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Abstract This paper analyzes the feasibility of the generalized predictive control law under constraints on the input, 
output or other auxiliary signals that depend linearly on the system variables. These constraints are 
formulated as sets of linear equalities or inequalities; the control sequence is therefore elaborated based on a 
quadratic optimization problem. The feasibility issues are related on one hand to the well posedness feature, 
and on the other hand to the compatibility with the set-point constraints. The prediction of the feasibility is 
of great interest from this point of view and necessary feasibility conditions are presented. Two possible 
approaches are followed, one strictly related to the specific set-point and the second, more general, 
examines the geo-metrical description of the optimization domain. The main practical advantage is that all 
the results are based on off-line numerical procedures offering qualitative information prior to the effective 
implementation. 

1 INTRODUCTION 

The computer aided design of control laws must 
overcome important difficulties when some imposed 
constraints must be satisfied. These constraints may 
be forced by practical considerations as limitations 
on the input control signal amplitude or rate. Other 
constraints may arise from the qualities desired for 
the control law, a classical example being the output 
constraints (Maciejowski, 2002). Other hidden 
constraints, from the end-user point of view, could 
be forced for example with end-point stability 
constraints. 

All can be expressed as linear equality or 
inequality constraints that have to be further 
considered in the control design procedure 
(Erhlinger, et al., 1996). This set describes in fact a 
polyhedral domain for which a dual representation in 
terms of generators is available (Wilde, 1993). 
Analyzing the geometry and the evolutions of this 
polyhedron due to the dynamic evolution of the 
controlled system variables could highlight the 
characterization of the control algorithm. 

This paper considers the model predictive 
control (MPC) in the presence of such operational 
constraints that alienate the performance of the 
control sequence provided by the unconstrained 

optimum. The effects could be severe, as for 
example unstable systems regulated by a constrained 
controller cannot be stabilized for all initial 
conditions. An exhaustive analysis of the system of 
constraints may reveal useful properties such as the 
expression of the “switching surfaces” for the linear 
control laws and the corresponding affine 
formulations (Bemporad, et al., 2002), (Seron, et al., 
2003). This paper deals with another important 
aspect related to the constraints analysis, the 
feasibility of the optimization problem to be solved 
(Kouvaritakis, et al., 2000). This is a sensitive one as 
long as, in the case of an infeasibility message 
coming from the optimization solver, the entire 
control law is invalidated and the control 
performances are damaged in an irreversible way. 
Consequently, an analysis of the infeasibility is 
crucial for the validation of the predictive control 
law (Olaru and Dumur, 2003), (Scokaert and Clarke, 
1994b). This is equivalent with an off-line prediction 
of infeasibility. It must be mentioned that even for 
the analytical close form description the feasibility 
domain represents an important problem. 

The main contribution of this paper is to provide 
results towards feasibility and to stress their 
implications in the case of general types of set-
points. Theoretical aspects related to some classes of 
necessary feasibility conditions are covered and an 
algorithm is built in order to check these conditions, 
based on off-line information. In practice, although 
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it cannot be analytically proved that they are 
sufficient, these conditions offer a good test for the 
on-line feasibility. The advantage of this approach is 
that it covers the CGPC feasibility directly linked 
with the structure of the set-points to be followed. 
The paper concludes with a numerical example 
proving the usefulness of the specified procedures. 

The paper is organized as follows: Section 2 
describes the generalized predictive control 
formulation. Section 3 examines the constrained 
case and provides some basic results about 
feasibility. Section 4 is dedicated to the geometrical 
description of the constraints and the main results 
towards necessary conditions to be satisfied for on-
line feasibility. Section 5 presents a simulation on a 
second order non minimum phase system. Finally, 
Section 6 gives some concluding remarks. 

2 GENERALIZED PREDICTIVE 
CONTROL 

Generalized predictive control (GPC) is part of the 
long-range predictive control (LRPC) or model 
predictive control (MPC) family (Rossiter, 2003). 
All these controllers are based on the fact that the 
process evolution can be predicted over a horizon 
taking into account the history of the control inputs, 
plant outputs and the potential future control 
sequence. The quantification of suitability for the 
predicted response is measured by a cost function 
that considers the fitness with respect to the desired 
characteristics. GPC is characterized by two major 
characteristics. It uses first a CARIMA plant model 

 
)()()(

)()()()(
11

11

−−

−−

+

+−=

qtqC

dtuqBtyqA

∆ξ
 (1) 

where u, y are the system input and output 
respectively, )(tξ  represents a centered Gaussian 
white noise, d the system time delay, A and B are 
polynomials in 1−q (the backward shift operator) of 
degree an  and bn , and 11 1)( −− −= qq∆ . 

