
GLOBAL CONDITION MONITORING SYSTEM 
Implementing MATLAB®-Based Analysis Services 

Henri Helanterä, Mikko Salmenperä, Hannu Koivisto 
Institute of Automation and Control, Tampere University of Technology, P.O. Box 692,FIN-33101 Tampere, Finland 

Keywords: Proactive maintenance, condition monitoring, fault diagnostics, distributed automation, Java, MATLAB® 

Abstract: Proactive maintenance is a solution to increase the availability of the production equipment in the process 
industry. It involves online condition monitoring of field devices and reliably diagnosing the reason behind 
any abnormal behaviour, thus helping to rationalise maintenance operations. Making the information of 
different industrial sites available for analysis, significant improvements could be made to the predicting 
capabilities of condition monitoring and to the accuracy of fault diagnostics. The global condition 
monitoring system described in this paper is based on distributed agent-architecture and employs data 
communication networks to connect the industrial sites to one or more service centres. Many successful 
methods used in condition monitoring and fault diagnostics often require advanced tools. MATLAB® 
software is the de facto standard in numerical computing but integrating MATLAB® as a computing server 
to the J2EE-based condition monitoring system is a laborious task as no all-purpose and easy-to-use 
methods exist. However, this paper introduces some strategies to overcome the integration problem. The 
most important solution presented here is so called inverted calling scheme. Also two other approaches are 
discussed: using MATLAB® engine functions via C-language native methods and deployment of stand-
alone MATLAB® COM components. All the above strategies have their strengths and weaknesses. 
Implementing the inverted call requires more effort from the programmer but is standard-compliant. 
Exploiting engine functions or COM components is easier as some ready-made software can be employed 
but the emerging solutions are not pure-Java. 

1 INTRODUCTION 

The role of proactive maintenance in process 
industry is growing in importance, since there is an 
ever-increasing demand for improvement of 
productivity and reliability of the plants. At the same 
time there are requirements for reducing the overall 
maintenance costs and carrying out the maintenance 
operations during the planned stoppages. Meeting 
these requirements—conventionally seen as opposite 
alternatives—means that any device failures have to 
be predicted reliably and the diagnosis of faulty 
devices has to be performed quickly and efficiently. 
This is not possible without highly automated 
condition monitoring and diagnostic systems. 
Individual factories, however, don’t have sufficient 
resources to meet the demanding goals set to the 
maintenance. Thus, outsourcing is a potential option 
here. 
If the huge amount of information available at the 
different industrial sites were available for analysis, 
significant improvements could be made to the 

predicting capabilities of condition monitoring and 
the accuracy of fault diagnostics. This paper first 
introduces the overall structure of the global 
condition monitoring system designed to answer the 
needs of predictive maintenance. Then we examine 
how this system can be used in data-analysis. 
Finally, techniques to integrate MATLAB® 
software as a computing server to the J2EE-based 
condition monitoring system are presented, 
including a nouvelle approach that—unlike the 
others—is pure-Java. 

2 STRUCTURE OF THE GLOBAL 
CONDITION MONITORING 
SYSTEM 

The overall structure of the global condition 
monitoring system is studied in (Salmenperä, 2000), 
(Nikunen, J. et al., 2001) and (Salmenperä, M., 
Koivisto, H., 2001). The system consists of devices, 

300
Helanterä H., Salmenperä M. and Koivisto H. (2004).
GLOBAL CONDITION MONITORING SYSTEM - Implementing MATLAB R© -Based Analysis Services.
In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics, pages 300-305
DOI: 10.5220/0001134303000305
Copyright c© SciTePress



 

databases, software components and 
communications links that connect all the above 
together. Factory-specific subsystems, sites, are 
connected to one or more central systems, service 
centres. 
The system works at two levels. Automated agent-
based level is meant to be the framework of the 
system. All continuous data acquisition, generation 
of regular reports and alerts takes place at this level. 
More specific operations are carried out by human 
operators. The agents provide interfaces, through 
which users and other agents can access system 
resources without having to be aware of their 
implementation. (Salmenperä, 2000) 
Agent is a somewhat vague term. According to 
Franklin & Graesser (1996), the most significant 
characteristics of software agents are independence 
and goal-orientation. These also necessitate that the 
agents are capable of communicating with each 
other. In the global condition monitoring system 
analysis agents are used to act on behalf of human 
experts in routine data-analysis and fault reasoning. 
Administration of the scattered large-scale system 
requires that all the essential information is stored in 
one place, in the service centre, where it can be 
easily accessed (Salmenperä, 2000). Employing the 
agent-architecture makes it possible to distribute the 
routine analyses to factory-level thus preventing 
unnecessary transfer of raw data. As a result only the 
most important information ends up to the service 
centre for further scrutiny and refinement. Extracting 
the raw data into interesting and valid information is 
one of the key tasks of the condition monitoring 
system. 
The information within the system is of great 
importance for the companies and thus to be held 
confidential. Yet, making use of existing 
communication networks, mainly Internet, is 

