichols,S. Blake, F. Baker and D. Black, "Definition of
the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers," RFC 2474

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

28

F. Baker, W. Weiss and J. Wroclawski, "Assured
Forwarding PHB Group," RFC 2597

V. Jacobson, K. Nichols, K. Poduri, "An Expedited
Forwarding PHB," RFC 2598

UCB/LBNL/VINT, "ns Notes and Documentation,"
http://www.isi.edu/nsnam/ns.

S. Savage, A. Karlin and T. Anderson, "Network Support
for IP Traceback," IEEE/ACM Transactions on
Networking, Vol. 9, No. 3, June 2001, pp. 226-237

S. Bellovin, M. Leech, and T. Taylor, "ICMP Traceback
Messages," Internet draft, Oct. 2001.

S. Keshav, "An Engineering Approach to Computer
Networking: ATM Networks, the Internet, and the
Telephone Network", Addison Wesley, 1997.

F. Lau, S. H. Rubin, M. H. Smith, and L. Trajkovic,
"Distributed Denial of Service Attacks," IEEE
International Conference on Systems, Man, and
Cybernetics, 2000.

D.K.Y. Yau, J.C.S. Lui, and Feng Liang, "Defending
against distributed denial-of-service attacks with max-
min fair server-centric router throttles," Tenth IEEE
International Workshop on Quality of Service, pp.35 -
44, May 2002.

FAST AND STRONG CONTROL OF CONGESTION-MAKING TRAFFIC

29