Then the cost function to be minimized is 
quadratic in the tracking error and control effort over 
a receding horizon 
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where )(ˆ jty +  is the output prediction, 21, NN  are 
the minimum and maximum costing horizon, uN  
the control horizon, λ  a control weighting factor 
and w the setpoint. 

Based on the model mentioned earlier and 
following the ideas of GPC (Clarke, et al., 1987) an 
optimal j-step ahead predictor can be constructed 
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where the jjj HGF ,,  polynomials are solutions of 
the Diophantine equations 
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The index (2) is rewritten for optimization purpose 
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with the vector form of (3) 
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In the unconstrained case, the optimum of J derived 
through analytical minimization is given by the 
relation fQk 1−−=u . By applying the first control 
action )1(uk  of this optimal sequence and restarting 
the procedure, a control law with improved 
performances under a “two degrees of freedom” 
polynomial RST form is obtained (Boucher and 
Dumur, 1998). Such a formulation takes advantage 
of all the properties related to a closed loop control 
law as at each sampling instant it uses the new 
measured values of the plant output. 
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3 CONSTRAINED GPC 

All these properties have to be reanalyzed when 
constraints are taken into consideration (Camacho, 
1993). The design procedures most often have to 
consider specific types of constraints originated by 
amplitude limits in the control signal, slew rate 
limits of the actuator, limits on the output signal or 
equality constraints at the end of the prediction 
horizon for stability purposes. 

3.1 Constraints formulation 

Generally the formal mathematical description is 
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These constraints on the control action and outputs 
can be restated in a form depending only on control 
updates. Further, this description could be translated 
in a matrix form like in (Ehrlinger, et al., 1996) 
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where 112 +−= NNN , ),( rqM  is a matrix of 
dimension rqx  whose entries are one on the first 
column and zero for the others, L  is a uu NN x  
lower triangular matrix whose entries are one. cG  
and cl  describe the dynamics and the free response 
of the constrained system, both found as in (3), (5). 

3.2 Feasibility 

When minimizing the index J in (2) with respect to 
the constraints, the methods presented in the relaxed 
case cannot be applied since they do not provide a 
solution when the global optimum violates the 
constraints. In this case, practical GPC 
implementation is dealing with nonlinearities in the 
control law due to the entrance in the frontier 
hyperspace of the polyhedral domain defined by the 
set of constraints. These nonlinearities affect the 
controller expression that is usually found by solving 
on-line the quadratic program and applying then the 
receding horizon principle. However, the control law  
is affected irreversibly when on-line optimization 

returns infeasibility messages as in this case no 
pertinent control action can be applied. 

Recalling the definition of the two types of 
infeasibility (Olaru and Dumur, 2003), type I is easy 
to analyze by a simple inspection of the optimization 
domain. It is not the same for the type II infeasibility 
as long as it depends on the set-point, which may 
conflict with the system dynamics and the other 
inequality constraints. Notice that there always 
exists a set-point which causes the infeasibility of 
the optimization for a system with a given set of 
constraints. 

3.3 Necessary conditions 

The following result concerns the degrees of 
freedom and the dynamics of the predicted output. 
However, it does not give any insight for the 
constrained domain point of view. To do that, a 
geometrical approach must be examined, which will 
be considered in Section 4. The optimization 
problem to be solved at instant t will be noted here 

))(,,,,( mNwmNNtP u + . The argument for the 
solution to this problem will be noted 

))(,,,,( mNwmNNtK u + . 
The following proposition introduces a necessary 

condition for feasibility of a GPC law. 

Proposition 1: If a GPC law is feasible at each 
instant 0>t , then the existence of all the following 
sequences is assured 

 0)),(,,,,0( ≥∀++++ kkmNwmkNkNK u  (8) 

Proof: GPC feasibility is equivalent with the 
feasibility of ))(,,,,( mNwmNNtP u +  for any t  
and as result with the existence of the optimal 
solution ))(,,,,( mNwmNNtK u + . 