essential when implementing a global system. 
Consequently, network security is a key issue. 
Possible threats include external factors but also 
other parts of the system, such as other industrial 
sites, can be seen as potential risks, since the 
maintenance service provider might well cooperate 
with rival companies. (Nikunen, 2001) 
Network speed and the amount of transferred data 
have to be considered when designing the system in 
order to make it robust to possible delays and breaks 
in the communication. The sites are independent 
units that have to be able to perform basic 
maintenance operations without intervention of the 
service centre. The system has to work even if the 
connection to the service centre broke. 

3 GLOBAL ANALYSIS SCHEME 

Analysis services in the global condition monitoring 
system are routine analysis automatically run by the 
analysis agents, or more specific—but still 
predefined—operations put into effect by a user. The 
analysis services need three different kinds of 
databases: namely device, knowledge and analysis 
databases. The device database consists of 
measurements and diagnostic information. The 
knowledge base contains expert knowledge of the 
devices accumulated in the long run. The analysis 
database includes the results of analyses for later use 
and scrutiny. 
The analysis components of the global condition 
monitoring system are shown in figure 1. The field 
devices perform low-level self-diagnostics by 
monitoring their own state and condition. The 
analysis agent responsible for the site’s automated 
condition monitoring integrates the device 

Figure 1: The analysis components of the global condition monitoring system. 

GLOBAL CONDITION MONITORING SYSTEM - Implementing MATLAB® - Based Analysis Services

301



 

diagnostic information with the information in the 
site databases to carry out more thorough analyses. 
The information gathered at the sites is further 
processed and analysed by the high-level analysis 
services (supervisory logic) in the service centre. 
The analysis operations are mainly carried out 
automatically by the site subsystems. However, if 
the site’s analysis agent cannot identify the reason 
for the abnormal behaviour of a device—i.e., it 
discovers a situation that does not match to its 
existing deduction rules—it sends a warning to the 
system. Experts of the service centre then examine 
the device and, if the cause can be worked out, the 
new deduction rule is updated to the knowledge 
base. The experts can use, in addition to their own 
knowledge, the data from all the other sites, and 
therefore have a better chance to clear up the 
problem than the local staff at the site. (Helanterä, 
2004) 
The global condition monitoring system has to work 
in a diverse environment of different field devices, 
automation systems, database systems etc. Thus, the 
architecture of the system has to be flexible to 
accommodate the variety of industrial sites 
(Nikunen, J. et al, 2001). Modularity is one of the 
reasons behind choosing agent-architecture as the 
general framework of the system and modularity 
requirements have to be taken into account in the 
design of the analysis services as well. The 
advantage of the modular structure is that the 
implementation of the computational module can be 
changed without having to modify the analysis 
agent. 
The computation can be transferred to a separate 
computing server or distributed among various 
machines. The information about the computing 
server(s) can be included in system configuration 
files. Using a separate computing server or various 
distributed servers should be considered when the 
amount of data to be processed increases and thus 
the load caused to the agent server becomes 
intolerable. Separating the computation from the 
agent server is relevant when considering the overall 
system stability. 

