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Abstract: In standard MIMO LTI continuous-time systems S(A,B,C) the classical notion of the Smith zeros does not 
characterize fully the output-zeroing problem nor the zero dynamics. The question how this notion can be 
extended and related to the state-space methods is discussed. Nothing is assumed about the relationship of 
the number of inputs to the number of outputs nor about the normal rank of the underlying system matrix. 
The proposed extension treats zeros (called further the invariant zeros) as the triples (complex number, 
nonzero state-zero direction, input-zero direction). Such treatment is strictly connected with the output 
zeroing problem and in that spirit the zeros can be easily interpreted even in the degenerate case (i.e., when 
any complex number is such zero). A simple sufficient and necessary condition of degeneracy is presented. 
The condition decomposes the class of all systems S(A,B,C) such that 0B ≠  and  into two disjoint 
subclasses: of nondegenerate and degenerate systems. In nondegenerate systems the Smith zeros and the 
invariant zeros are exactly the same objects which are determined as the roots of the so-called zero 
polynomial. The degree of this polynomial equals the dimension of the maximal (A,B)-invariant subspace 
contained in Ker C, while the zero dynamics are independent upon control vector. In degenerate systems the 
zero polynomial determines merely the Smith zeros, while the set of the invariant zeros equals the whole 
complex plane. The dimension of the maximal (A,B)-invariant subspace contained in Ker C is strictly larger 
than the degree of the zero polynomial, whereas the zero dynamics essentially depend upon control vector. 
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1 INTRODUCTION 

During the past three decades considerable attention 
has been paid to the determination and computation 
of zeros of a LTI MIMO system S(A,B,C). A large 
number of types of zeros has been defined 
(MacFarlane,Karcanias, 1976; Schrader, Sain, 
1989). The commonly used definitions employ the 
Smith form (Callier, Desoer, 1982; Chen, 1984; 
Gantmacher, 1988) of the system matrix 
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Here )s(Ψ  is called the Smith form of P(s) when 
polynomials )s(iψ  are monic and  divides )s(iψ

)s(1i+ψ  for 1,...,1i −ν= , and  is the normal rank 
of P(s). The polynomials  are known as 
invariant factors of P(s) and their product 

ν

)s(iψ

)s(...)s()s( 1 νψψ=ψ  is called the zero polynomial 
of P(s) (and of S(A,B,C)). The roots of  are the 
Smith zeros of S(A,B,C) (they are commonly known 
rather as invariant zeros (Basile, Marro, 1992; Marro 
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et al., 2002)). The transmission zeros of S(A,B,C) 
are the Smith zeros of its minimal (controllable and 
observable) subsystem. The zeros of a transfer-
function matrix G(s) can be defined (Misra et al., 
1994) as the Smith zeros of the system matrix 
obtained from any given minimal state-space 
realization of G(s). The Smith zeros of the pencil 

 (i.e., uncontrollable ([ BAsI −− ] c ) modes of A) 
are the input decoupling (i.d.) zeros and the Smith 

zeros of  (i.e., unobservable (⎥
⎦

⎤
⎢
⎣

⎡ −
C

AsI
o ) modes of 

A) are the output-decoupling (o.d.) zeros of 
S(A,B,C). The input-output decoupling (i.o.d.) zeros 
of S(A,B,C) are those o.d. zeros which disappear 
when the i.d. zeros are eliminated (Rosenbrock, 
1970; 1973). Defined above multivariable zeros are 
involved in several problems of control theory such 
as zeroing the system output, tracking the reference 
output, disturbance decoupling, noninteracting 
control, model matching and output regulation 
(Basile, Marro, 1992; Isidori, 1995; Marro, 1996; 
Sontag, 1990; Wonham, 1979). The Smith zeros 
were discussed, at various simplifying assumptions 
concerning the systems considered, by many authors 
(Schrader, Sain, 1989). As is known (MacFarlane, 
Karcanias, 1976) the Smith zeros are related 
(through the corresponding zero directions) with 
zeroing of the system output. Simple examples (see 
5) show however that they do not characterize fully 
the output-zeroing problem (in particular, the zero 
dynamics nor the maximal (A,B)-invariant subspace 
contained in Ker C). In order to remove this 
disadvantage we consider a set (denoted as ) of 
complex numbers such that for each its element 
there exists a zero direction with nonzero state-zero 
direction. The set  of the Smith zeros, where 