For 0=t , ))(,,,,0( mNwmNNP u +  is feasible 
and thus ))(,,,,0( mNwmNNK u +  exists which is 
(8) for 0=k . Assume the existence of the first 1−k  

))(,,,,0( imNwmiNiNK u ++++ , 10 −= ki L , 
solutions. Based on the optimization problem until 
time k , the following sequence can be built 
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which is the sequence of the first k  GPC control 
actions. On the other hand at instant k , from the 
hypothesis the CGPC law defines a feasible opti-
mization problem ))(,,,,( mNwmNNkP u +  with 
solution ))(,,,,( mNwmNNkK u + , adding it to the 
existing ℵ, a kNu +  control sequence is obtained 

 { }))(,,,,(, mNwmNNkK u +ℵ=ℵ  (9) 

Each element of this vector satisfies the operational 
constraints of ))(,,,,0( mkNwmkNkNP u ++++  as 
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long as its set of constraints is included in the union 
of all subsets upon which the elements of ℵ  were 
constructed. Now, as the final part of the sequence 
ℵ , ))(,,,,( mNwmNNkK u +  satisfies the end-point 
constraints for ))(,,,,( mNwmNNkP u +  being the 
same as for ))(,,,,0( mkNwmkNkNP u ++++ . 
ℵ  is thus a feasible solution to this problem and 
there exists ))(,,,,0( kmNwmkNkNK u ++++ . 
The result is completely proved by induction. ■ 

To illustrate how the result of Prop. 1 can be 
exploited, consider a simple second order system 

 )()()25.01( 21 tutyqq =+− −−  (10) 

An unconstrained GPC law with horizons 11 =N , 
42 =N , 2=uN  controls without problems the 

system for a pulse train set-point of magnitudes 0.3 
and 1 (Figures 1a, b). Similar performances are 
available even if constraints on the input update 

1.01.0 ≤≤− u∆  are introduced. Difficulties arise 
when endpoint constraints are added to the previous 
ones ( 1=m  in the case of Figures 1c, d). The 
second ascending front of the set-point requires an 
important control effort to satisfy the endpoint 
constraints and the control law in this constrained 
case becomes infeasible. The infeasibility only 
appears at the 12th iteration while from the necessary 
condition it was obvious that as long as 

))13(,,12,12,0( +++ NwmNNP u  is infeasible, the 
CGPC law is infeasible. Figures 1e, f shows that the 
control law with only endpoint constraint is feasible. 

0 20 40 60
0

0.5

1

1.5
e

0 20 40 60
0

0.2

0.4
f

0 20 40 60
0

0.5

1

1.5
 a

0 20 40 60
0

0.2

0.4
b

0 20 40 60
0

0.5

1
c

20 40 60

0.06

0.08

0.1

d

y(t),w(t) u(t) 

 
Figure 1: a, b) Output, setpoint and input for GPC 

c, d) output, setpoint and input for CGPC 
e, f) output, setpoint and input for CGPC with endpoint 

constraints only. 

Generally, if for a set of GPC parameters there exists 
a k  for which ))(,,,,0( mkNwmkNkNP u ++++  
is infeasible, then there exists a t  such that 

))(,,,,( mNwmNNtP u +  is infeasible. In practice, 
all ),,( mNN u  combinations with this property must 
be avoided. Thought these are useful principles, a 
finite time procedure checking the necessary 
conditions is not achievable in the general case. 
However, the necessary condition can be checked 
for some specific k values, which in the case of 

regular set-points might cover all the possible cases 
(see (Olaru and Dumur 2003) for a step set-point 
example). 

Furthermore, Prop. 1 considers necessary, but 
not sufficient, feasibility conditions. With the same 
previous system (10) with endpoint constraints, if 
the set-point is a pulse train of magnitudes 0.35 and 

35.0− , all the optimization problems (8) are feasible 
but the GPC law is infeasible. 

4  GEOMETRICAL ANALYSIS 

More complex results towards sufficient feasibility 
conditions based on invariant sets exist, which are 
too conservative. Consequently, an alternative 
approach in order to achieve some tractable 
necessary conditions considers a dual representation 
of the polyhedral domain coming from the 
constraints. 