4 COMPUTATIONAL 
IMPLEMENTATION OF THE 
ANALYSES 

The computational implementation of the analyses 
means in this context the tools and mathematical 
libraries that are needed to perform the analyses. The 
way of implementation is affected by the general 

architecture of the system, the systems integration 
issues and the analysis methods to be used. 
Two alternative technologies have been studied as a 
framework of the global condition monitoring 
system—namely Sun’s J2EE (Kero, 2004) and 
Microsoft’s .Net (Haavisto, 2001) and (Salmenperä, 
M. et al., 2003). In this paper we concentrate on the 
J2EE architecture and thus, the analysis components 
have to be compatible with Java in some way. The 
main driving force behind choosing the Java 
technology is its platform independence, which is 
one of the central requirements of the global 
condition monitoring system and has to be taken into 
account with the analysis services as well. On the 
other hand, the condition monitoring system also has 
to deal with legacy systems, thus making systems 
integration necessary. Therefore we may well ask if 
it is possible to use something else than a Java-based 
solution, provided that it is otherwise more 
convenient. 
It is a great advantage if the analysis components 
could be developed and implemented with the same 
tool. In practise, there are two different alternatives: 
using Java tools both in development and 
implementation, or using non-Java tools in 
development and then integrating the emerged 
components to the system. In the field of numerical 
computing MATLAB® is the de facto standard and 
the development of analyses would most probably 
be carried out with it. Then again, the J2EE 
framework of the condition monitoring system 
makes using pure-Java applications desirable. 
Basically MATLAB® consists of the computational 
engine, its own programming language and a variety 
of toolboxes that contain a combination of functions 
for special tasks. In the context of analysis services 
e.g. the Statistical, Neural Network, Fuzzy Logic 
and Database toolboxes provide a solid base for both 
developing and implementing the analyses. In the 
Java world there are tools for these tasks as well but 
they are not as advanced as those of MATLAB® 
and also the experience of using them is not as 
extensive. 

5 JAVA-MATLAB® INTEGRATION 

MATLAB® is a competent tool for analysis 
development but in terms of systems integration it is 
problematic. Especially the integration with Java-
based systems is difficult, even though the more 
recent versions of the software (since version 5.3 
R11) include the Java virtual machine, which makes 
it possible to call Java classes from MATLAB® 
code but the contrary is not possible. However, we 
present here some ways to use MATLAB® from a 

ICINCO 2004 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

302



 

Java application. The first method makes use of 
MATLAB®’s Java virtual machine. The latter two 
use MATLAB®’s external C-language interface and 
the ability to compile MATLAB® programs into 
stand-alone COM components. 

5.1 Inverted call 

Java Runtime class enables executing commands in 
the command line of the operating system. Thus, 
starting the MATLAB® process from a Java 
application is possible. As a command line option 
the name of an m-file—a program written in 
MATLAB®’s own programming language—that 
MATLAB® executes upon start-up can be given. 
Then, within the m-file we can call a Java class that 
listens to analysis requests from the analysis agent. 
The analysis request can consist of e.g. the name of 
an m-file to be used to perform the analysis, and the 
data to be analysed, or the parameters with which 
the data can be fetched. In the inverted calling 
method, which is illustrated in figure 2, the Java 
application that listens to the analysis requests is run 
in the MATLAB®’s Java virtual machine. The 
analysis agent, on the other hand, is run in another 
virtual machine. The virtual machines can reside on 
different physical machines. Thus, a method for 
these two applications to communicate over the 
network is needed. The simplest solution is to use 
Java sockets. With the help of sockets it is possible 
to read from and write to a defined network 
connection that is described by an IP address and a 
port number. Here, the client and the computing 
server exchange information through an auxiliary 
class called SharePoint. 
The inverted call was presented by Helanterä (2004) 
and it works as follows (have a look at the numbers 
in figure 2): 
The ServerStarter class starts the intermediary server 
Server. 
The JMatlabStarter class starts the MATLAB® 
process from the operating system command line 
and gives the name of the m-file (located in the m-
file repository) to be run upon the start-up. 
MATLAB® calls the GetCommand class to get 
analysis requests from Server. 
GetCommand uses a socket connection to poll 
Server for any analysis requests. 
The analysis agent (referred as Commander in the 
figure 2) calls the GetArray class to get analysis 
result from Server. 
GetArray uses a socket connection to poll Server for 
available results. 
The analysis agent uses the SetCommand class to 
send a request for an analysis to be performed in the 
computing server. 