, is 

contained in . To any element of  there 
corresponds an output-zeroing input which produces 
nontrivial solution of the state equation. Under 
typical tansfomations,  has the same invariance 
propeties as . For the reasons mentioned above, 

 is treated as an extension of  and to the 
elements of  we do not assign a new name; we 
call 

IZ

SZ
)}s(Pranknormal)(Prank:{: <λ∈λ= CSZ

IZ IZ

IZ
SZ

IZ SZ
IZ

them simply the invariant zeros. 
The paper is organized as follows. In section 2 we 
give an overview concerning the basic properties 
and the algebraic characterization of  (based on 
singular value decomposition (SVD) of the first 

nonzero Markov parameter) and explicit formulas 
for the maximal (A,B)-invariant subspace contained 
in Ker C. Main results are given in sections 3 and 4. 

IZ

By  we denote the fields of real and complex 
numbers; 

CR,
}0)AIdet(:{)A( =−λ∈λ=σ C  stands for 

the spectrum of matrix A and the Moore-Penrose 
pseudoinverse of a matrix M is denoted by . +M

2 PRELIMINARY RESULTS 

2.1 Definition and Basic Properties of 
Invariant Zeros 

Consider system S(A,B,C) of the form 
 

)t(Cx)t(y),t(Bu)t(Ax)t(x =+=& ,          (1) 
 

0t ≥ ,  x t , , , where A 
and 

( ) ∈Rn u t( ) ∈Rm y t( ) ∈Rr

B ≠ 0 , C ≠ 0 are real matrices of appropriate 
dimensions. The set U  of admissible inputs is 
assumed to consist of all piecewise continuous 
functions . The first nonzero 
Markov parameter of (1) is denoted by CA , 
where 

u(.):[ , )0 ∞ → Rm

Bk

0 1≤ ≤ −k n , i.e., CB  and CA Bk= = =−... 1 0

CA Bk ≠ 0. 
The four-fold canonical decomposition (Kalman, 
1982) (2) of (1) 
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is not unique, however in any such form the orders 
n n nco co co, ,   and  nco  of the corresponding 
matrices on the diagonal of the A-matrix are 
uniquely determined by the order of A (n), the 
degree of G(s) (n ) and rank defects of the 
controllability and observability matrices (

co
nc  and 

no ) as n n n nco co c= − − ,   n n n nco co c o= + + n− ,   
n n - n nco co o= − . The characteristic polynomials 
(up to a constant) of these matrices also remain 
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unchanged and the elements of σ(Aco )  are known 
as controllable and unobservable (co ) modes of (1); 
analogously, co-modes are eigenvalues of A  
(these are poles of G(s)), 

co
co-modes are eigenvalues 

of A co  and co -modes are eigenvalues of A co . 
 
Definition 1 (Tokarzewski, 2000; 2002a,b) 
(i) A number λ ∈C  is an invariant zero of (1) if and 
only if (iff) there exist vectors 0  (state-
zero direction) and g  (input-zero direction) 
such that the triple λ  satisfies 
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The set of the invariant zeros is denoted by Z . I

System (1) is called degenerate iff Z  is infinite 
(otherwise, (1) is called nondegenerate).  

I

(ii) The transmission zeros of (1) are the invariant 
zeros of its minimal subsystem.  
(iii) The o.d. zeros are the unobservable ( o ) modes 
of (1). The i.d. zeros are the uncontrollable ( c ) 
modes of (1). The i.o.d. zeros are the uncontrollable 
and unobservable ( )co  modes of (1). 

The set  is invariant under nonsingular coordinate 
transformations in the state-space, nonsingular 
transformations of the inputs or outputs, constant 
state or output feedback to the inputs, constant 
output feedback to the integrator input. Any o.d. 
zero of (1) is in Z as well as any transmission zero 
of (1) is in Z . 

IZ

I

I

The Kalman form (2) determines individual kinds of 
decoupling zeros (including multiplicities) of (1) via 
the polynomials χi o d c o c os sI A. . . ( ) det( )= −  and 
χo d c o c o c o c os sI A sI A. . ( ) det( ) det( )= − −  and 
χi d c o c o c o c os sI A sI A. . ( ) det( ) det( )= − − . 
 
