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Abstract. Security policies are abstract descriptions of how a system should be-
have to be secure. They typically express what is obligatory, permitted, or forbid-
den in the system. When the system is implemented, its formal verification con-
sists in checking whether it conforms to the norms that its policy stated. Hence,
security policies significantly influence the final assessment of real systems.
Experience shows that important policies suffering inconsistencies have reached
the final stage of implementation in a real system. Here comes the need for formal
analysis at the abstract level of policies. It is advocated that known inductive
techniques and a general-purpose proof assistant can be used profitably for the
proof of correctness of security policies.

1 Introduction

A security policy for a generic system can be informally explained as a set of norms
(rules) stating who can or cannot do what in the system. Security policies underlie
all areas of Computer Science where some form of security is required, ranging from
databases to operating systems, but also pervade the real world. For example, ”access
to record i ought to be forbidden at week-ends” might be part of the security policy
for a DBMS. Likewise, ”in case of fire, one ought to leave the building” is (part of)
the security policy for modern constructions. The examples may raise the intuition that
security policies must enjoy some correctness property.

The motivations for our work are at least twofold. A policy does not describe how
a system behaves or how it is perceived to behave, but, rather, how it should behave
to be secure, whatever the adjective secure means for the system. That ideal behaviour
is exactly what one needs to (and must!) keep in mind when one is verifying a real
system. The system passes the verification when it is shown to conform to its intended
functioning specified in its security policy. It follows that the security policy plays a
major role in the final assessment of the real system. But recent experience tells that the
huge policy underlying a huge e-commerce protocol like SET may suffer significant
incompleteness (omitted features) or ambiguity (unclear features) [1, 2]. We advocate
that a method for formally verifying abstract system properties at the policy level is
needed.

Research efforts in the analysis of security policies already exist, but they appear
to have succeeded mostly in terms of specification rather than of verification. A variety
of modal logics are used as specification languages, equipped with three deontic opera-
tors, Obligatory, Permitted and Forbidden, which formalize the respective modalities:
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obligations, permissions and interdictions. Deontic logics are typically endowed with
systems of inference rules whereby given facts of the logics can be proved or refuted [3,
4]. To our current understanding, what appears to be missing is some mechanism for the
automatic generation of tests, hence a full verification method. For example, let us con-
sider a security policy for file-system access. Checking that a candidate norm such as ”a
System Security Officer is permitted to write on system files” induces no contradiction
is indeed interesting. But verifying that none of the norms for a System Security Offi-
cer induces contradiction or that no norm at all induces contradiction would be deeper
results, much closer to some notion of policy correctness. Equivalent terminology is
policy consistency.

Absence of contradictions and absence of dilemmas are the basic requirements of
policy correctness. There is a contradiction when something is at the same time permit-
ted and forbidden, or at the same time obligatory and forbidden — for example, ”Bob
is permitted to issue a nonce; Bob is forbidden to issue a nonce”. There is a dilemma
when both something and its opposite are obligatory, or both are forbidden — for exam-
ple , ”it is obligatory that Alice registers her public key; it is obligatory that Alice does
not register her public key”. The specific application domain may impose additional re-
quirements to policy correctness, such as secrecy, i.e. protecting resources from agents
with insufficient rights, and fairness, i.e. distributing resources equally

Our idea is to use mathematical induction to model security policies. We borrow
concepts from the inductive method to verifying security protocols introduced by Paul-
son [5] and developed with Bella [6, 7]. Each policy norm can be expressed as an in-
ductive rule extending a given trace of norms. The security policy can then be modelled
inductively as the set of all possible traces of norms that the policy admits. Agents and
actions to which the norms apply can be specified for the sake of expressiveness, or left
as generic members of unbounded sets. Once the policy is a set built up by induction,
the corresponding inductive principle can be used to prove safety properties of the set.
The basic requirements of policy correctness indeed are safety properties. This position
paper sets up and demonstrates the foundations of our approach to verifying security
policies, while the next step is to complete mechanizing the approach with the proof
assistant Isabelle/HOL [8]. The language of Higher Order Logic will make the specifi-
cation of policy properties easier, while Isabelle’s simplifier will resolve the trivial cases
without human intervention. These features will make the analysis of vast policies pos-
sible. If we compare security protocols and security policies in terms of specification
efforts, we expect many more, though simpler, rules in the case of policies. Hence, the
human efforts required by the verification can be expected to be smaller.