SetCommand sends the request to Server using a 
socket connection. 
ServerThread sends the analysis request to listening 
GetCommand through the established socket 
connection. 
GetCommand returns the analysis request to 
MATLAB®. 
MATLAB® gets the appropriate m-file from the m-
file repository and performs the analysis. 
MATLAB® calls the SetArray class to return the 
results. 
SetArray sends the result to Server through a socket 
connection. 
ServerThread sends the result to listening GetArray 
through the established socket connection. 
GetArray returns the result to the analysis agent. 
The socket-based solution is simple but probably not 
suitable to be used in the real-world global condition 
monitoring system. The analysis requests are likely 
to occur simultaneously and the problem with the 
socket-based approach is how to bind the right 
answer to the right request. A more elegant solution 
is to replace the socket server with JMS-based (Java 
Message Service) message queue that handles the 
ties between the client and the server, the request 
and the answer. Using JMS to implement messaging 
in the global condition monitoring system is studied 
by Kero (2004). Other alternatives, in addition to 
Java sockets and JMS, are e.g. making use of Java 
RMI (Remote Method Invocation) or CORBA 
(Common Object Request Broker Architecture) to 
do the interoperation needed. 
The main advantage of the inverted call is its 
conformity to standards. No additional software is 
needed but the solution relies solely on J2EE 
standard libraries. The Runtime class is partly 
platform dependent because command syntax is 
system specific. Considering the minor role of the 
use of system commands—they are only used to 
start the MATLAB® process—this cannot be 
viewed as a stumbling block as choosing the correct 
syntax for each system is programmatically easy to 
implement. 

5.2 MATLAB® engine functions 

MATLAB® provides engine functions with which it 
is possible to use MATLAB® as a computing engine 
from other software. The engine functions enable 
executing MATLAB® commands and transferring 
data and variables between MATLAB® and the 
calling application. Engine functions are C or 
FORTRAN programs that communicate with the 
MATLAB® process via COM interface in MS 
Windows and named pipes in UNIX/LINUX 
environment. (The Mathworks, 2003) 

GLOBAL CONDITION MONITORING SYSTEM - Implementing MATLAB® - Based Analysis Services

303



 

Engine functions do not support Java (The 
Mathworks, 2003) but it is possible to use so called 
native methods in Java via JNI (Java Native 
Interface) (Sun Microsystems, 2003). Native 
methods are functions programmed in another 
language, e.g. in C, that are embedded in the Java 
program. JNI acts as a bridge between Java and the 
native program code. It is worth noting that by using 
JNI we lose the platform independence of Java, 
since native methods are operating system specific. 
MATLAB® engine functions can be used from a 
Java program by implementing engine function calls 
in C language native methods. There is an existing 
implementation called JMatLink (Müller, 2002) that 
uses engine functions with C native methods in Java. 

5.3 MATLAB® COM Builder 

COM (Component Object Model) is Microsoft’s 
component model that makes it possible for 
programs to use each others’ resources. The latest 
version of MATLAB® (version 6.5 R13) comes 
with the COM Builder tool that can be used to 
convert m-files to stand-alone COM components. A 
stand-alone COM component does not need 
MATLAB® to function, since all the required 
libraries are packed within the installation program 
of the component. The analysis modules (m-files) 
developed with MATLAB® can be made stand-
alone COM components with the help of COM 
Builder. (The Mathworks, 2002) 
COM components cannot be used directly from a 
Java program and therefore some kind of 
intermediation is needed. Fortunately such Java-

COM bridges do exist. One useful implementation is 
JIntegra that uses proxy classes to enable two-way 
communication between Java programs and COM 
components. The proxy classes are pure Java 
applications that cast COM data types as Java data 
types, thus avoiding the need to use any platform-
dependent code. The JIntegra software generates the 
proxy classes automatically for each COM 
component. (Intrinsyc Software International ,2004) 
MATLAB® licence allows the free use of COM 
components and consequently the low-cost is one of 
the most important aspects in favouring them. On 
the other hand COM technology binds the 
implementation strictly to MS Windows 
environment whereas the other integration 
techniques presented here are also suitable to all the 
other operating systems supported by MATLAB®. 

6 CONCLUSIONS 

This paper first described the general structure and 
requirements set for the global condition monitoring 
system that is designed to achieve predictive 
maintenance in process industry. We also outlined 
the way in which the information management and 
analysis in the system should be done. Then three 
methods to integrate MATLAB® software to 
perform computations required by condition 
monitoring and fault diagnostics were introduced. 
It was proposed that distributed agent-architecture is 
needed to guarantee modularity as well as automated 
operation—essential requirements for such a large-
scale system. Distribution applies also to the 