Definition 2 (Tokarzewski, 2000; 2002a)  For a 
transfer-function matrix G(s) a number C∈λ  is a 
transmission zero of G(s) iff it is an invariant zero of 
any given minimal realization of G(s). 

2.2 Invariant Zeros and Output-
Zeroing Problem 

The dynamical interpretation of the elements of 
in (1) is based on the following formulation of 

the output-zeroing problem (Isidori, 1995). Find all 

pairs  consisting of an initial state 

ZI

( , ( )x u to
o )

xo ∈Rn  and a  such that the 
corresponding system response satisfies y t

U∈(.)u o
( ) = 0 for 

all t ≥ 0. Any nontrivial pair of this kind (i.e., such 
that  or 0xo ≠ 0(.)u o ≠ ) is called an output-
zeroing input. The internal dynamics of (1) 
consistent with the constraint y t  for all ( ) = 0 t ≥ 0 
are called the zero dynamics of the system. 
The same symbol x  is used to denote state-zero 
direction (Definition 1(i)) and initial state in output-
zeroing inputs. The state-zero direction must be a 
nonzero vector (real or complex), whereas the initial 
state must be a real vector (not necessarily nonzero). 
If state-zero direction x  is a complex vector, then it 
gives two initial states Re  and Im  (see 
(Tokarzewski, 2000; 2002a) for an explicit form of 
output-zeroing inputs and the corresponding 
solutions of the state equation generated by the 
elements of Z ). 

o

o

xo xo

I

The set of all output-zeroing inputs completed by the 
trivial pair ( ,  forms a linear space 
over . In this space we can distinguish a subspace 
of all pairs ( ,  such that  and 

 for all 

( )x u to
o= 0 )≡ 0

))
R

(x u to
o
h= 0 U∈(.)u h

o

u t Ker Bo
h ( ) ∈ t ≥ 0. Any such pair affects (1) 

in the same way as the trivial pair, i.e., it gives 
identically zero solution and y t  for all ( ) = 0 t ≥ 0. 
We do not relate these pairs with invariant zeros (we 
associate them with the trivial pair). 
Recall (Wonham, 1979) that a subspace X  is 
(A,B)-invariant if there exists a mxn real matrix F 
such that ( )

⊆ Rn

( )A BF X X+ ⊆  (in (Basile, Marro, 
1992) X is called an (A,B)-controlled invariant). The 
maximal (A,B)-invariant subspace contained in 

 (denoted as X AKer C B C∗ ( , , )) is an unique (A,B)-
invariant subspace contained in Ker  with the 
property that any (A,B)-invariant subspace X 
contained in Ker  must satisfy X X . If 

 is an output-zeroing input and x  is 
the corresponding solution, then 

 for all . Moreover, for 

any  there exists an output-
zeroing input such that the corresponding solution 
passes through  (Tokarzewski, 2002a). 

C

C A B C⊆ ∗ ( , , )
( , ( )x u to

o ) to ( )

)C,B,A(X)t(x o ∗∈ 0t ≥

)C,B,A(Xx o ∗∈

ox
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2.3 Relationship between Z  and Z  S I

Proposition 1 (Tokarzewski, 2002b)   In system (1) 
the sets Z  and Z  are interrelated as follows. S I

(i)  Z Z  S I⊆
(ii)  System (1) is nondegenerate iff Z Z  I S=
(iii)  System (1) is degenerate iff Z I = C . 
 
Thus in (1) the set Z  may be empty, finite or equal 
to C, and when (1) is nondegenerate, then 

I

λ  is its 
invariant zero iff λ  is a root of the zero polynomial. 
If in (1) there exists at least one invariant zero which 
is not a Smith zero, then (1) is degenerate. On the 
other hand, if (1) is degenerate, we can have 

 or Z  (see section 5). Moreover, if Z S ≠ ∅ S = ∅ λ  
is a Smith zero of (1), then there exist 0  
and  such that λ  satisfy (3) (i.e., to 
any Smith zero there corresponds zero direction with 
nonzero state-zero direction). 