4.1 Constrained domain evolution 

Trying to describe the feasibility domain for a 
system under all types of constraints, a compact 
form is deduced from (7) 
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where the epsilon machine will represent the bounds 
for equality constraints, wn  is the required number 
of past known values that are necessary to properly 
evaluate the future setpoint evolution. 

A possible way of modeling (11) considers the 
dual representation of the inequalities in (7) 
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where conv.hullX denotes the set of all convex 
combinations of points in X, coneY denotes 
nonnegative combinations of unidirectional rays and 
lin.spaceP represents a linear combination of bi-
directional rays. It can be rewritten as 
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The complete procedure for finding the dual 
representation evaluates the system of constraints 
through Chernikova algorithm (Le Verge, 1992) 
implemented in libraries like POLYLIB. 

Usually the polyhedral domain related with 
practical CGPC laws are in fact polytopes. These 
domains in a compact form can be analysed by their 
evolution, providing the dynamics of the constrained 
variables vector. This is the purpose of the next part. 

Let us before examine the explicit linear 
controller structure. It comes from (5) 
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where E is a matrix which allows the description of 
the vector )(* tEθwl =− when 
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One can find the description for the vector uk  by 
minimizing this index J under the constraints 

 )1(* −−≤ tu θKΦbkA  (16) 

where K is a matrix allowing the description of the 
affine part of the inequalities as a linear dependence 
on the context parameters )(* tθ . The close form of 
the optimal control sequence for the CGPC is 
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with 0A  the matrix constructed by the subset of 
lines in A  for whom the inequality constraints are 
saturated. 
 

As a conclusion, the elaborated control law is 
affine in the parameter vector )1( −tθ . However, the 
difficulties arise from the fact that the matrix 

))1((00 −= tθAA  is not allowing an explicit 
dependence on the vector of parameters. 

Remark: A parameterized polyhedron like the 
one in (16) 

 { })1(* −−≤= tP uu θKΦbkAk  

has a dual representation where only the vertices are 
affected by the parameters 
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4.2 Necessary conditions by means of 
extremal point feasibility 

Considering the polyhedral domain as described 
earlier, with the dual representation by the vertices, 
it can be interesting to look at the evolution of these 
vertices at each sampling time. 
Proposition 2: The optimal control sequence 
corresponding to all extremal combinations of 
context parameters must lead to points inside the 
projection of the initial polyhedral domain for a 
feasible CGPC law. 

Proof sketch: As explained earlier, the constraints 
on the CGPC law define a polyhedral domain, given 
in the case of a polytope by 
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By considering the involved system variables as 
parameters, this parameterized polyhedron can be 
extended to a fixed one of higher dimension. Fur-
ther, a corresponding representation as a generators 
combination may be found. In the case of a 
polytope, this will be 
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The existence of these vertices does not guaranty the 
fact that the CGPC law will have the opportunity to 
reach each of them. Multiple vertices may 
correspond to the same context parameters. Thus, a 
useful manipulation may be the orthogonal 
projection of this domain on the subspace of the 
context parameters (as in Figure 2). 

 
Figure 2: The polyhedral domain and its projection on the 

context parameters subspace. 

This operation can be done explicitly by 
multiplying each vertex iθ  by a matrix [ ]je  where j 
are the indices of the context parameters in the 
vector θ . The resulting set is *P , the convex 
combination of the points 

 [ ]{ }ijeP θ== *** θθ  (19) 

Once the projection available, a redundancy check 
must be operated in order to obtain the minimal set 
of generators. 

The resulting domain *P  can provide by its 
vertices the extremal points for the context parame-
ters that can further be used for figuring the whole 
domain. Solving the parameterized quadratic 
problem related to CGPC, one can retrieve a hyper 
surface inside the original polyhedral domain D . 

 
Figure 3: The optimal solution of CGPC for each possible 

context parameters combination. 

The elaboration of this shape enables to solve all the 
analysis problems as it defines the whole behavior of 
the CGPC law. However, this is not a trivial task 
although systematic results exist at least for the 
MPC with state space models. The investigated case 
is slightly different as long as it incorporates also a 
model of the reference, even if the optimization 
problem is still a part of the quadratic multi-
parametric programs. 