The structure of this position paper is simple. The treatment of security policies
(§2) begins with the concepts of contradictions and dilemmas and terminates with a
published, example policy [9]. Our inductive modelling of policies and their properties
comes next (§3). A few remarks conclude (§4).

2 Security policies

A security policy explains how a system should behave to be considered secure. To take
an example from the real world, modern building evacuation systems are considered
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secure when the people in the building do follow the security policy to evacuate in case
of fire — people are part of the system. The law inspectors will simply sign a conformity
declaration for the building if it has got a reasonable security policy and its inhabitants
are informed of it. This confirms once more that it is impossible to claim security for a
system that is missing a security policy.

At this stage, we can define a security policy more formally (Definition 1).

Definition 1 (Security Policy). A security policy is a set of norms regulating the modal-
ities — obligations, permissions, interdictions — for a set of agents on some actions.

It is worth remarking that a security policy may be a very large set of norms. Con-
sider the policy regulating the internal functioning of a financial institution, for example.
Hundred, if not thousand norms must coexist together, and if it is easy and quick to state
a single, meaningful norm, it is hard to derive a full understanding of how the new norm
will impact the existing kernel [10].

2.1 Modalities

The following treatment develops on a generic action a, which is formalized as a
boolean. This makes it possible to logically relate actions using conventional boolean
connectives.

As mentioned above, the basic requirements towards correctness of a policy are
absence of contradictions and absence of dilemmas. Studying these requirements im-
poses a careful understanding of the semantics of the modalities. Obligatory is the basic
modality, in the sense that all other modalities are defined from it as follows.

Definition 2 (Permission). An action is permitted if and only if not performing it is not
obligatory:

Permitted(a) , ¬Obligatory(¬a)

Definition 3 (Interdiction). An action is forbidden if and only if not performing it is
obligatory:

Forbidden(a) , Obligatory(¬a)

Security policies are sometimes enriched with another modality, Waived, expressing
that an action must not necessarily done. This also can be defined in terms of the basic
modality as its logical negation.

Definition 4 (Waiver). An action is waived if and only if it is not obligatory to perform
it:

Waived(a) , ¬Obligatory(a)

2.2 Contradictions

If an action is permitted, then having it forbidden too is a contradiction according to
common understanding. (What if you read the following public notice: smoking is for-
bidden, and smoking is permitted!). An even more trivial contradiction would be to
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have an action waived and at the same time obligatory. These may be formalized by
dedicated definitions, but it is more important to investigate what the general structure
of a contradiction is. It would make it conceivable to check an entire policy against that
structure, so as to verify whether contradictions exist at all.

2.3 Dilemmas

If it is forbidden to perform an action and at the same time not to perform it, this
clearly is a dilemma, because it would make it impossible not to violate the policy.
(What if you read the following public notice: smoking is forbidden, and not smoking is
forbidden!). However, it is not a dilemma that it is waived to perform an action and at the
same time not to perform it, because such a combination just establishes freedom upon
that action. Also dilemmas can be easily formalized by dedicated definitions, though
a general version of their structure would be more important towards verifying policy
correctness.