≠ ∈xo C n

g ∈C m , ,x go

2.4 Invariant Zeros and (A,B)-
Invariant Subspaces  

Lemma 1 (Tokarzewski, 2002a)  If in (1) is 
 (i.e., all Markov parameters are zero), then G s( ) ≡ 0

Z I = C  and (i.e., 

 is the unobservable subspace for (1)). 

I
1

0
CAKer)C,B,A(X

−

=

∗ =
n

l

l

X A B C∗ ( , , )
 
Suppose now that in (1) not all Markov parameters 
are zero and let the first nonzero Markov parameter 

, CA Bk 0 ≤ ≤ − 1k n , have rank . 
Define the projective matrix (Tokarzewski, 2000) 

},{min0 rmp ≤<

 
K I B CA B CAk

k k: ( )= − +            (4) 
 
The approach presented below (based on SVD of 

) enables us to decide the question of 
degeneracy/nondegeneracy and to characterize the 
invariant zeros as well as the subspace X A . 
In general, the invariant zeros of (1) will be 
characterized as invariant zeros (in particular, when 
(1) is nondegenerate, as output-decoupling zeros) of 
certain closed-loop system (obtained from (1) via 
introducing appropriate pre- and postcompensator 
and state feedback matrix), while X A  will 
be characterized as the unobservable subspace for 
that system. 

CA Bk

B C∗ ( , , )

B C∗ ( , , )

Let us write SVD (Callier, Desoer, 1982) of CA  
as 

Bk

 
Tk VUBCA Λ= ,  where             (5) ⎥

⎦

⎤
⎢
⎣

⎡
=Λ

00
0M p

 
is r x m-dimensional,  is p x p nonsingular and 

diagonal (with positive singular values of CA ) 
and rxr U and mxm V are orthogonal. Introducing 
into (1) V and U  as pre- and postcompensator we 
associate with (1) a new system 

pM

Bk

T

S A B C( , , )  
 

)t(xC)t(y),t(uBAx)t(x =+=& ,           (6) 
 
where B BV C U CT= =,  and u V u y U yT T= =,  
are decomposed as follows 
 

[ ]pmp −= BBB ,   
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⎥
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− pr

p
y
y
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and pB  consists of first p columns of B whereas 

pC  consists of first p rows of C . Moreover, 

CA Bk = Λ  is the first Markov parameter for (6) and 

ppp BACM k= . Since (6) is obtained from (1) by 
nonsingular transformations of inputs and outputs, 
the sets of the invariant zeros for S(A,B,C) and 
S A B C( , , )  coincide. For the associated with (1) 
system (6) we form the projective matrix 
 
K I B CA B CAk

k: ( )= − k+            (8) 
 
which, in view of (5) and (7), may be expressed as 
 

k1
k ACMBIK ppp

−−=             (9) 

Lemma 2   The matrix kK  in (9) satisfies 

(i)   k
2
k KK = , 

(ii)  k
kk ACKer}xxK:x{: p===Σ , 

      pn −=Σkdim , 
(iii) pBIm}0xK:x{: kk ===Ω , p=Ωkdim , 

(iv) kk)( Ω⊕Σ=nn RC , 
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(v)  0BK =pk , pmpm −− = BBK k , 

      0KAC k
k =p , 

(vi) 
⎪⎩

⎪
⎨
⎧

+≥
≤≤=

1kfor0
k0forAC)AK(C k

l
ll

pl
p , 

(vii) k0forAC)AK(C k ≤≤= lll . 
 
Remark 1  For (4) and (8),(9) is K Kk k= . 
 
Proposition 2   In (1) let  and 
in 

mp <=BCArank k

S A B C( , , )  in (6) let 0B ≠− pm . Then the 
sequence of transformations 

)C,B,AK(S)C,B,A(S)C,B,A(S k pm−→→   
has the following properties: 
(i) it preserves the set of the invariant zeros, i.e., 

I
)C,BA,KS(

I
)C,BS(A,

I
C)B,S(A, -k

ZZZ
pm

==  , 

(ii) it preserves the maximal (A,B)-invariant 
subspace contained in , i.e., CKer

)C,B,AK(X)C,B,A(X)C,B,A(X k pm−
∗∗∗ == ,  

(iii) it preserves the zero polynomial for S(A,B,C), 
i.e.,

)s()s()s( )C,B,A)C,B,A(S)C,B,A(S pm−
ψ=ψ=ψ

kKS( , 

and consequently, the set of the Smith zeros, i.e., 
S

)C,BA,KS(
S

)C,BS(A,
S

C)B,S(A, -k
ZZZ

pm
== . 

