Authors:
Jérôme Van Zaen
;
Olivier Chételat
;
Mathieu Lemay
;
Enric Calvo
and
Ricard Delgado-Gonzalo
Affiliation:
Swiss Center for Electronics and Microtechnology (CSEM), Rue Jaquet-Droz 1, Neuchâtel and Switzerland
Keyword(s):
ECG, Cardiac Arrhythmias, Neural Networks, Deep Learning, Wearable Sensors.
Related
Ontology
Subjects/Areas/Topics:
Biomedical Engineering
;
Biomedical Signal Processing
;
Cardiovascular Signals
;
Devices
;
Health Information Systems
;
Human-Computer Interaction
;
Physiological Computing Systems
;
Wearable Sensors and Systems
Abstract:
While most heart arrhythmias are not immediately harmful, they can lead to severe complications. In particular, atrial fibrillation, the most common arrhythmia, is characterized by fast and irregular heart beats and increases the risk of suffering a stroke. To detect such abnormal heart conditions, we propose a system composed of two main parts: a smart vest with two cooperative sensors to collect ECG data and a neural network architecture to classify heart rhythms. The smart vest uses two dry bi-electrodes to record a single lead ECG signal. The biopotential signal is then streamed via a gateway to the cloud where a neural network detects and classifies the heart arrhythmias. We selected an architecture that combines convolutional and recurrent layers. The convolutional layers extract relevant features from sliding windows of ECG and the recurrent layer aggregates them for a final softmax layer that performs the classification. Our neural network achieves an accuracy of 87.50% on the
dataset of the challenge of Computing in Cardiology 2017.
(More)