2.4 An example policy

As an example, we introduce in Figure 1 a simple, published policy for file system
access due to Cholvy and Cuppens [9], slightly amended by Bella [10]. Each modality
is abbreviated by its initial. The users of the file system can play four roles. Norms N1
to N4 state that a normal user (who plays role user) is permitted to read any public file,
but to write only on those he owns. He is also forbidden to downgrade any files, and
obliged to change his password if it is old. Norms N5 and N6 state that a secret user
(who plays role secret) is also permitted to read or write on secret (i.e. non-public)
files. Norm N7 states that a system security officer (who plays role sso) is permitted
to downgrade any file. The last norm is for bad users (who play role bad), those who
have for example forgotten to change their password for too long. The norm forbids all
actions to bad users.

Each policy norm is simple, but the policy as a whole is complex because of the
obvious constraints on roles. Secret users are in fact also users; system security officers
are also secret users; bad users may be either users or secret users. These constraints
should also be composed using a transitivity relation, yielding for example that system
security officers also are users. With these constraints, it is not trivial to get a synergic
understanding of the entire policy. Just to anticipate a contradiction, notice that norms
N3 and N7 cause a contradiction on action downgrade(a, f) because a system security
officer is also a normal user. A more systematical study on whether the policy suffers
other problems is presented later (§3).

3 An inductive approach to policy verification

Our idea is to formalize a security policy as the set of all admissible traces of norms.
A trace of norms can be interpreted as a possible reduction of the policy to specific
actions. It is the same idea that turned out successful with security protocols [6, 5]. The
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N1: N2:
if play(a,user) and public(f) if play(a,user) and public(f)
then and owner(f,a) then
P(read(a,f)) P(write(a,f))

N3: N4:
if play(a,user) if play(a,user) and password(a,p)
then and old(p) then
F(downgrade(a,f)) O(change password(a))

N5: N6:
if play(a,secret) and not(public(f)) if play(a,secret) and not(public(f))
then and owner(f,a) then
P(read(a,f)) P(write(a,f))

N7: N8:
if play(a,sso) if play(a,bad)
then then
P(downgrade(a,f)) F(read(a,f))

F(write(a,f))
F(downgrade(a,f))
F(change password(a))

Fig. 1. An example security policy for file-system access [9]

set is defined by induction, and properties of interest can be proved about it using the
corresponding induction principle.

As in the previous section, a generic action is formalized here as the boolean vari-
able a. In consequence, asserting a indicates that the corresponding action is performed,
while asserting ¬a indicates that the same action is not performed.

3.1 Modelling a policy

If P is declared as a set of traces of norms, it can be defined inductively as follows.

– The empty trace belongs to P .
– Extending a trace of P with a norm stated by the policy yields a trace of P .

The example policy in Figure 1 can be formalized accordingly, as in Figure 2. Fat
square braces denote rule preconditions, while # is the list cons operator.

Here, agents and files have been formalized as freetypes, and agent roles as a
datatype. The constraints on roles can be trivially introduced as axioms of implica-
tional form, such as play(a, secret) → play(a, user). The modalities can be defined in
terms of the basic modality, according to definitions 2, 3 and, if needed, 4.

A remark is necessary about consequential policies, which apply some norms on the
basis that other norms apply. For example, we may have a policy rule stating that if a
secret user is permitted to read secret files, then so is a system security officer. These can
be modelled inductively without extra efforts. Our example policy is not consequential.
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Base: [] ∈ P

N1: [| nms1 ∈ P; play(a,user); public(f) |]

=⇒ P(read(a,f)) # nms1 ∈ P

N2: [| nms2 ∈ P; play(a,user); public(f); owner(f) |]

=⇒ P(write(a,f)) # nms2 ∈ P

N3: [| nms3 ∈ P; play(a,user) |]

=⇒ F(downgrade(a,f)) # nms3 ∈ P

N4: [| nms4 ∈ P; play(a,user); password(a,p); old(p) |]

=⇒ O(change password(a)) # nms4 ∈ P

N5: [| nms5 ∈ P; play(a,secret); ¬public(f) |]

