loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Eduardo Nascimento 1 ; Caio Avila 1 ; 2 ; Yenier Izquierdo 1 ; Grettel García 1 ; Lucas Feijó L. Andrade 1 ; Michelle S. P. Facina 3 ; Melissa Lemos 1 and Marco Casanova 4 ; 1

Affiliations: 1 Instituto Tecgraf, PUC-Rio, Rio de Janeiro, RJ, CEP 22451-900, Brazil ; 2 Departamento de Computação, UFC, Fortaleza, CEP 60440-900, Brazil ; 3 Petrobras, Rio de Janeiro, RJ, CEP 20231-030, Brazil ; 4 Departamento de Informática, PUC-Rio, Rio de Janeiro, RJ, CEP 22451-900, Brazil

Keyword(s): Text-to-SQL, Database Keyword Search, Large Language Models, Relational Databases.

Abstract: Text-to-SQL prompt strategies based on Large Language Models (LLMs) achieve remarkable performance on well-known benchmarks. However, when applied to real-world databases, their performance is significantly less than for these benchmarks, especially for Natural Language (NL) questions requiring complex filters and joins to be processed. This paper then proposes a strategy to compile NL questions into SQL queries that incorporates a dynamic few-shot examples strategy and leverages the services provided by a database keyword search (KwS) platform. The paper details how the precision and recall of the schema-linking process are improved with the help of the examples provided and the keyword-matching service that the KwS platform offers. Then, it shows how the KwS platform can be used to synthesize a view that captures the joins required to process an input NL question and thereby simplify the SQL query compilation step. The paper includes experiments with a real-world relational databas e to assess the performance of the proposed strategy. The experiments suggest that the strategy achieves an accuracy on the real-world relational database that surpasses state-of-the-art approaches. The paper concludes by discussing the results obtained. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.97.9.171

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Nascimento, E., Avila, C., Izquierdo, Y., García, G., Andrade, L. F. L., Facina, M. S. P., Lemos, M. and Casanova, M. (2025). On the Text-to-SQL Task Supported by Database Keyword Search. In Proceedings of the 27th International Conference on Enterprise Information Systems - Volume 1: ICEIS; ISBN 978-989-758-749-8; ISSN 2184-4992, SciTePress, pages 173-180. DOI: 10.5220/0013126300003929

@conference{iceis25,
author={Eduardo Nascimento and Caio Avila and Yenier Izquierdo and Grettel García and Lucas Feijó L. Andrade and Michelle S. P. Facina and Melissa Lemos and Marco Casanova},
title={On the Text-to-SQL Task Supported by Database Keyword Search},
booktitle={Proceedings of the 27th International Conference on Enterprise Information Systems - Volume 1: ICEIS},
year={2025},
pages={173-180},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0013126300003929},
isbn={978-989-758-749-8},
issn={2184-4992},
}

TY - CONF

JO - Proceedings of the 27th International Conference on Enterprise Information Systems - Volume 1: ICEIS
TI - On the Text-to-SQL Task Supported by Database Keyword Search
SN - 978-989-758-749-8
IS - 2184-4992
AU - Nascimento, E.
AU - Avila, C.
AU - Izquierdo, Y.
AU - García, G.
AU - Andrade, L.
AU - Facina, M.
AU - Lemos, M.
AU - Casanova, M.
PY - 2025
SP - 173
EP - 180
DO - 10.5220/0013126300003929
PB - SciTePress