 
Proposition 3 (Tokarzewski, 2002a) In (1) let 

. Then (1) is nondegenerate and rank CA Bk = m
λ ∈C  is an invariant zero of (1) iff λ  is an o.d. zero 
of )C,B,AK(S k . Moreover, X A  equals the 

unobservable subspace for 

B C∗ ( , , )

)C,B,AK(S k , i.e., 

I
1

0
k )AK(CKer)C,B,A(X

−

=

∗ =
n

l

l . 

 
Proposition 4 (Tokarzewski, 2002a) In (1) let 

rm >  and let CA  have full row rank r. Then: Bk

(i)  S(A,B,C) is degenerate iff in S A B C( , , )  in (6) is 
0B ≠−rm . Moreover, λ ∈C  is an invariant zero of 

(1) iff λ  is an invariant zero of the system 
)C,Bm,AK(S k r−  whose transfer-function matrix 

equals zero identically. Furthermore, X A  
equals the unobservable subspace for 

B C∗ ( , , )

)C,B,AK(S k rm− , i.e., 

I
1

0
k )AK(CKer)C,B,A(X

−

=

∗ =
n

l

l . 

(ii) S(A,B,C) is nondegenerate iff 0B =−rm . 
Moreover, λ ∈C  is an invariant zero of (1) iff λ  is 
an o.d. zero of the system )C,B,AK( k rS . 

Furthermore, X A B C∗ ( , , )  equals the unobservable 
subspace for )C,B,AK(S k r , i.e., 

I
1

0
k )AK(CKer)C,B,A(X

−

=

∗ =
n

l

l . 

 
Proposition 5 (Tokarzewski, 2002a) In (1) let 

 have rank CA Bk },min{ rmp <  and in S A B C( , , )  

in (6) let 0C =− pr . Then: 

(i)  S(A,B,C) is degenerate iff 0B ≠− pm . 
Moreover, λ ∈C  is an invariant zero of (1) iff λ  is 
an invariant zero of the system )C,B,AK( k pm−S  
whose transfer-function matrix equals zero 
identically. Furthermore, X A  equals the 
unobservable subspace for 

B C∗ ( , , )
)C,B,AK(S k pm− , i.e., 

 I
1

0
k )AK(CKer)C,B,A(X

−

=

∗ =
n

l

l . 

(ii) S(A,B,C) is nondegenerate iff 0B =− pm . 
Moreover, λ ∈C  is an invariant zero of (1) iff λ  is 
an o.d. zero of the system )C,pB,AK(S k . 

Furthermore, X A B C∗ ( , , )  equals the unobservable 
subspace for )C,B,AK(S k p , i.e., 

I
1

0
k )AK(CKer)C,B,A(X

−

=

∗ =
n

l
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Proposition 6  (Tokarzewski, 2002a) In (1) let 

 and in },min{BCArank k rmp <= S A B C( , , )  in 

(6) let 0C ≠− pr  and let 0B =− pm . Then S(A,B,C) 
is nondegenerate; moreover λ ∈C  is its invariant 
zero iff λ  is an o.d. zero of the system 

)C,pB,AK(S k . Furthermore, X A  equals 

the unobservable subspace for 

B C∗ ( , , )

)C,B,AK(S k p , i.e., 

I
1

0
k )AK(CKer)C,B,A(X

−

=

∗ =
n

l

l . 
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Propositions 2-6 and Lemma 1 yield a recursive 
procedure for the computation of invariant zeros and  

 for system S(A,B,C) in (1). X A B C∗ ( , , )
 
Procedure 1 (Tokarzewski, 2002a) 
1. CA  has full column rank.  Bk

Invariant zeros of (1) are o.d. zeros of  
)C,B,AK(S k  and 

I
1

0
k )AK(CKer)C,B,A(X

−

=

∗ =
n

l

l . 