=⇒ P(read(a,f)) # nms5 ∈ P

N6: [| nms6 ∈ P; play(a,secret); ¬public(f); owner(f,a) |]

=⇒ P(write(a,f)) # nms6 ∈ P

N7: [| nms7 ∈ P; play(a,sso) |]

=⇒ P(downgrade(a,f)) # nms7 ∈ P

N8: [| nms8 ∈ P; play(a,bad) |]

=⇒ F(read(a,f)) # F(write(a,f) #

F(downgrade(a,f) # F(change password(a)) # nms8
∈ P

Fig. 2. Modelling the example policy inductively

3.2 Modelling and proving policy properties: sanity checks

A crucial issue in formal verification is to build a realistic model. As a form of sanity
check, we can prove a trivial, subsidiary lemma.

Lemma 1 (Permission w.r.t Interdiction). If an action is permitted, then it is not for-
bidden:

Permitted(a) → ¬Forbidden(a)

Proof. By definitions 2 and 3.

When the proof is conducted on a theorem prover, the definitions are installed as
simplification rules, hence a single appeal to the simplifier solves the theorem. It may
be interesting to look at the converse lemma.

Lemma 2 (Interdiction w.r.t Permission). If an action is forbidden, then it is not per-
mitted:

Forbidden(a) → ¬Permitted(a)

Proof. Converse of Lemma 1. Alternatively, by definitions 2 and 3.
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3.3 Modelling and proving policy properties: no contradictions

As we are working towards a mechanization on a proof assistant, it is preferable to de-
fine the policy properties in their simplest form. All definitions can be used as simplifi-
cation rules to prove more complex properties, perhaps not of immediate understanding,
by reducing them to the simple ones.

As for contradictions, we have come to the conclusion that their general structure
can be expressed as in the following definition.

Definition 5 (Contradiction). An action leads to contradiction if and only if it is at
the same time obligatory and not obligatory, or not to perform it is at the same time
obligatory and not obligatory:

contradiction(a) , (Obligatory(a) ∧ ¬Obligatory(a)) ∨

(Obligatory(¬a) ∧ ¬Obligatory(¬a))

Our definition should be read as the simplest form of contradiction, although its
intuitiveness may be subject to debate. Other, more elaborated, contradictions (such as
those mentioned above, §2.2) can be simplified into this, as expressed by the following
theorems.

Theorem 1. If an action is both permitted and forbidden, then it leads to contradiction:

Permitted(a) ∧ Forbidden(a) → contradiction(a)

Proof. By Lemma 1 and definitions 3 and 5. Alternatively, by Lemma 2 and definitions 2
and 5. Alternatively, by definitions 2, 3 and 5.

Theorem 2. If an action is both waived and obligatory, then it leads to contradiction:

Waived(a) ∧ Obligatory(a) → contradiction(a)

Proof. By definitions 4 and 5.

3.4 Modelling and proving policy properties: no dilemmas

We have also defined the simplest structure for dilemmas as in the following definition.

Definition 6 (Dilemma). An action leads to dilemma if and only if it is at the same
time obligatory to perform it and not to perform it:

dilemma(a) , Obligatory(a) ∧ Obligatory(¬a)

Given the simplest form of a dilemma, more elaborated situations in fact are dilem-
mas if they can be reduced to that form. The following theorem is elementary to prove
but significant. Theorems of the same form can be analogously proved also for the other
two modalities.
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Theorem 3. If an action is forbidden and so is not to perform it, then it leads to
dilemma:

Forbidden(a) ∧ Forbidden(¬a) → dilemma(a)

Proof. By definitions 3 and 6.

The notions introduced so far are intuitive but may be tricky. For example, the reader
may notice that Definition 6 is missing some symmetry with respect to Definition 5. In
particular, one may be tempted to enrich it with a second disjunct and obtain

(Obligatory(a) ∧ Obligatory(¬a)) ∨ (¬Obligatory(a) ∧ ¬Obligatory(¬a))

However, the second disjunct is logically equivalent, by Definition 4, to

Waived(a) ∧ Waived(¬a)

which clearly must not count as a dilemma because if an action is waived and so is not
to perform it, then there just is augmented freedom.