Figure 2: Calling MATLAB from Java using inverted call

ICINCO 2004 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

304



 

analysis services that are scattered to the site 
subsystems. On top of that, data pre-processing and 
device self-diagnostics are done at the field level to 
further decrease the system workload and to avoid 
unnecessary data transfer. 
Systems integration has grown in importance 
especially in medium and large-scale industries 
where it is difficult to launch unified, comprehensive 
information solutions. The global condition 
monitoring system has to deal with legacy systems 
and some basic tools, like MATLAB®, may need to 
be integrated to the system as well. Modularity and 
generality requirements have to be considered when 
making the decision about the integration solution to 
allow for future changes to the system. 
Combining MATLAB® and a Java-based system is 
not a straightforward task. Choosing the integration 
solution is a matter of deciding between ease-of-use 
against generality and portability of the solution. Out 
of the three approaches introduced in this paper only 
the inverted call can guarantee platform 
independence. The disadvantage, however, is the 
more complicated integration process and the more 
extensive programming effort compared to the other 
two solutions. Moreover, the simple socket-based 
implementation detailed in section 5.1 is not 
applicable to a full-scale production system. 
However, by employing more sophisticated inter-
process communication methods, like JMS, Java 
RMI or CORBA, to implement the analysis request 
broking, the inverted call can be improved and can 
be seen as the most promising alternative to 
integrate MATLAB® software with a Java-based 
system. 

REFERENCES 

Franklin, S. & Graesser, A., 1996. Is it an agent or just a 
program?: A Taxonomy of autonomous Agents. In 
Proceedings of the Third International Workshop on 
Agent Theories, Architectures, and Languages. 
Springer-Verlag, Berlin. 

Haavisto, H., 2001. Kunnonvalvontajärjestelmän 
viestinvälityksen toteutusmahdollisuudet .NET 
tekniikoin. MSc Thesis, Tampereen teknillinen 
korkeakoulu. 

Helanterä, H., 2004. Analyysipalvelut globaalissa 
kunnonvalvontajärjestelmässä. M.Sc. Thesis, 
Tampereen teknillinen yliopisto. 

Java Native Interface, 2003. [Internet]. Sun Microsystems, 
Inc. Available from: <http://java.sun.com/j2se/1.4.2/ 
docs/guide/jni/>. [Accessed 24 February, 2004]. 

J-Integra Documentation, 2004. [Internet]. Intrinsyc 
Software International, Inc. Available from: 

<http://j-integra.intrinsyc.com/j-integra/doc/>. 
[Accessed 24 February, 2004]. 

Kero, J., 2004. Advanced Messaging in Enterprise Scale 
Maintenance System. MSc Thesis, Tampereen 
teknillinen korkeakoulu. 

MATLAB® COM Builder User’s Guide, 2002. [Internet]. 
Version 1. Natick, MA. The Mathworks, Inc. 
Available from: <http://www.mathworks.com/access/ 
helpdesk/help/pdf_doc/combuilder/combuilder.pdf>. 
[Accessed 24 February, 2004]. 

MATLAB® External Interfaces/API, 2003. [Internet]. 
Version 6. Natick, MA. The Mathworks, Inc. 
Available from: <http://www.mathworks.com/access/ 
helpdesk/help/pdf_doc/matlab/apiext.pdf>. [Accessed 
24 February, 2004]. 

Müller, S., 2002. JMatLink – MATLAB® Java Classes. 
[Internet]. Available from: <http://www.held-
mueller.de/JMatLink/>. [Accessed 24 February, 
2004]. 

Nikunen, J., 2001. Security Considerations on Wide Area 
Networking Industrial Solutions. M.Sc. Thesis, 
Tampereen teknillinen korkeakoulu. 

Nikunen, J. et al., 2001. Global Condition Monitoring 
Network. In Automaatio2001, Helsinki, September 2-
9. Suomen Automaatioseura ry. 

Salmenperä, M., 2000. E-speak in Enterprise Scale 
Condition Monitoring Network. MSc Thesis, 
Tampereen teknillinen korkeakoulu. 

Salmenperä, M. & Koivisto, H., 2001. Using E-speak in 
Condition Monitoring Network. In Automaatio2001, 
Helsinki, 2-9 September. Suomen Automaatioseura ry. 

Salmenperä, M. et al., 2003. Applying .NET Framework 
to Conditioning Monitoring in Globally Distributed 
Environment. In Automaatio2003, Helsinki, 9-11 
September. Suomen Automaatioseura ry. 

GLOBAL CONDITION MONITORING SYSTEM - Implementing MATLAB® - Based Analysis Services

305