2.  CA  has full row rank r and Bk rm > . 
2a. 0B =−rm . Invariant zeros of (1) are o.d. zeros 

of )C,B,AK(S k r  and  

I
1

0
k )AK(CKer)C,B,A(X

−

=

∗ =
n

l

l  

2b. 0B ≠−rm .  S(A,B,C) is degenerate and 

I
1

0
k )AK(CKer)C,B,A(X

−

=

∗ =
n

l

l .  

3.  . },min{BCArank k rmp <=

3a. 0C =− pr . 

3a1. 0C =− pr  and 0B =− pm . Invariant zeros of 

(1) are o.d. zeros of )C,B,AK(S k p  and  
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0
k )AK(CKer)C,B,A(X
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=

∗ =
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l

l . 

3a2. 0C =− pr  and 0B ≠− pm . S(A,B,C) is 

degenerate and I
1

0
k )AK(CKer)C,B,A(X

−

=

∗ =
n

l

l . 

3b.  0C ≠− pr . 

3b1. 0C ≠− pr  and 0B =− pm . Invariant zeros of 

(1) are o.d. zeros of )C,B,AK(S k p  and 

I
1

0
k )AK(CKer)C,B,A(X

−

=

∗ =
n

l

l .  

3b2. 0C ≠− pr  and 0B ≠− pm . The question is 
not decided at this step. Start the next step applying 
Procedure 1 to system )C,B,AK(S k pm− . 

4. In (1) all Markov parameters are zero.   S(A,B,C) 

is degenerate and . I
1

0
CAKer)C,B,A(X

−

=

∗ =
n

l

l

 
In the case 3b2 we begin the second step applying 
Procedure 1 to system S A  with the 

matrices 

B C( ' , ' , ' )

AK'A k= , pm−= B'B , C'C =  and 
pmm −='  inputs (i.e., we find the first nonzero 

Markov parameter for  and its SVD and 

then we form the associated system 

)'C,'B,'A(S

)'C,'B,'A(S ; in 
 the cases 2a and 2b are not possible 

since its Markov parameters have no full row rank). 
The process ends after at most n steps. At the last 
step we can meet only two possible situations: we 
get a system whose transfer-function matrix is 
identically zero or a system with the first nonzero 
Markov parameter of full column rank. 

S A B C( ' , ' , ' )

 
Corollary 1 
(i)  The question of seeking invariant zeros and 
X A B C∗ ( , , )  for (1) can be decided at the first step 
(the cases 1, 2a, 2b, 3a1, 3a2, 3b1 or 4 in Procedure 
1) or, in case 3b2, applying successively Procedure 
1, after at most n steps. 
(ii)  The recursive process generated by point 3b2 
preserves , I

C)B,S(A,Z )s()C,B,A(Sψ  and X A  

(comp. Proposition 2). Thus,  can be 

found out as the set of the invariant zeros of the 
system obtained at the last step (similarly for 

B C∗ ( , , )

I
C)B,S(A,Z

)s()C,B,A(Sψ  and X A B C∗ ( , , )). 
(iii) The process ends when we approach a 
nondegenerate system (the case 1, 3a1 or 3b1) or a 
degenerate system (the case 3a2 or 4). 

3 SMITH ZEROS, INVARIANT 
ZEROS AND ZERO DYNAMICS 

Proposition 7  If (1) is nondegenerate, then its 
Smith zeros and the invariant zeros are the same 
objects (including multiplicities). Moreover, the 
degree of the zero polynomial for (1) equals 
dim ( , , )X A B C∗ , while the zero dynamics, in 
appropriate coordinates, have the form 

, where the characteristic polynomial of 
matrix N equals the zero polynomial for (1) and 

)t(N)t( ξ=ξ&

ξ  

belongs to the subspace (when taken in 
the same coordinates). 

)C,B,A(X∗

 
Proposition 8 If (1) is degenerate, then the 
dimension of  is larger than the degree 
of the zero polynomial for (1), i.e., 

)C,B,A(X∗
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)s(deg)C,B,A(Xdim )C,B,A(Sψ>∗ . Moreover, 
the Smith zeros of (1) are i.o.d. zeros of certain 
system whose transfer-function matrix equals zero 
identically and the zero dynamics for (1) depend 
esentially upon control vector. 