3.5 Modelling and proving policy properties: correctness

Absence of contradictions and dilemmas is the basic requirement of policy correctness
(plus others, depending on the application domain).

If the policy is modelled as an inductively defined set, we would like to establish
those properties on every trace of the set. To do so, we must lift our definitions of
contradiction and dilemma over traces. Below, set turns a list into the set of elements of
the list.

Definition 7 (Contradiction on Trace). An action leads to contradiction on a trace if
and only if there exists an action that leads to contradiction by means of norms of the
trace:

contradiction(a, nms) , (Obligatory(a) ∈ setnms ∧ ¬Obligatory(a)) ∈ setnms ∨

(Obligatory(¬a) ∈ setnms ∧ ¬Obligatory(¬a) ∈ setnms)

Definition 8 (Dilemma on Trace). An action leads to dilemma on a trace if and only
if there exists an action that leads to dilemma by means of norms of the trace:

dilemma(a, nms) , Obligatory(a) ∈ setnms ∧ Obligatory(¬a) ∈ setnms

Definition 9 (Policy Correctness). Correctness of a security policy holds if and only
if its inductive model P does not suffer any contradictions or dilemmas for any actions
on any of its traces:

correctness(P) , ∀ nms a.

nms ∈ P → ¬contradiction(a, nms) ∧ ¬dilemma(a, nms)

If we attempt to prove this property with the help of a theorem prover, should the prop-
erty fail, the prover would exhibit the counterexample showing which action and which
norm contradict the property on which trace.
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3.6 On the example policy

If we attempt to prove correctness of the example policy, the inductive proof will fail
at several stages. For example, in case of norm N7, proceeding backward the prover
simplifies ¬Permitted(downgrade(a, f)) to Obligatory(¬downgrade(a, f)). We need
to contradict the latter fact to close the proof. A dedicated subproof would show that it
is impossible in case a also is a normal user, due to norm N3. This is more entangled
to describe than to verify even by pen-and-paper, let alone with the help of a proof
assistant. The constraints of the system on agent roles must be stated because the prover
will ask us to address the case when agent a of norm N7 matches agent a of norm N3.
The constraints tell that they can match, hence a contradiction on the corresponding
actions is possible.

The example policy hides a number of other contradictions (not of interest in this
paper) but no dilemma. For the sake of demonstration, we can imagine to extend the
policy with an intuitive rule that waives system security officers from changing their
password when it is old. The policy model can easily account for the change by includ-
ing the extra rule given in Figure 3.

N9: [| nms9 ∈ P; play(a,sso); password(a,p); old(p) |]

=⇒ W(change password(a)) # nms9 ∈ P

Fig. 3. An extra policy rule leading to dilemma

A putative proof that the policy does not suffer dilemmas (towards a proof of policy
correctness) can be conducted by inductive arguments similar to those given above. It
would fail at least on the trace of norms where both norms N4 and N9 applied, due to
the constraints on agent roles.

4 Conclusions

Security policies are typically analyzed using dedicated modal logics. The existing liter-
ature supports the claim that verification in this field lacks mechanization. It is important
to verify using the calculus of the logic that a given candidate leads to contradiction or
dilemma. It would be more important to either verify that there is no such candidate or
to exhibit such a candidate.

This can be done using an inductive method to modelling and verifying policies. We
intend to mechanize the method with the help of a proof assistant such as Isabelle. The
prover will hold the burden of simplifying expressions, thus making it possible to cope
with large policies. Having done that, testing the method on real-world policies will be
possible.

We have provided inductive definitions for absence of contradictions and absence
of dilemmas, the basic components of protocol correctness. Other components can be
added but the foundational treatment is already available at present.
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