As far as the evolution of the context parameters 
domain is concerned, the image of the points on the 
CGPC shape must be found by the linear 
transformation (15). If this domain is denoted as 

*
+P , the necessary and sufficient conditions for 

feasibility are resumed by the relation 

 ** +⊃ PP  (20) 

Due to limitations in the knowledge on the topology 
of the CGPC shape, this will resume on necessary 
conditions based on the extremal points. These 
necessary conditions may be expressed as in Figure 
4 by a set of inequalities 

 *)1(* +∈+ Ptθ  (21) 

which resumes the proposition. ■ 
In practice this condition seems to be quite 

general and covers with sufficiency all the special 
cases verified by the authors. An analytical proof of 
the fact that the extremal points of the CGPC shape 
corresponding with the extended polyhedron vertices 
will have as image the vertices of the domain *

+P  
can not yet be obtained. 

 
Figure 4: The evolution of the extremal points of context 

parameters domain. 

For a complete analysis of the CGPC law, all the 
points inside the polyhedral domain *

+P  have to be 
checked in order to confirm the feasibility. This is 
not an obvious task as long as the optimal control 
sequence is affine in the context parameters, and the 
affine part even if linear in the parameter vector is 
changing the linear dependence in concordance with 
the active set of constraints. It is clear that the 
number of active constraints is maximal for the 
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vertices and is subsequently decreasing for the 
points on the frontier where subsets of these sets of 
constraints are active. 

Following the same line as the proof, an 
algorithm based on tools of polyhedral computations 
and quadratic optimization can be designed in order 
to validate these necessary conditions. Such an 
algorithm can be resumed by the following steps. 

Algorithm 1 

1. Compute the vertices of the polyhedral set by 
dual representation of the constraints 

2. Project the polytope on the parameters subspace 

3. Remove the redundant points 

4. Compute the close form of the control law in all 
the vertices of the constrained domain. 
(Compulsatory as it is not always equal with the 
value in the original polyhedron) 

5. For each such law, construct the evolution 
matrix and compute the corresponding next step 
parameters )1( +tθ  

6. Check if for each such point )1( +tθ , its 
projection is inside the projected polyhedron 
found at step 2. If it is not the case, that means 
that there exists at least one point in the 
constrained domain which, if reached, will lead 
to infeasibility. The necessary conditions are 
thus not accomplished. 

5  EXAMPLE 

A simple constrained generalized predictive control 
is examined in order to illustrate the analysis tech-
nique procedure proposed in the previous section. 
Consider in the following a second order linear 
system as the one reported in (Olaru and Dumur, 
2003), with non-minimum phase characteristics 
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Figure 5: Open loop step response. 

The step response of this system is given in Figure 5. 
For CGPC law with 11 =N , 42 =N , 2=uN , the 
system proves to have an infeasible behavior for step 
setpoints and constraints on the output of magnitude 

11 ≤≤− y , based on snow-ball attitude (Scokaert 
and Clarke, 1994a) (Figure 6). 

 
Figure 6: CGPC closed loop behavior. 

Proceeding as explained in Algorithm 1, the 
constrained domain can be described as 

 { }yyD uu 1lkG1k ≤+≤=  (23) 

where l is like in (3) and 
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The elaboration of the extended polyhedron requires 
the definition of 

   { }0ΓΓΓθFΓ ≥≤≤−= maxminmaxmin ,)(tP (25) 

with:  TTT
max
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min ; 11Γ11Γ ==== yy  
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As the context parameters include the past outputs, 
three implicit constraints have been added as an 
upper part of F in order to avoid the analysis of non-
reachable regions. The result is a square matrix of 
constraints describing a polytope with a dual 
representation containing 128 vertices 

θ1= [ 148 -148 -148  -59 -467 -158 -315  ]/148 
θ2= [-148  148 -148 -459  689 -138  241  ]/148 
θ3= [ 148  148  148 -309   15  354  -97  ]/148 
… 
θ128= [-148 -148  148 -357  207   90   23  ]/148 

Figure 7: Convex hull for D computed by POLYLIB. 
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Now the projection on the subspace of the first five 
variables leads to a domain *P  that can be reduced  
by removing redundant pairs to the convex hull of 
64 vertices like in Figure 8. 