4 SUFFICIENT AND NECESSARY 
CONDITION OF DEGENERACY 

Proposition 9   System (1) is degenerate iff 
Brank)s(Pranknormal +< n .         (10) 

 
Proposition 10   System (1) is nondegenerate iff 

Brank)s(Pranknormal += n .         (11) 
 
From Proposition 9 and from the relation 

 we get )s(Granknormal)s(Pranknormal += n
 
Proposition 11  Let  be a )s(G mrx  transfer-
function matrix and let S(A,B,C) (1) stand for its 
minimal n-dimensional state-space realization. Then 

 is degenerate (comp. Definition 2) iff )s(G
Brank)s(Granknormal < .          (12) 

 
Proposition 12   G(s) is nondegenerate iff 

Brank)s(Granknormal = .         (13) 

5 EXAMPLES 

Example 1  In (1) let 
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⎡
=
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1
u
u

u

The system is minimal, asymptotically stable and has 
no Smith zeros. In SVD of CB we take 
 

 
⎥
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⎦

⎤

⎢
⎢
⎣
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⎦
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⎡
=
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VT . 

  

Via Procedure 1 (3b2) we consider system 
)C,B,AK(S k pm− , where 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−=

121
010
010

AKk   
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⎢
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⎣

⎡
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1
0
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B pm  
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⎦

⎤

⎢
⎢
⎣

⎡

−
=

0
0

0
2

2
2C .  

 
Since all Markov parameters of )C,B,AK(S k pm−  

are zero, )C,B,AK(S k pm−  and consequently, 
system (1) are degenerate. The zero dynamics for (1) 
are 133 uxx +−=&  and . CKer)C,B,A(X =∗

 
Example 2 (Emami-Naeini, Van Dooren, 1982)  In 
(1) let 
 

       . 
⎥
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⎦

⎤

⎢
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⎣

⎡

−

−
=

001
000
012
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⎥
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⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

B [ ]010C −=

 
The system has one single Smith zero at 2. Since 
G s( ) ≡ 0, we have Z I = C ; moreover, 
X A B C Ker C∗ =( , , ) . 
 
Example 3      In S(A,B,C) in (1) let  and 
let 

0)s(G ≡
Hx'x =  denote a change of coordinates which 

transforms (1) to its Kalman form  )'C,'B,'A(S
  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
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34oc

1413oc

A00
AA0
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⎦
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⎡
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0
0

B
'B

oc
,        (14) 

[ ]ocC00'C =   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

oc

oc

oc

x
x
x

'x . 

 
Since in (1) we have assumed  and , in 0B ≠ 0C ≠
(14) is always 0oc >n  and 0oc >n , while 0oc ≥n  
(i.e., i.o.d. zeros for S(A,B,C) may not exist). The 
normal rank of the system matrix for (14) is 

nnnn =++ ocococ  and the zero polynomial for 
(14) (and consequently, for S(A,B,C)) is 

)AsIdet()s( ococ)C,B,A(S −=ψ . Thus, the Smith 
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zeros of (1) are i.o.d. zeros of (1). Of course, 

ococ)'C,'B,'A(Xdim)C,B,A(Xdim nn +== ∗∗ . 
The zero dynamics in  are governed by 
the equations 

)'C,'B,'A(S

 

)t(xA)t(x
)t(uB)t(xA)t(xA)t(x

ocococ

ococ13ocococ
=

++=
&

&
, 

 
where 0B oc ≠ , and their solutions remain in 

)'C,'B,'A(X}0x:'x{X oc
'
o

∗==∈= nR . If we 
constrain initial conditions to the subspace 

}0x,0x:'x{X ococ
'
oc ==∈= nR , then in this part 

of '
oX  the zero dynamics are governed by 

 
)t(uB)t(xA)t(x ococococ +=& . 

 
The source of degeneracy of (14) (and consequently, 
of (1)) lies in this part (i.e., controllable and 
unobservable) of the system, since for any 

)A( ocσ∉λ  the triple 
  

g,
0
0

x
x,

o
oc

o

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=λ , 

 
with gB)AI(x oc

1
ococ

o
oc

−−λ=  and ocBKerg∉ , 
satisfies Definition 1(i) for . )'C,'B,'A(S

6 CONCLUSION 

The purpose of this paper was to discuss certain 
geometric aspects of multivariable zeros that are not 
commonly known from the relevant literature. The 
presented approach can be extended on non strictly 
proper systems. 
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