θ1= [-148 -148  148  335 -193  ]/148 
θ2= [ 148  148 -148  677 -303  ]/148 
θ3=[ 148 -148 -148  793 -767  ]/148 
… 
θ64= [-148  148  148 -793  767  ]/148 

Figure 8: Convex hull for P* computed by POLYLIB. 

Now the corresponding quadratic problems have to 
be solved in order to find the optimal control law in 
each such extreme context. The next step aims at 
computing the image of the resulting extended 
vectors 64..1θ  by the linear transformation 
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Checking their membership inside D ends the 
algorithm. In the studied case, there are 32 vertices 
which are positioned outside the feasible context 
polyhedron *P . This means that there are at least 32 
combinations of past inputs and outputs for which 
there is no feasible control sequence able to retain 
the system inside the constraints 

 11 ≤≤− y  

Thus as the necessary conditions are not fulfilled, 
the overall CGPC law is infeasible. 

6 CONCLUSION 

This paper presented some possible approaches for 
the off-line analysis of the feasibility in the case of a 
constrained generalized predictive control strategy. 
The advantages of these kinds of analysis consist in 
the set-point dependent procedure that may prove to 
be useful in the decisions of tuning predictive 
control law parameters. 

However, a gap between the necessary and 
sufficient conditions for off-line feasibility of CGPC 
exists as long as the dependence of affine linear 
control law corresponding to the saturated 
constraints as functions of the context parameters 
can not be explicitly computed. 

REFERENCES 

Bemporad, A., Morari, M., Dua, V. and Pistikopoulos, E., 
2002. The explicit linear quadratic regulator for 
constrained systems, Automatica, Volume No 38, pp.3-
20. 

Camacho, E.F., 1993. Constrained Generalized Predictive 
Control, IEEE Transactions on Automatic Control, 
Volume No 38-2, pp.327-331.  

Clarke, D.W., Mohtadi C., and Tuffs, P.S., 1987. 
Generalised Predictive Control: Part I: The Basic 
Algorithm, Part II: Extensions and Interpretation, 
Automatica, Volume No 23-2, pp.137-160.  

Dumur D. and Boucher, P., 1998. A Review Introduction 
to Linear GPC and Applications, Journal A, Volume 
No 39-4, pp.21-35.  

Ehrlinger, A., Boucher, P. and Dumur, D., 1996. Unified 
Approach of Equality and Inequality Constraints in 
G.P.C.. 5th IEEE Conference on Control Applications, 
pp.893-899, Dearborn, September. 

Kouvaritakis, B., Cannon, M. and Rossiter, J.A., 2000. 
Stability, feasibility, optimality and the degrees of 
freedom in constrained predictive control, in 
Nonlinear Model Predictive Control, F. Allgower and 
A. Zheng (eds.), Progress in Systems and Control 
Theory Series, Volume No 26, pp.403-417, Birkhauser 
Verlag, Bâle.  

Le Verge, H., 1992. A note on Chernikova's Algorithm, 
Technical Report 635, IRISA-Rennes, France. 

Maciejowski, J., 2002. Predictive Control with 
Constraints, Prentice Hall. 

Olaru, S., and Dumur, D., 2003. Feasibility analysis of 
constrained predictive control, 14th Conference on 
Control Systems and Computer Sciences, pp.164-169, 
Bucharest, July 2003.  

Rossiter, J.A., 2003. Model based predictive control – a 
practical approach, CRC Press.  

Scokaert, P. and Clarke, D.W., 1994a. Stability and 
feasibility in constrained predictive control, In: 
Advances in model-based predictive control, pp.217-
230. Oxford University Press.  

Scokaert, P. and Clarke, D.W., 1994b. Stabilising 
properties of constrained predictive control, IEE 
Proceedings Control Theory Applications, Volume 
No 141-5, pp.295-304, September.  

Seron, M.M., Goodwin, G.C. and De Dona, J.A., 2003. 
Characterisation of Receding Horizon Control for 
Constrained Linear Systems, Asian Journal of 
Control, Volume No 5-2, pp. 271-286. 

Wilde, D.K., 1993. A library for doing polyhedral 
operations, Technical report 785, IRISA-Rennes, 
France. 

SOME FEASIBILITY ISSUES RELATED TO CONSTRAINED GENERALIZED PREDICTIVE CONTROL

77


